Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Current Insights and Molecular Docking Studies of the Drugs under Clinical Trial as RdRp Inhibitors in COVID-19 Treatment

Author(s): Irine Pauly, Ankit Kumar Singh, Adarsh Kumar, Yogesh Singh, Suresh Thareja, Mohammad A. Kamal, Amita Verma* and Pradeep Kumar*

Volume 28, Issue 46, 2022

Published on: 21 November, 2022

Page: [3677 - 3705] Pages: 29

DOI: 10.2174/1381612829666221107123841

Price: $65

Abstract

Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds.

Material and Methods: Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies.

Results: The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease.

Conclusion: The drug repurposing approach provides a new avenue in COVID-19 treatment.

Keywords: SARS-CoV-2, COVID-19, RdRp, remdesivir, life cycle, docking and simulation.

[1]
Patel M, Dominguez E, Sacher D, et al. Group TUC-R. Etoposide as salvage therapy for cytokine storm due to coronavirus disease 2019. Chest 2021; 159(1): e7-e11.
[http://dx.doi.org/10.1016/j.chest.2020.09.077] [PMID: 32931823]
[2]
Liu YC, Kuo RL, Shih SR. COVID-19: The first documented coronavirus pandemic in history. Biomed J 2020; 43(4): 328-33.
[http://dx.doi.org/10.1016/j.bj.2020.04.007] [PMID: 32387617]
[3]
Agarwal KM, Mohapatra S, Sharma P, Sharma S, Bhatia D, Mishra A. Study and overview of the novel corona virus disease (COVID-19). Sens Int 2020; 1: 100037.
[4]
Chakraborty R, Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem Pharmacol 2020; 180: 114184.
[http://dx.doi.org/10.1016/j.bcp.2020.114184] [PMID: 32739342]
[5]
Gorbalenya A, Baker S, Baric R, de Groot R, Drosten C, Gulyaeva A. Severe acute respiratory syndrome-related coronavirus: The species and its viruses-A statement of the Coronavirus study group. bioRxiv 2020; 7.
[http://dx.doi.org/10.1101/2020.02.07.937862]
[6]
Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004; 10(S12) (Suppl.): S88-97.
[http://dx.doi.org/10.1038/nm1143] [PMID: 15577937]
[7]
Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT. Middle East respiratory syndrome coronavirus transmission. Emerg Infect Dis 2020; 26(2): 191-8.
[http://dx.doi.org/10.3201/eid2602.190697] [PMID: 31961300]
[8]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[9]
Tyrrell DA, Myint SH. Coronaviruses. In: Baron S, Ed. Medical Microbiology. (4th ed.), Galveston, (TX): University of Texas Medical Branch at Galveston 1996.
[10]
Osman EEA, Toogood PL, Neamati N. COVID-19: Living through another pandemic. ACS Infect Dis 2020; 6(7): 1548-52.
[http://dx.doi.org/10.1021/acsinfecdis.0c00224] [PMID: 32388976]
[11]
Jahangir MA, Muheem A, Rizvi MF. Coronavirus (COVID-19): history, current knowledge and pipeline medications. Int J Pharm Pharmacol 2020; 4(1): 1-9.
[http://dx.doi.org/10.31531/2581-3080.1000153]
[12]
Lotfi M, Hamblin MR, Rezaei N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta 2020; 508: 254-66.
[http://dx.doi.org/10.1016/j.cca.2020.05.044] [PMID: 32474009]
[13]
Gupta N, Kaur H, Yadav PD, et al. Clinical characterization and genomic analysis of samples from COVID-19 breakthrough infections during the second wave among the various states of India. Viruses 2021; 13(9): 1782.
[http://dx.doi.org/10.3390/v13091782] [PMID: 34578363]
[14]
Asrani P, Eapen MS, Hassan MI, Sohal SS. Implications of the second wave of COVID-19 in India. Lancet Respir Med 2021; 9(9): e93-4.
[http://dx.doi.org/10.1016/S2213-2600(21)00312-X] [PMID: 34216547]
[15]
Lyngse FP, Mortensen LH, Denwood MJ, et al. SARS-CoV-2 Omicron VOC transmission in Danish households. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.12.27.21268278]
[16]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[17]
Astuti I. Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[18]
Manhas S, Anjali A, Mansoor S, et al. COVID-19 pandemic and current medical interventions. Arch Med Res 2020; 51(6): 473-81.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.007] [PMID: 32499154]
[19]
Lam S, Lombardi A, Ouanounou A. COVID-19: A review of the proposed pharmacological treatments. Eur J Pharmacol 2020; 886: 173451.
[http://dx.doi.org/10.1016/j.ejphar.2020.173451] [PMID: 32768505]
[20]
Samudrala PK, Kumar P, Choudhary K, et al. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J Pharmacol 2020; 883: 173375.
[http://dx.doi.org/10.1016/j.ejphar.2020.173375] [PMID: 32682788]
[21]
Trougakos IP, Stamatelopoulos K, Terpos E, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021; 28(1): 9.
[http://dx.doi.org/10.1186/s12929-020-00703-5] [PMID: 33435929]
[22]
Su H, Xu Y, Jiang H. Drug discovery and development targeting the life cycle of SARS-CoV-2. Fund Res 2021; 1(2): 151-65.
[http://dx.doi.org/10.1016/j.fmre.2021.01.013]
[23]
Jamshaid H, Zahid F, Din I, et al. Diagnostic and treatment strategies for COVID-19. AAPS PharmSciTech 2020; 21(6): 222.
[http://dx.doi.org/10.1208/s12249-020-01756-3] [PMID: 32748244]
[24]
Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021; 21(6): 382-93.
[http://dx.doi.org/10.1038/s41577-021-00542-x] [PMID: 33875867]
[25]
Sahu K, Kumar R. Preventive and treatment strategies of COVID-19: From community to clinical trials. J Family Med Prim Care 2020; 9(5): 2149-57.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_728_20] [PMID: 32754463]
[26]
Haimei MA. Pathogenesis and treatment strategies of COVID-19-related hypercoagulant and thrombotic complications. Clin Appl Thromb Hemost 2020; 26.
[http://dx.doi.org/10.1177/1076029620944497] [PMID: 32722927]
[27]
Singh B, Mal G, Verma V, et al. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12(1): 283.
[http://dx.doi.org/10.1186/s13287-021-02334-5] [PMID: 33980321]
[28]
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep 2020; 72(6): 1479-508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[29]
Gavriatopoulou M, Ntanasis-Stathopoulos I, Korompoki E, et al. Emerging treatment strategies for COVID-19 infection. Clin Exp Med 2021; 21(2): 167-79.
[http://dx.doi.org/10.1007/s10238-020-00671-y] [PMID: 33128197]
[30]
Dorward J, Gbinigie K. Lopinavir/ritonavir: A rapid review of effectiveness in COVID-19 Evidence Service to support the COVID-19 Centre for Evidence-Based Medicine. Nuffield Department of Primary Care Health Sciences: University of Oxford 2020.
[31]
Patel TK, Patel PB, Barvaliya M, Saurabh MK, Bhalla HL, Khosla PP. Efficacy and safety of lopinavir-ritonavir in COVID-19: A systematic review of randomized controlled trials. J Infect Public Health 2021; 14(6): 740-8.
[http://dx.doi.org/10.1016/j.jiph.2021.03.015] [PMID: 34020215]
[32]
Sojka D, Šnebergerová P, Robbertse L. Protease inhibition-An established strategy to combat infectious diseases. Int J Mol Sci 2021; 22(11): 5762.
[http://dx.doi.org/10.3390/ijms22115762] [PMID: 34071206]
[33]
Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med 2020; 156: 107-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.032] [PMID: 32598985]
[34]
Lin MH, Moses DC, Hsieh CH, et al. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res 2018; 150: 155-63.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[35]
Chen Y, Yang WH, Huang LM, et al. Inhibition of severe acute respiratory syndrome coronavirus 2 main protease by tafenoquine in vitro. Biorxiv 2020.
[http://dx.doi.org/10.1101/2020.08.14.250258]
[36]
Jayachandran M, Wu Z, Ganesan K, Khalid S, Chung SM, Xu B. Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chem Biol Interact 2019; 303: 62-9.
[http://dx.doi.org/10.1016/j.cbi.2019.02.017] [PMID: 30817903]
[37]
Alam S, Kamal TB, Sarker MMR, Zhou JR, Rahman SMA, Mohamed IN. Therapeutic effectiveness and safety of repurposing drugs for the treatment of COVID-19: position standing in 2021. Front Pharmacol 2021; 12: 659577.
[http://dx.doi.org/10.3389/fphar.2021.659577] [PMID: 34220503]
[38]
Reina J, Iglesias C. Nirmatrelvir plus ritonavir (Paxlovid) a potent SARS-CoV-2 3CLpro protease inhibitor combination. Rev Esp Quimioter 2022; 35(3): 236-40.
[http://dx.doi.org/10.37201/req/002.2022] [PMID: 35183067]
[39]
Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: Mechanism of action, synthesis, and in silico study. BioMed Res Int 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/7341493] [PMID: 35845944]
[40]
Kokic G, Hillen HS, Tegunov D, et al. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun 2021; 12(1): 279.
[http://dx.doi.org/10.1038/s41467-020-20542-0] [PMID: 33436624]
[41]
Agrawal U, Raju R, Udwadia ZF. Favipiravir: A new and emerging antiviral option in COVID-19. Med J Armed Forces India 2020; 76(4): 370-6.
[http://dx.doi.org/10.1016/j.mjafi.2020.08.004] [PMID: 32895599]
[42]
Khalili H, Nourian A, Ahmadinejad Z, et al. Efficacy and safety of sofosbuvir/ledipasvir in treatment of patients with COVID-19; A randomized clinical trial. Acta Biomed 2020; 91(4): e2020102.
[PMID: 33525212]
[43]
Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. J Med Virol 2020; 92(7): 740-6.
[http://dx.doi.org/10.1002/jmv.25798] [PMID: 32227493]
[44]
Julander JG, Demarest JF, Taylor R, et al. An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Res 2021; 195: 105180.
[http://dx.doi.org/10.1016/j.antiviral.2021.105180] [PMID: 34551346]
[45]
Cox RM, Wolf JD, Plemper RK. Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat Microbiol 2021; 6(1): 11-8.
[http://dx.doi.org/10.1038/s41564-020-00835-2] [PMID: 33273742]
[46]
Bukreyeva N, Mantlo EK, Sattler RA, Huang C, Paessler S, Zeldis J. The IMPDH inhibitor merimepodib suppresses SARS-CoV-2 replication in vitro. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.07.028589]
[47]
Song JY, Kim YS, Eom JS, et al. Oral antiviral clevudine compared with placebo in Korean COVID-19 patients with moderate severity. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.12.09.21267566]
[48]
Zhang JL, Li YH, Wang LL, et al. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treating COVID-19 patients. Signal Transduct Target Ther 2021; 6(1): 414.
[http://dx.doi.org/10.1038/s41392-021-00835-6] [PMID: 34873151]
[49]
Zhao L, Li S, Zhong W. Mechanism of action of small-molecule agents in ongoing clinical trials for SARS-CoV-2: A review. In: Front Pharmaco. 2022; p. 13.
[50]
Qian H, Wang Y, Zhang M, et al. Safety, tolerability, and pharmacokinetics of VV116, an oral nucleoside analog against SARS-CoV-2, in Chinese healthy subjects. Acta Pharmacol Sin 2022; 16: 1-9.
[http://dx.doi.org/10.1038/s41401-022-00895-6] [PMID: 35296780]
[51]
Shen Y, Ai J, Lin N, et al. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants. Emerg Microbes Infect 2022; 11(1): 1518-23.
[http://dx.doi.org/10.1080/22221751.2022.2078230] [PMID: 35579892]
[52]
Cadegiani FA, McCoy J, Wambier CG, et al. Proxalutamide (GT0918) reduces the rate of hospitalization and death in COVID-19 male patients: A randomized double-blinded placebo-controlled trial. 2020.
[53]
Carter-Timofte ME, Arulanandam R, Kurmasheva N, et al. Antiviral potential of the antimicrobial drug atovaquone against SARS-CoV-2 and emerging variants of concern. ACS Infect Dis 2021; 7(11): 3034-51.
[http://dx.doi.org/10.1021/acsinfecdis.1c00278] [PMID: 34658235]
[54]
Risner KH, Tieu KV, Wang Y, et al. Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.08.12.246389]
[55]
Geriak M, Haddad F, Kullar R, et al. Randomized prospective open label study shows no impact on clinical outcome of adding losartan to hospitalized COVID-19 patients with mild hypoxemia. Infect Dis Ther 2021; 10(3): 1323-30.
[http://dx.doi.org/10.1007/s40121-021-00453-3] [PMID: 33977506]
[56]
Hamouda Elgarhy L. Could patients taking isotretinoin therapy be immune against SARS‐CoV‐2? Dermatol Ther 2020; 33(4): e13573.
[http://dx.doi.org/10.1111/dth.13573] [PMID: 32406143]
[57]
Hosseinzadeh MH, Shamshirian A, Ebrahimzadeh MA. Dexamethasone vs COVID‐19: An experimental study in line with the preliminary findings of a large trial. Int J Clin Pract 2021; 75(6): e13943.
[http://dx.doi.org/10.1111/ijcp.13943] [PMID: 33332726]
[58]
Ferrara F, Vitiello A. The clinical rationale of Sacubitril/valsartan for therapeutic treatment in SARS-CoV-2. Authorea Preprints 2020.
[http://dx.doi.org/10.22541/au.159493018.89024677]
[59]
Vitiello A, Ferrara F. Pharmacological agents modifying the renin angiotensin and natriuretic peptide systems in COVID-19 patients. Wien Klin Wochenschr 2021; 133(17-18): 983-8.
[http://dx.doi.org/10.1007/s00508-021-01855-6] [PMID: 33877436]
[60]
Zangiabadian M, Nejadghaderi SA, Zahmatkesh MM, Hajikhani B, Mirsaeidi M, Nasiri MJ. The efficacy and potential mechanisms of metformin in the treatment of COVID-19 in the diabetics: A systematic review. Front Endocrinol 2021; 12: 645194.
[http://dx.doi.org/10.3389/fendo.2021.645194] [PMID: 33815295]
[61]
Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int J Antimicrob Agents 2020; 56(2): 105998.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[62]
Cadegiani FA, McCoy J, Gustavo Wambier C, et al. Proxalutamide significantly accelerates viral clearance and reduces time to clinical remission in patients with mild to moderate COVID-19: Results from a randomized, double-blinded, placebo-controlled trial. Cureus 2021; 13(2): e13492.
[http://dx.doi.org/10.7759/cureus.13492] [PMID: 33633920]
[63]
Richardson E, García-Bernal D, Calabretta E, et al. Defibrotide: potential for treating endothelial dysfunction related to viral and post-infectious syndromes. Expert Opin Ther Targets 2021; 25(6): 423-33.
[http://dx.doi.org/10.1080/14728222.2021.1944101] [PMID: 34167431]
[64]
Li F, Han M, Dai P, et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nat Commun 2021; 12(1): 866.
[http://dx.doi.org/10.1038/s41467-021-21171-x] [PMID: 33558541]
[65]
Nobile B, Durand M, Courtet P, et al. Could the antipsychotic chlorpromazine be a potential treatment for SARS-CoV-2? Schizophr Res 2020; 223: 373-5.
[http://dx.doi.org/10.1016/j.schres.2020.07.015] [PMID: 32773341]
[66]
Takahashi W, Yoneda T, Koba H, et al. Potential mechanisms of nafamostat therapy for severe COVID-19 pneumonia with disseminated intravascular coagulation. Int J Infect Dis 2021; 102: 529-31.
[http://dx.doi.org/10.1016/j.ijid.2020.10.093] [PMID: 33157292]
[67]
Goodman A. Repurposing drugs for the treatment of COVID-19. The Lancet Respiratory Medicine 2021; 9(7) Available from: https://www.thelancet.com/journals/lanres/article/PIIS2213-2600 (21)00270-8/fulltext
[68]
Depfenhart M, de Villiers D, Lemperle G, Meyer M, Di Somma S. Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy? Intern Emerg Med 2020; 15(5): 801-12.
[http://dx.doi.org/10.1007/s11739-020-02383-3] [PMID: 32458206]
[69]
Breining P, Frølund AL, Højen JF, et al. Camostat mesylate against SARS‐CoV‐2 and COVID‐19-Rationale, dosing and safety. Basic Clin Pharmacol Toxicol 2021; 128(2): 204-12.
[http://dx.doi.org/10.1111/bcpt.13533] [PMID: 33176395]
[70]
Kotfis K, Lechowicz K, Drożdżal S, et al. COVID-19-The potential beneficial therapeutic effects of spironolactone during SARS-CoV-2 infection. Pharmaceuticals 2021; 14(1): 71.
[http://dx.doi.org/10.3390/ph14010071] [PMID: 33477294]
[71]
Abobaker A. Can iron chelation as an adjunct treatment of COVID-19 improve the clinical outcome? Eur J Clin Pharmacol 2020; 76(11): 1619-20.
[http://dx.doi.org/10.1007/s00228-020-02942-9] [PMID: 32607779]
[72]
Leal CMR, del Sol MG, Granado MPC, Campos MÁ. Prospective, non-controlled pilot study to evaluate the efficacy and safety of Cefditoren Pivoxil in COVID-19 patients with mild to moderate pneumonia. Eur J Res Med 2022; 4(1): 249-57.
[73]
Al-kuraishy HM, Al-Gareeb AI, Alzahrani KJ, Alexiou A, Batiha GES. Niclosamide for COVID-19: bridging the gap. Mol Biol Rep 2021; 48(12): 8195-202.
[http://dx.doi.org/10.1007/s11033-021-06770-7] [PMID: 34664162]
[74]
Roostaei Firozabad A, Meybodi ZA, Mousavinasab SR, et al. Efficacy and safety of Levamisole treatment in clinical presentations of non-hospitalized patients with COVID-19: a double-blind, randomized, controlled trial. BMC Infect Dis 2021; 21(1): 297.
[http://dx.doi.org/10.1186/s12879-021-05983-2] [PMID: 33761870]
[75]
Jovanović JĐ, Antonijević M, El-Emam AA, Marković Z, Comparative MD. Comparative MD study of inhibitory activity of opaganib and adamantane‐isothiourea derivatives toward COVID‐19 main protease Mpro. ChemistrySelect 2021; 6(33): 8603-10.
[http://dx.doi.org/10.1002/slct.202101898] [PMID: 34909459]
[76]
Alizadehmohajer N, Behmardi A, Najafgholian S, et al. Screening of potential inhibitors of COVID-19 with repurposing approach via molecular docking. Netw Model Anal Health Inform Bioinform 2022; 11(1): 11.
[http://dx.doi.org/10.1007/s13721-021-00341-3] [PMID: 35136710]
[77]
Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, progesterone, immunomodulation, and COVID-19 outcomes. Endocrinology 2020; 161(9)
[http://dx.doi.org/10.1210/endocr/bqaa127] [PMID: 32730568]
[78]
Seirafianpour F, Mozafarpoor S, Fattahi N, Sadeghzadeh-Bazargan A, Hanifiha M, Goodarzi A. Treatment of COVID ‐19 with pentoxifylline: Could it be a potential adjuvant therapy? Dermatol Ther 2020; 33(4): e13733.
[http://dx.doi.org/10.1111/dth.13733] [PMID: 32473070]
[79]
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121-41.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[80]
Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: an overview. Int J Environ Res Public Health 2020; 17(20): 7618.
[http://dx.doi.org/10.3390/ijerph17207618] [PMID: 33086688]
[81]
Wang J, Chen WD, Wang YD. The relationship between gut microbiota and inflammatory diseases: The role of macrophages. Front Microbiol 2020; 11: 1065.
[http://dx.doi.org/10.3389/fmicb.2020.01065] [PMID: 32582063]
[82]
Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 2020; 54: 1-7.
[http://dx.doi.org/10.1016/j.mito.2020.06.008] [PMID: 32574708]
[83]
Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021; 11(7): 1789-812.
[http://dx.doi.org/10.1016/j.apsb.2020.09.013] [PMID: 34386321]
[84]
Oladele OA, Emikpe BO, Adeyefa CAO, Enibe F. Effects of levamisole hydrochloride on cellular immune response and flock performance of commercial broilers. Rev Bras Cienc Avic 2012; 14(4): 259-65.
[http://dx.doi.org/10.1590/S1516-635X2012000400005]
[85]
Guardado-Mendoza R, Garcia-Magaña MA, Martínez-Navarro LJ, et al. Effect of linagliptin plus insulin in comparison to insulin alone on metabolic control and prognosis in hospitalized patients with SARS-CoV-2 infection. Sci Rep 2022; 12(1): 536.
[http://dx.doi.org/10.1038/s41598-021-04511-1] [PMID: 35017617]
[86]
Gómez-Enjuto S, Hernando-Requejo V, Lapeña-Motilva J, et al. Verapamil as treatment for refractory status epilepticus secondary to PRES syndrome on a SARS-CoV-2 infected patient. Seizure 2020; 80: 157-8.
[http://dx.doi.org/10.1016/j.seizure.2020.06.008] [PMID: 32574838]
[87]
Peng C, Wang H, Guo YF, et al. Calcium channel blockers improve prognosis of patients with coronavirus disease 2019 and hypertension. Chin Med J 2021; 134(13): 1602-9.
[http://dx.doi.org/10.1097/CM9.0000000000001479] [PMID: 34133354]
[88]
Stip E, Rizvi TA, Mustafa F, et al. The large action of chlorpromazine: translational and transdisciplinary considerations in the face of COVID-19. Front Pharmacol 2020; 11: 577678.
[http://dx.doi.org/10.3389/fphar.2020.577678] [PMID: 33390948]
[89]
Echeverría-Esnal D, Martin-Ontiyuelo C, Navarrete-Rouco ME, et al. Azithromycin in the treatment of COVID-19: A review. Expert Rev Anti Infect Ther 2021; 19(2): 147-63.
[http://dx.doi.org/10.1080/14787210.2020.1813024] [PMID: 32853038]
[90]
Narendrakumar L, Joseph I, Thomas S. Potential effectiveness and adverse implications of repurposing doxycycline in COVID-19 treatment. Expert Rev Anti Infect Ther 2021; 19(8): 1001-8.
[http://dx.doi.org/10.1080/14787210.2021.1865803] [PMID: 33322952]
[91]
Alavian G, Kolahdouzan K, Mortezazadeh M, Torabi ZS. Antiretrovirals for prophylaxis against COVID‐19: A comprehensive literature review. J Clin Pharmacol 2021; 61(5): 581-90.
[http://dx.doi.org/10.1002/jcph.1788] [PMID: 33217030]
[92]
Pandey S, Pathak SK, Pandey A, et al. Ivermectin in COVID-19: What do we know? Diabetes Metab Syndr 2020; 14(6): 1921-2.
[http://dx.doi.org/10.1016/j.dsx.2020.09.027] [PMID: 33032231]
[93]
Roschewski M, Lionakis MS, Sharman JP, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol 2020; 5(48): eabd0110.
[http://dx.doi.org/10.1126/sciimmunol.abd0110] [PMID: 32503877]
[94]
Patel MR, O’Brien SM, Faia K, et al. Early clinical activity and pharmacodynamic effects of duvelisib, a PI3K-δ,γ inhibitor, in patients with treatment-naïve CLL. J Clin Oncol 2015; 33(15) (_suppl.): 7074.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.7074]
[95]
Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: A suitable treatment? Lancet Infect Dis 2020; 20(9): 1012-3.
[http://dx.doi.org/10.1016/S1473-3099(20)30262-0] [PMID: 32251638]
[96]
Sayed Ahmed HA, Merrell E, Ismail M, et al. Rationales and uncertainties for aspirin use in COVID-19: A narrative review. Fam Med Community Health 2021; 9(2): e000741.
[http://dx.doi.org/10.1136/fmch-2020-000741] [PMID: 33879541]
[97]
Baldelli S, Corbellino M, Clementi E, Cattaneo D, Gervasoni C. Lopinavir/ritonavir in COVID-19 patients: maybe yes, but at what dose? J Antimicrob Chemother 2020; 75(9): 2704-6.
[http://dx.doi.org/10.1093/jac/dkaa190] [PMID: 32407513]
[98]
Maciorowski D, El Idrissi SZ, Gupta Y, et al. A review of the preclinical and clinical efficacy of remdesivir, hydroxychloroquine, and lopinavir-ritonavir treatments against COVID-19. SLAS Discov 2020; 25(10): 1108-22.
[http://dx.doi.org/10.1177/2472555220958385] [PMID: 32942923]
[99]
Chen J, Xia L, Liu L, et al. Antiviral activity and safety of darunavir/cobicistat for the treatment of COVID-19. Open Forum Infect Dis 2020; 7(7): ofaa241.
[http://dx.doi.org/10.1093/ofid/ofaa241] [PMID: 32671131]
[100]
Ghosh AK, Dawson ZL, Mitsuya H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorg Med Chem 2007; 15(24): 7576-80.
[http://dx.doi.org/10.1016/j.bmc.2007.09.010] [PMID: 17900913]
[101]
Ibrahim MAA, Abdelrahman AHM, Hegazy MEF. In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2021; 39(15): 5756-67.
[http://dx.doi.org/10.1080/07391102.2020.1791958] [PMID: 32684114]
[102]
Weglarz-Tomczak E, Tomczak JM, Talma M, Burda-Grabowska M, Giurg M, Brul S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci Rep 2021; 11(1): 3640.
[http://dx.doi.org/10.1038/s41598-021-83229-6] [PMID: 33574416]
[103]
Hu S, Jiang S, Qi X, Bai R, Ye XY, Xie T. Races of small molecule clinical trials for the treatment of COVID‐19: An up‐to‐date comprehensive review. Drug Dev Res 2022; 83(1): 16-54.
[http://dx.doi.org/10.1002/ddr.21895] [PMID: 34762760]
[104]
Chen T, Fei CY, Chen YP, et al. Synergistic inhibition of SARS-CoV-2 replication using disulfiram/ebselen and remdesivir. ACS Pharmacol Transl Sci 2021; 4(2): 898-907.
[http://dx.doi.org/10.1021/acsptsci.1c00022] [PMID: 33855277]
[105]
Butcher K, Kannappan V, Kilari RS, et al. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer 2018; 18(1): 753.
[http://dx.doi.org/10.1186/s12885-018-4617-x] [PMID: 30031402]
[106]
Chen Y, Yang WH, Chen HF, et al. Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2. J Biol Chem 2022; 298(3): 101658.
[http://dx.doi.org/10.1016/j.jbc.2022.101658] [PMID: 35101449]
[107]
St Jean PL, Xue Z, Carter N, et al. Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial. Malar J 2016; 15(1): 97.
[http://dx.doi.org/10.1186/s12936-016-1145-5] [PMID: 26888075]
[108]
Aly O. Molecular docking reveals the potential of aliskiren, dipyridamole, mopidamol, rosuvastatin, rolitetracycline and metamizole to inhibit COVID-19 virus main protease. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12061302.v1]
[109]
White CM. A review of the pharmacologic and pharmacokinetic aspects of rosuvastatin. J Clin Pharmacol 2002; 42(9): 963-70.
[http://dx.doi.org/10.1177/009127000204200902] [PMID: 12211221]
[110]
Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res 2022; 36(1): 266-78.
[http://dx.doi.org/10.1002/ptr.7309] [PMID: 34709675]
[111]
Kato K, Ninomiya M, Tanaka K, Koketsu M. Effects of functional groups and sugar composition of quercetin derivatives on their radical scavenging properties. J Nat Prod 2016; 79(7): 1808-14.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00274] [PMID: 27314621]
[112]
van Maanen JMS, Retèl J, de Vries J, Pinedo HM. Mechanism of action of antitumor drug etoposide: A review. J Natl Cancer Inst 1988; 80(19): 1526-33.
[http://dx.doi.org/10.1093/jnci/80.19.1526] [PMID: 2848132]
[113]
Ullrich S, Ekanayake KB, Otting G, Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to PF-07321332. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.11.28.470226]
[114]
Baig MH, Sharma T, Ahmad I, Abohashrh M, Alam MM, Dong JJ. Is PF-00835231 a Pan-SARS-CoV-2 Mpro inhibitor? a comparative study. Molecules 2021; 26(6): 1678.
[http://dx.doi.org/10.3390/molecules26061678] [PMID: 33802860]
[115]
Islam T, Hasan M, Rahman MS, Islam MR. Comparative evaluation of authorized drugs for treating COVID‐19 patients. Health Sci Rep 2022; 5(4): e671.
[http://dx.doi.org/10.1002/hsr2.671] [PMID: 35734340]
[116]
Halford B. The Path to Paxlovid. ACS Cent Sci 2022; 8(4): 405-7.
[http://dx.doi.org/10.1021/acscentsci.2c00369]
[117]
Hendaus MA. Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): a simplified summary. J Biomol Struct Dyn 2021; 39(10): 3787-92.
[http://dx.doi.org/10.1080/07391102.2020.1767691] [PMID: 32396771]
[118]
Cao Y, Deng Q, Dai S. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis 2020; 35: 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[119]
Joshi S, Parkar J, Ansari A, et al. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis 2021; 102: 501-8.
[http://dx.doi.org/10.1016/j.ijid.2020.10.069] [PMID: 33130203]
[120]
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 2013; 100(2): 446-54.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.015] [PMID: 24084488]
[121]
Chen YW, Yiu CPB, Wong KY. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res 2020; 9: 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[122]
Baker MM, El-Kafrawy DS, Mahrous MS, Belal TS. Validated spectrophotometric and chromatographic methods for analysis of the recently approved hepatitis C antiviral combination ledipasvir and sofosbuvir. Ann Pharm Fr 2018; 76(1): 16-31.
[http://dx.doi.org/10.1016/j.pharma.2017.07.005] [PMID: 28842163]
[123]
Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J Antimicrob Chemother 2021; 76(7): 1874-85.
[http://dx.doi.org/10.1093/jac/dkab072] [PMID: 33880524]
[124]
Amirian ES, Levy JK. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020; 9: 100128.
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[125]
Rasmussen HB, Jürgens G, Thomsen R, et al. Cellular uptake and intracellular phosphorylation of GS-441524: Implications for its effectiveness against COVID-19. Viruses 2021; 13(7): 1369.
[http://dx.doi.org/10.3390/v13071369] [PMID: 34372575]
[126]
Shannon A, Fattorini V, Sama B, et al. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat Commun 2022; 13(1): 621.
[http://dx.doi.org/10.1038/s41467-022-28113-1] [PMID: 35110538]
[127]
Eslami G, Mousaviasl S, Radmanesh E, et al. The impact of sofosbuvir/daclatasvir or ribavirin in patients with severe COVID-19. J Antimicrob Chemother 2020; 75(11): 3366-72.
[http://dx.doi.org/10.1093/jac/dkaa331] [PMID: 32812051]
[128]
Gilbert BE, Knight V. Biochemistry and clinical applications of ribavirin. Antimicrob Agents Chemother 1986; 30(2): 201-5.
[http://dx.doi.org/10.1128/AAC.30.2.201] [PMID: 2876677]
[129]
Ataei M, Hosseinjani H. Molecular mechanisms of galidesivir as a potential antiviral treatment for COVID-19. J Pharma Care 2020; 150-1.
[130]
Elfiky AA. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci 2020; 253: 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[131]
Painter GR, Natchus MG, Cohen O, Holman W, Painter WP. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19. Curr Opin Virol 2021; 50: 17-22.
[http://dx.doi.org/10.1016/j.coviro.2021.06.003] [PMID: 34271264]
[132]
Ahlqvist GP, McGeough CP, Senanayake C, et al. Progress toward a large-scale synthesis of molnupiravir (MK-4482, EIDD-2801) from cytidine. ACS Omega 2021; 6(15): 10396-402.
[http://dx.doi.org/10.1021/acsomega.1c00772] [PMID: 34056192]
[133]
Gish RG. Treating HCV with ribavirin analogues and ribavirin-like molecules. J Antimicrob Chemother 2006; 57(1): 8-13.
[http://dx.doi.org/10.1093/jac/dki405] [PMID: 16293677]
[134]
Chong Y, Chu CK. Understanding the unique mechanism of l-FMAU (Clevudine) against hepatitis B virus: molecular dynamics studies. Bioorg Med Chem Lett 2002; 12(23): 3459-62.
[http://dx.doi.org/10.1016/S0960-894X(02)00747-3] [PMID: 12419383]
[135]
Zhang R, Zhang Y, Zheng W, et al. Oral remdesivir derivative VV116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduct Target Ther 2022; 7(1): 123.
[http://dx.doi.org/10.1038/s41392-022-00963-7] [PMID: 35429988]
[136]
Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-Lessons from available evidence and insights into COVID-19. Hypertens Res 2020; 43(7): 648-54.
[http://dx.doi.org/10.1038/s41440-020-0455-8] [PMID: 32341442]
[137]
Nagel N, Schweitzer H, Urbach H, Heyse W, Müller B, Berchtold H. Ramipril. Acta Crystallogr Sect E Struct Rep Online 2001; 57(5): o463-5.
[http://dx.doi.org/10.1107/S1600536801006948]
[138]
Sachdeva C, Wadhwa A, Kumari A, Hussain F, Jha P, Kaushik NK. In silico potential of approved antimalarial drugs for repurposing against COVID-19. OMICS 2020; 24(10): 568-80.
[http://dx.doi.org/10.1089/omi.2020.0071] [PMID: 32757981]
[139]
Birth D, Kao WC, Hunte C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat Commun 2014; 5(1): 4029.
[http://dx.doi.org/10.1038/ncomms5029] [PMID: 24893593]
[140]
Shamsi A, Mohammad T, Anwar S, et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Biosci Rep 2020; 40(6): BSR20201256.
[http://dx.doi.org/10.1042/BSR20201256] [PMID: 32441299]
[141]
Chatterjee B, Thakur SS. ACE2 as a potential therapeutic target for pandemic COVID-19. RSC Advances 2020; 10(65): 39808-13.
[http://dx.doi.org/10.1039/D0RA08228G] [PMID: 35515386]
[142]
Bhardwaj G. How the antihypertensive losartan was discovered. Expert Opin Drug Discov 2006; 1(6): 609-18.
[http://dx.doi.org/10.1517/17460441.1.6.609] [PMID: 23506070]
[143]
Abbas AM, Ebrahim IM, Ramadan AG, Ali AR. Isotretinoin: a potential treatment for COVID-19. World J Pharm Res 2020; 6(8): 01-3.
[144]
Forouzani-Haghighi B, Karimzadeh I. Isotretinoin and the kidney: opportunities and threats. Clin Cosmet Investig Dermatol 2020; 13: 485-94.
[http://dx.doi.org/10.2147/CCID.S259048] [PMID: 32801824]
[145]
Barbieri A, Robinson N, Palma G, Maurea N, Desiderio V, Botti G. Can beta-2-adrenergic pathway be a new target to combat SARS-CoV-2 hyperinflammatory syndrome?—lessons learned from cancer. Front Immunol 2020; 11: 588724.
[http://dx.doi.org/10.3389/fimmu.2020.588724] [PMID: 33117402]
[146]
Phadke RS, Kumar NV, Hosur RV, Saran A, Govil G. Structure and function of propranolol: A? -adrenergic blocking drug. Int J Quantum Chem 1981; 20(1): 85-92.
[http://dx.doi.org/10.1002/qua.560200109]
[147]
Bellis A, Mauro C, Barbato E, Trimarco B, Morisco C. The rationale for angiotensin receptor neprilysin inhibitors in a multi-targeted therapeutic approach to COVID-19. Int J Mol Sci 2020; 21(22): 8612.
[http://dx.doi.org/10.3390/ijms21228612] [PMID: 33203141]
[148]
Tran TTD, Tran PHL, Park JB, Lee BJ. Effects of solvents and crystallization conditions on the polymorphic behaviors and dissolution rates of valsartan. Arch Pharm Res 2012; 35(7): 1223-30.
[http://dx.doi.org/10.1007/s12272-012-0713-7] [PMID: 22864745]
[149]
Glossmann HH, Lutz OMD. Pharmacology of metformin-An update. Eur J Pharmacol 2019; 865: 172782.
[http://dx.doi.org/10.1016/j.ejphar.2019.172782] [PMID: 31705902]
[150]
Wang X, Cao R, Zhang H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov 2020; 6(1): 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8] [PMID: 32373347]
[151]
Di Mola A, Peduto A, La Gatta A, et al. Structure-activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication. Bioorg Med Chem 2014; 22(21): 6014-25.
[http://dx.doi.org/10.1016/j.bmc.2014.09.013] [PMID: 25282648]
[152]
Sang H, Wang Y, Zhong Y, et al. Quantitative determination of proxalutamide in rat plasma and tissues using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2021; 35(3): e9003.
[http://dx.doi.org/10.1002/rcm.9003] [PMID: 33169448]
[153]
Martelli A, Mattioli F, Carrozzino R, et al. Genotoxicity testing of potassium canrenoate in cultured rat and human cells. Mutagenesis 1999; 14(5): 463-72.
[http://dx.doi.org/10.1093/mutage/14.5.463] [PMID: 10473649]
[154]
Lang P, Eichholz T, Bakchoul T, et al. Defibrotide for the treatment of pediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus 2 infection in 2 pediatric patients. J Pediatric Infect Dis Soc 2020; 9(5): 622-5.
[http://dx.doi.org/10.1093/jpids/piaa117] [PMID: 32951037]
[155]
Yang Y, Ma J, Xiu J, et al. Deferoxamine compensates for decreases in B cell counts and reduces mortality in enterovirus 71-infected mice. Mar Drugs 2014; 12(7): 4086-95.
[http://dx.doi.org/10.3390/md12074086] [PMID: 25003792]
[156]
Welén K, Överby AK, Ahlm C, et al. COVIDENZA - A prospective, multicenter, randomized phase II clinical trial of enzalutamide treatment to decrease the morbidity in patients with Corona virus disease 2019 (COVID-19): a structured summary of a study protocol for a randomised controlled trial. Trials 2021; 22(1): 209.
[http://dx.doi.org/10.1186/s13063-021-05137-4] [PMID: 33397449]
[157]
Ryan C, Wefel JS, Morgans AK. A review of prostate cancer treatment impact on the CNS and cognitive function. Prostate Cancer Prostatic Dis 2020; 23(2): 207-19.
[http://dx.doi.org/10.1038/s41391-019-0195-5] [PMID: 31844181]
[158]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother 2020; 64(6): e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[159]
Abuo-Rahma GEDA, Mohamed MFA, Ibrahim TS, Shoman ME, Samir E, Abd El-Baky RM. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Advances 2020; 10(45): 26895-916.
[http://dx.doi.org/10.1039/D0RA05821A] [PMID: 35515773]
[160]
Costa B, Vale N. A review of repurposed cancer drugs in clinical trials for potential treatment of COVID-19. Pharmaceutics 2021; 13(6): 815.
[http://dx.doi.org/10.3390/pharmaceutics13060815] [PMID: 34070725]
[161]
Liu H, Han R, Li J, Liu H, Zheng L. Molecular mechanism of] R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation. J Comput Aided Mol Des 2016; 30(12): 1189-200.
[http://dx.doi.org/10.1007/s10822-016-9992-2] [PMID: 27848066]
[162]
Fu Q, Zheng X, Zhou Y, Tang L, Chen Z, Ni S. Re-recognizing bromhexine hydrochloride: pharmaceutical properties and its possible role in treating pediatric COVID-19. Eur J Clin Pharmacol 2021; 77(2): 261-3.
[http://dx.doi.org/10.1007/s00228-020-02971-4] [PMID: 32870380]
[163]
Turchán M, Jaraulloa P, Bollo S, Nuñezvergara L, Squella J, Alvarezlueje A. Voltammetric behaviour of bromhexine and its determination in pharmaceuticals. Talanta 2007; 73(5): 913-9.
[http://dx.doi.org/10.1016/j.talanta.2007.05.010] [PMID: 19073120]
[164]
Sharma T, Baig MH, Khan MI, Alotaibi SS, Alorabi M, Dong JJ. Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharm J 2022; 30(3): 217-24.
[http://dx.doi.org/10.1016/j.jsps.2022.01.005] [PMID: 35095307]
[165]
Coote K, Atherton-Watson HC, Sugar R, et al. Camostat attenuates airway epithelial sodium channel function in vivo through the inhibition of a channel-activating protease. J Pharmacol Exp Ther 2009; 329(2): 764-74.
[http://dx.doi.org/10.1124/jpet.108.148155] [PMID: 19190233]
[166]
Cadegiani FA, Wambier C, Goren A. Spironolactone. an anti-androgenic and anti-hypertensive drug with strong potential to prevent COVID-19 induced acute respiratory distress syndrome (ARDS). Fron Med 2020; 7: 453.
[http://dx.doi.org/10.3389/fmed.2020.00453] [PMID: 32850920]
[167]
Mousa M. Effect of disintegrants on spironolactone tablet stability. Int J Drug Deliv 2021; 11: 756-61.
[168]
Huang A, Tang X, Wu H, et al. Virtual screening and molecular dynamics on blockage of key drug targets as treatment for COVID-19 caused by SARS-CoV-2. medicine & pharmacology 2020.
[169]
Gómez M, Esparza JL, Domingo JL, Singh PK, Jones MM. Comparative aluminium mobilizing actions of deferoxamine and four 3-hydroxypyrid-4-ones in aluminium-loaded rats. Toxicology 1998; 130(2-3): 175-81.
[http://dx.doi.org/10.1016/S0300-483X(98)00109-7] [PMID: 9865484]
[170]
Dayer MR. Old drugs for newly emerging viral disease, COVID-19: Bioinformatic Prospective 2020.
[171]
Yamada M, Watanabe T, Miyara T, et al. Crystal structure of cefditoren complexed with Streptococcus pneumoniae penicillin-binding protein 2X: structural basis for its high antimicrobial activity. Antimicrob Agents Chemother 2007; 51(11): 3902-7.
[http://dx.doi.org/10.1128/AAC.00743-07] [PMID: 17724158]
[172]
Xu J, Shi PY, Li H, Zhou J. Broad spectrum antiviral agent niclosamide and its therapeutic potential. ACS Infect Dis 2020; 6(5): 909-15.
[http://dx.doi.org/10.1021/acsinfecdis.0c00052] [PMID: 32125140]
[173]
Fonseca BD, Diering GH, Bidinosti MA, et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 2012; 287(21): 17530-45.
[http://dx.doi.org/10.1074/jbc.M112.359638] [PMID: 22474287]
[174]
Al-kuraishy HM, Al-Gareeb AI, Alkazmi L, Alexiou A, Batiha GES. Levamisole therapy in COVID-19. Viral Immunol 2021; 34(10): 722-5.
[http://dx.doi.org/10.1089/vim.2021.0042] [PMID: 34388031]
[175]
Hansen AN, Bendiksen CD, Sylvest L, et al. Synthesis and antiangiogenic activity of N-alkylated levamisole derivatives. PLoS One 2012; 7(9): e45405.
[http://dx.doi.org/10.1371/journal.pone.0045405] [PMID: 23024819]
[176]
Menéndez JC. Approaches to the potential therapy of COVID-19: A general overview from the medicinal chemistry perspective. Molecules 2022; 27(3): 658.
[http://dx.doi.org/10.3390/molecules27030658] [PMID: 35163923]
[177]
Lengacher R, Wang Y, Braband H, Blacque O, Gasser G, Alberto R. Organometallic small molecule kinase inhibitors-Direct incorporation of Re and 99mTc into Opaganib®. Chem Commun (Camb) 2021; 57(98): 13349-52.
[http://dx.doi.org/10.1039/D1CC03678E] [PMID: 34817478]
[178]
Luban J, Sattler RA, Mühlberger E, et al. The DHODH inhibitor PTC299 arrests SARS-CoV-2 replication and suppresses induction of inflammatory cytokines. Virus Res 2021; 292: 198246.
[http://dx.doi.org/10.1016/j.virusres.2020.198246] [PMID: 33249060]
[179]
Cao L, Weetall M, Trotta C, et al. Targeting of hematologic malignancies with PTC299, a novel potent inhibitor of dihydroorotate dehydrogenase with favorable pharmaceutical properties. Mol Cancer Ther 2019; 18(1): 3-16.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0863] [PMID: 30352802]
[180]
Wang Y, Jiang W, He Q, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther 2020; 5(1): 57.
[http://dx.doi.org/10.1038/s41392-020-0158-2] [PMID: 32341331]
[181]
Panusa A, Regazzoni L, Aldini G, et al. Urinary profile of methylprednisolone acetate metabolites in patients following intra-articular and intramuscular administration. Anal Bioanal Chem 2011; 400(1): 255-67.
[http://dx.doi.org/10.1007/s00216-011-4744-6] [PMID: 21336796]
[182]
Alizadehmohajer N, Sadeghi B, Najafgholian S, et al. Screening of potential inhibitors of COVID-19 with repurposing approach via molecular docking. Life Sci 2020; 1: 5-5.
[183]
Mao L, Tang W, Zhang X, et al. Discovery of a novel, selective and irreversible inhibitor (abivertinib) of mutated EGFR and T790M-induced resistance for the treatment of NSCLC. Med Drug Discov 2020; 6: 100035.
[http://dx.doi.org/10.1016/j.medidd.2020.100035]
[184]
Yang C, Pan X, Huang Y, et al. Drug Repurposing of Itraconazole and Estradiol Benzoate against COVID‐19 by Blocking SARS‐CoV‐2 Spike Protein‐Mediated Membrane Fusion. Adv Ther 2021; 4(5): 2000224.
[http://dx.doi.org/10.1002/adtp.202000224] [PMID: 33786369]
[185]
Anstead GM, Carlson KE, Katzenellenbogen JA. The estradiol pharmacophore: Ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 1997; 62(3): 268-303.
[http://dx.doi.org/10.1016/S0039-128X(96)00242-5] [PMID: 9071738]
[186]
Dhameliya H, Thakkar V, Trivedi G, Mesara S, Subramanian R. Pentoxifylline: an immunomodulatory drug for the treatment of COVID-19. J Pure Appl Microbiol 2020; 14 (Suppl. 1): 861-7.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.23]
[187]
Hassan I, Dorjay K, Anwar P. Pentoxifylline and its applications in dermatology. Indian Dermatol Online J 2014; 5(4): 510-6.
[http://dx.doi.org/10.4103/2229-5178.142528] [PMID: 25396144]
[188]
Grenet G, Mekhaldi S, Mainbourg S, et al. DPP-4 inhibitors and respiratory infection: a systematic review and meta-analysis of the cardiovascular outcomes trials. Diabetes Care 2021; 44(3): e36-7.
[http://dx.doi.org/10.2337/dc20-2018] [PMID: 33436399]
[189]
Guedes EP, Hohl A, de Melo TG, Lauand F. Linagliptin: farmacology, efficacy and safety in type 2 diabetes treatment. Diabetol Metab Syndr 2013; 5(1): 25.
[http://dx.doi.org/10.1186/1758-5996-5-25] [PMID: 23697612]
[190]
Meier M, Blatter XL, Seelig A, Seelig J. Interaction of verapamil with lipid membranes and P-glycoprotein: connecting thermodynamics and membrane structure with functional activity. Biophys J 2006; 91(8): 2943-55.
[http://dx.doi.org/10.1529/biophysj.106.089581] [PMID: 16877510]
[191]
Boyd-Kimball D, Gonczy K, Lewis B, Mason T, Siliko N, Wolfe J. Classics in chemical neuroscience: chlorpromazine. ACS Chem Neurosci 2019; 10(1): 79-88.
[http://dx.doi.org/10.1021/acschemneuro.8b00258] [PMID: 29929365]
[192]
Firth A, Prathapan P. Azithromycin: the first broad-spectrum Therapeutic. Eur J Med Chem 2020; 207: 112739.
[http://dx.doi.org/10.1016/j.ejmech.2020.112739] [PMID: 32871342]
[193]
Fan BZ, Hiasa H, Lv W, et al. Design, synthesis and structure-activity relationships of novel 15-membered macrolides: Quinolone/quinoline-containing sidechains tethered to the C-6 position of azithromycin acylides. Eur J Med Chem 2020; 193: 112222.
[http://dx.doi.org/10.1016/j.ejmech.2020.112222] [PMID: 32200200]
[194]
Malek AE, Granwehr BP, Kontoyiannis DP. Doxycycline as a potential partner of COVID-19 therapies. IDCases 2020; 21: e00864.
[http://dx.doi.org/10.1016/j.idcr.2020.e00864] [PMID: 32566483]
[195]
Blackwood RK, English AR. Structure-activity relationships in the tetracycline series. In: Advances in Applied Microbiology. Adv Appl Microbiol 1970; 13: 237-66.
[http://dx.doi.org/10.1016/S0065-2164(08)70405-2]
[196]
Duan Y, Yao Y, Kumar SA, Zhu HL, Chang J. Current and future therapeutical approaches for COVID-19. Drug Discov Today 2020; 25(8): 1545-52.
[http://dx.doi.org/10.1016/j.drudis.2020.06.018] [PMID: 32574697]
[197]
Huang YM, Alharbi NS, Sun B, Shantharam CS, Rakesh KP, Qin HL. Synthetic routes and structure-activity relationships (SAR) of anti-HIV agents: A key review. Eur J Med Chem 2019; 181: 111566.
[http://dx.doi.org/10.1016/j.ejmech.2019.111566] [PMID: 31401538]
[198]
Kaur H, Shekhar N, Sharma S, Sarma P, Prakash A, Medhi B. Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes. Pharmacol Rep 2021; 73(3): 736-49.
[http://dx.doi.org/10.1007/s43440-020-00195-y] [PMID: 33389725]
[199]
Campbell WC. Ivermectin: An update. Parasitol Today 1985; 1(1): 10-6.
[http://dx.doi.org/10.1016/0169-4758(85)90100-0] [PMID: 15275618]
[200]
Herman SEM, Montraveta A, Niemann CU, et al. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res 2017; 23(11): 2831-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0463] [PMID: 27903679]
[201]
Zhang D, Xu G, Zhao J, et al. Structure-activity relationship investigation for imidazopyrazole-3-carboxamide derivatives as novel selective inhibitors of Bruton’s tyrosine kinase. Eur J Med Chem 2021; 225: 113724.
[http://dx.doi.org/10.1016/j.ejmech.2021.113724] [PMID: 34391034]
[202]
Kaliamurthi S, Selvaraj G, Selvaraj C, Singh SK, Wei DQ, Peslherbe GH. Structure-based virtual screening reveals Ibrutinib and Zanubrutinib as potential repurposed drugs against COVID-19. Int J Mol Sci 2021; 22(13): 7071.
[http://dx.doi.org/10.3390/ijms22137071] [PMID: 34209188]
[203]
Zou Y, Xiao J, Tu Z, et al. Structure-based discovery of novel 4,5,6-trisubstituted pyrimidines as potent covalent Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem Lett 2016; 26(13): 3052-9.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.014] [PMID: 27210433]
[204]
Yin Z, Hu W, Zhang W, et al. Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. Amino Acids 2020; 52(9): 1227-61.
[http://dx.doi.org/10.1007/s00726-020-02887-4] [PMID: 32880009]
[205]
Basile MS, Cavalli E, McCubrey J, et al. The PI3K/Akt/mTOR pathway: A potential pharmacological target in COVID-19. Drug Discov Today 2022; 27(3): 848-56.
[http://dx.doi.org/10.1016/j.drudis.2021.11.002] [PMID: 34763066]
[206]
Rodrigues DA, Sagrillo FS, Fraga CAM. Duvelisib: a 2018 novel FDA-approved small molecule inhibiting phosphoinositide 3-kinases. Pharmaceuticals 2019; 12(2): 69.
[http://dx.doi.org/10.3390/ph12020069] [PMID: 31064155]
[207]
Zhang X, Zhang Y, Qiao W, Zhang J, Qi Z. Baricitinib, a drug with potential effect to prevent SARS-CoV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol 2020; 86: 106749.
[http://dx.doi.org/10.1016/j.intimp.2020.106749] [PMID: 32645632]
[208]
Saber-Ayad M, Hammoudeh S, Abu-Gharbieh E, et al. Current status of baricitinib as a repurposed therapy for COVID-19. Pharmaceuticals 2021; 14(7): 680.
[http://dx.doi.org/10.3390/ph14070680] [PMID: 34358107]
[209]
Yeleswaram S, Smith P, Burn T, et al. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment. Clin Immunol 2020; 218: 108517.
[http://dx.doi.org/10.1016/j.clim.2020.108517] [PMID: 32585295]
[210]
Merzon E, Green I, Vinker S, et al. The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID‐19 infection. FEBS J 2021; 288(17): 5179-89.
[http://dx.doi.org/10.1111/febs.15784] [PMID: 33621437]
[211]
Wheatley PJ. 1163. The crystal and molecular structure of aspirin. J Chem Soc 1964; 6036-48.
[http://dx.doi.org/10.1039/jr9640006036]
[212]
Büller HR, Décousus H, Grosso MA, et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med 2013; 369(15): 1406-15.
[http://dx.doi.org/10.1056/NEJMoa1306638] [PMID: 23991658]
[213]
Kaduk JA, Gindhart AM, Blanton TN. Crystal structure of edoxaban tosylate monohydrate Form I, (C24H31ClN7O4S)(C7H7O3S)(H2O). Powder Diffr 2021; 36(2): 107-13.
[http://dx.doi.org/10.1017/S0885715621000117]
[214]
Aftab SO, Ghouri MZ, Masood MU, et al. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J Transl Med 2020; 18(1): 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[215]
Ahmad J, Ikram S, Ahmad F, Rehman IU, Mushtaq M. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) – A drug repurposing study. Heliyon 2020; 6(7): e04502.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04502] [PMID: 32754651]
[216]
Van Den Driessche G, Fourches D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: A molecular docking study. J Cheminform 2017; 9(1): 13.
[http://dx.doi.org/10.1186/s13321-017-0202-6] [PMID: 28303164]
[217]
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013; 27(3): 221-34.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[218]
Kumar S, Singh J, Narasimhan B, et al. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives. Chem Cent J 2018; 12(1): 106.
[http://dx.doi.org/10.1186/s13065-018-0475-5] [PMID: 30345469]
[219]
Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci 2020; 252: 117652.
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[220]
Singh Y, Sanjay KS. Pradeep Kumar, Singh S, Thareja S. Molecular dynamics and 3D-QSAR studies on indazole derivatives as HIF-1α inhibitors. J Biomol Struct Dyn 2022; 1-18.
[http://dx.doi.org/10.1080/07391102.2022.2051745]
[221]
Brogi S, Sirous H, Calderone V, Chemi G. Amyloid β fibril disruption by oleuropein aglycone: long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil. Food Funct 2020; 11(9): 8122-32.
[http://dx.doi.org/10.1039/D0FO01511C] [PMID: 32857079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy