Review Article

天然生物碱和多酚在脂质代谢中的作用:代谢疾病的治疗意义和潜在靶点

卷 30, 期 32, 2023

发表于: 19 December, 2022

页: [3649 - 3667] 页: 19

弟呕挨: 10.2174/0929867330666221107095646

价格: $65

摘要

肥胖及其相关疾病的发病率急剧上升,是全世界人类健康的主要威胁。各种方法,如体育训练和药物治疗,可用于减轻体重和逆转相关疾病;然而,其疗效和预后往往不令人满意。据报道,天然食物小分子可以预防肥胖及其相关疾病。其中,生物碱和多酚类物质已被证明通过增强能量代谢、促进脂质吞噬、抑制脂肪细胞增殖和分化、增强肠道微生物群落来调节脂质代谢,从而缓解肥胖。本文综述了这些天然小分子的调控机制和代谢途径,并指出这些天然小分子的结合靶点大多尚未明确,这限制了它们调控机制的研究,阻碍了它们的进一步应用。在这篇综述中,我们描述了使用Discovery Studio进行相关小分子的反向对接,并为未来的靶蛋白预测、支架跳跃和机制研究提供了新的见解。这些研究将为抗肥胖药物的现代化提供理论基础,并促进新药的发现。

关键词: 肥胖,天然生物碱,天然多酚,分子机制,反向对接,脂质代谢。

[1]
Tsai, A.G.; Williamson, D.F.; Glick, H.A. Direct medical cost of overweight and obesity in the USA: A quantitative systematic review. Obes. Rev., 2011, 12(1), 50-61.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00708.x] [PMID: 20059703]
[2]
Kim, T.J.; von dem Knesebeck, O. Income and obesity: What is the direction of the relationship? A systematic review and meta-analysis. BMJ Open, 2018, 8(1), e019862.
[http://dx.doi.org/10.1136/bmjopen-2017-019862] [PMID: 29306894]
[3]
Weiss, E.C.; Galuska, D.A.; Kettel Khan, L.; Gillespie, C.; Serdula, M.K. Weight regain in U.S. adults who experienced substantial weight loss, 1999-2002. Am. J. Prev. Med., 2007, 33(1), 34-40.
[http://dx.doi.org/10.1016/j.amepre.2007.02.040] [PMID: 17572309]
[4]
Choi, H.; Kim, C.S.; Yu, R. Quercetin upregulates uncoupling protein 1 in white/brown adipose tissues through sympathetic stimulation. J. Obes. Metab. Syndr., 2018, 27(2), 102-109.
[http://dx.doi.org/10.7570/jomes.2018.27.2.102] [PMID: 31089549]
[5]
Choi, S.; Choi, Y.; Choi, Y.; Kim, S.; Jang, J.; Park, T. Piperine reverses high fat diet-induced hepatic steatosis and insulin resistance in mice. Food Chem., 2013, 141(4), 3627-3635.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.028] [PMID: 23993530]
[6]
Baskaran, P.; Krishnan, V.; Ren, J.; Thyagarajan, B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol., 2016, 173(15), 2369-2389.
[http://dx.doi.org/10.1111/bph.13514] [PMID: 27174467]
[7]
Zhang, X.; Zhao, Y.; Xu, J.; Xue, Z.; Zhang, M.; Pang, X.; Zhang, X.; Zhao, L. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep., 2015, 5(1), 14405.
[http://dx.doi.org/10.1038/srep14405] [PMID: 26396057]
[8]
Westerterp-Plantenga, M.S.; Smeets, A.; Lejeune, M.P.G. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int. J. Obes., 2005, 29(6), 682-688.
[http://dx.doi.org/10.1038/sj.ijo.0802862] [PMID: 15611784]
[9]
Kristam, R.; Gillet, V.J.; Lewis, R.A.; Thorner, D. Comparison of conformational analysis techniques to generate pharmacophore hypotheses using catalyst. J. Chem. Inf. Model., 2005, 45(2), 461-476.
[http://dx.doi.org/10.1021/ci049731z] [PMID: 15807512]
[10]
Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Zidek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]
[11]
Cordell, G.A.; Quinn-Beattie, M.L.; Farnsworth, N.R. The potential of alkaloids in drug discovery. Phytother. Res., 2001, 15(3), 183-205.
[http://dx.doi.org/10.1002/ptr.890] [PMID: 11351353]
[12]
Rohm, B.; Holik, A.K.; Kretschy, N.; Somoza, M.M.; Ley, J.P.; Widder, S.; Krammer, G.E.; Marko, D.; Somoza, V. Nonivamide enhances miRNA let-7d expression and decreases adipogenesis PPARγ expression in 3T3-L1 cells. J. Cell. Biochem., 2015, 116(6), 1153-1163.
[http://dx.doi.org/10.1002/jcb.25052] [PMID: 25704235]
[13]
Xing, Y.; Yan, F.; Liu, Y.; Liu, Y.; Zhao, Y. Matrine inhibits 3T3-L1 preadipocyte differentiation associated with suppression of ERK1/2 phosphorylation. Biochem. Biophys. Res. Commun., 2010, 396(3), 691-695.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.163] [PMID: 20451501]
[14]
Huang, C.; Zhang, Y.; Gong, Z.; Sheng, X.; Li, Z.; Zhang, W.; Qin, Y. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARγ pathway. Biochem. Biophys. Res. Commun., 2006, 348(2), 571-578.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.095] [PMID: 16890192]
[15]
Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; Xia, P.; Li, X.; Gao, X. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med., 2019, 141, 192-204.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.019] [PMID: 31226399]
[16]
Wang, L.; Ye, X.; Hua, Y.; Song, Y. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice. Biomed. Pharmacother., 2018, 105, 121-129.
[http://dx.doi.org/10.1016/j.biopha.2018.05.110] [PMID: 29852389]
[17]
Ye, L.; Liang, S.; Guo, C.; Yu, X.; Zhao, J.; Zhang, H.; Shang, W. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance. Life Sci., 2016, 166, 82-91.
[http://dx.doi.org/10.1016/j.lfs.2016.09.025] [PMID: 27702567]
[18]
Wu, L.; Xia, M.; Duan, Y.; Zhang, L.; Jiang, H.; Hu, X.; Yan, H.; Zhang, Y.; Gu, Y.; Shi, H.; Li, J.; Gao, X.; Li, J. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis., 2019, 10(6), 468.
[http://dx.doi.org/10.1038/s41419-019-1706-y] [PMID: 31197160]
[19]
Smeets, A.J.; Janssens, P.L.H.R.; Plantenga, M.S. Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure. J. Nutr., 2013, 143(4), 442-447.
[http://dx.doi.org/10.3945/jn.112.170613] [PMID: 23406619]
[20]
Gannon, N.P.; Lambalot, E.L.; Vaughan, R.A. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types. Biofactors, 2016, 42(3), 229-246.
[http://dx.doi.org/10.1002/biof.1273] [PMID: 26945685]
[21]
Rui, L. Brain regulation of energy balance and body weight. Rev. Endocr. Metab. Disord., 2013, 14(4), 387-407.
[http://dx.doi.org/10.1007/s11154-013-9261-9] [PMID: 23990408]
[22]
Inoue, N.; Matsunaga, Y.; Satoh, H.; Takahashi, M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem., 2007, 71(2), 380-389.
[http://dx.doi.org/10.1271/bbb.60341] [PMID: 17284861]
[23]
Panchal, S.; Bliss, E.; Brown, L. Capsaicin in metabolic syndrome. Nutrients, 2018, 10(5), 630.
[http://dx.doi.org/10.3390/nu10050630] [PMID: 29772784]
[24]
Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; Mi, M. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 2017, 8(3), e00470-17.
[http://dx.doi.org/10.1128/mBio.00470-17] [PMID: 28536285]
[25]
Deminice, R.; da Silva, R.P.; Lamarre, S.G.; Kelly, K.B.; Jacobs, R.L.; Brosnan, M.E.; Brosnan, J.T. Betaine supplementation prevents fatty liver induced by a high-fat diet: Effects on one-carbon metabolism. Amino Acids, 2015, 47(4), 839-846.
[http://dx.doi.org/10.1007/s00726-014-1913-x] [PMID: 25577261]
[26]
Song, Z.; Deaciuc, I.; Zhou, Z.; Song, M.; Chen, T.; Hill, D.; McClain, C.J. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(4), G894-G902.
[http://dx.doi.org/10.1152/ajpgi.00133.2007] [PMID: 17702954]
[27]
Wang, Z.; Yao, T.; Pini, M.; Zhou, Z.; Fantuzzi, G.; Song, Z. Betaine improved adipose tissue function in mice fed a high-fat diet: A mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(5), G634-G642.
[http://dx.doi.org/10.1152/ajpgi.00249.2009] [PMID: 20203061]
[28]
Zhang, L.; Qi, Y.; ALuo, Z.; Liu, S.; Zhang, Z.; Zhou, L. Betaine increases mitochondrial content and improves hepatic lipid metabolism. Food Funct., 2019, 10(1), 216-223.
[http://dx.doi.org/10.1039/C8FO02004C] [PMID: 30534761]
[29]
Wang, L.; Chen, L.; Tan, Y.; Wei, J.; Chang, Y.; Jin, T.; Zhu, H. Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter. Lipids Health Dis., 2013, 12(1), 34.
[http://dx.doi.org/10.1186/1476-511X-12-34] [PMID: 23497035]
[30]
Ge, C.X.; Yu, R.; Xu, M.X.; Li, P.Q.; Fan, C.Y.; Li, J.M.; Kong, L.D. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur. J. Pharmacol., 2016, 770, 154-164.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.043] [PMID: 26593707]
[31]
Seoane-Collazo, P.; Liñares-Pose, L.; Rial-Pensado, E.; Romero-Picó, A.; Moreno-Navarrete, J.M.; Martínez-Sánchez, N.; Garrido-Gil, P.; Iglesias-Rey, R.; Morgan, D.A.; Tomasini, N.; Malone, S.A.; Senra, A.; Folgueira, C.; Medina-Gomez, G.; Sobrino, T.; Labandeira-García, J.L.; Nogueiras, R.; Domingos, A.I.; Fernández-Real, J.M.; Rahmouni, K.; Diéguez, C.; López, M. Central nicotine induces browning through hypothalamic κ opioid receptor. Nat. Commun., 2019, 10(1), 4037.
[http://dx.doi.org/10.1038/s41467-019-12004-z] [PMID: 31492869]
[32]
Li, S.; Wang, H.; Wang, X.; Wang, Y.; Feng, J. Betaine affects muscle lipid metabolism via regulating the fatty acid uptake and oxidation in finishing pig. J. Anim. Sci. Biotechnol., 2017, 8(1), 72.
[http://dx.doi.org/10.1186/s40104-017-0200-6] [PMID: 28883917]
[33]
Shi, L.; Shi, L.; Song, G.; Zhang, H.; Hu, Z.; Wang, C.; Zhang, D. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα). Eur. J. Pharmacol., 2013, 714(1-3), 89-95.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.013] [PMID: 23791610]
[34]
Gao, X.; Guo, S.; Zhang, S.; Liu, A.; Shi, L.; Zhang, Y. Matrine attenuates endoplasmic reticulum stress and mitochondrion dysfunction in nonalcoholic fatty liver disease by regulating SERCA pathway. J. Transl. Med., 2018, 16(1), 319.
[http://dx.doi.org/10.1186/s12967-018-1685-2] [PMID: 30458883]
[35]
Sun, K.; Yang, P.; Zhao, R.; Bai, Y.; Guo, Z. Matrine attenuates D-galactose-induced aging-related behavior in mice via inhibition of cellular senescence and oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 7108604.
[http://dx.doi.org/10.1155/2018/7108604] [PMID: 30598725]
[36]
Park, U.H.; Jeong, H.S.; Jo, E.Y.; Park, T.; Yoon, S.K.; Kim, E.J.; Jeong, J.C.; Um, S.J. Piperine, a component of black pepper, inhibits adipogenesis by antagonizing PPARγ activity in 3T3-L1 cells. J. Agric. Food Chem., 2012, 60(15), 3853-3860.
[http://dx.doi.org/10.1021/jf204514a] [PMID: 22463744]
[37]
Jwa, H.; Choi, Y.; Park, U.H.; Um, S.J.; Yoon, S.K.; Park, T. Piperine, an LXRα antagonist, protects against hepatic steatosis and improves insulin signaling in mice fed a high-fat diet. Biochem. Pharmacol., 2012, 84(11), 1501-1510.
[http://dx.doi.org/10.1016/j.bcp.2012.09.009] [PMID: 23000915]
[38]
Kim, K.J.; Lee, M.S.; Jo, K.; Hwang, J.K. Piperidine alkaloids from Piper retrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun., 2011, 411(1), 219-225.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.153] [PMID: 21741367]
[39]
BrahmaNaidu, P.; Nemani, H.; Meriga, B.; Mehar, S.K.; Potana, S.; Ramgopalrao, S. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats. Chem. Biol. Interact., 2014, 221, 42-51.
[http://dx.doi.org/10.1016/j.cbi.2014.07.008] [PMID: 25087745]
[40]
Kim, J.; Lee, K.P.; Lee, D.W.; Lim, K. Piperine enhances carbohydrate/fat metabolism in skeletal muscle during acute exercise in mice. Nutr. Metab., 2017, 14(1), 43.
[http://dx.doi.org/10.1186/s12986-017-0194-2] [PMID: 28680454]
[41]
Kim, N.; Nam, M.; Kang, M.S.; Lee, J.O.; Lee, Y.W.; Hwang, G.S.; Kim, H.S. Piperine regulates UCP1 through the AMPK pathway by generating intracellular lactate production in muscle cells. Sci. Rep., 2017, 7(1), 41066.
[http://dx.doi.org/10.1038/srep41066] [PMID: 28117414]
[42]
Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev., 1998, 56(11), 317-333.
[http://dx.doi.org/10.1111/j.1753-4887.1998.tb01670.x] [PMID: 9838798]
[43]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[44]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[45]
Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense. Phytomedicine, 2020, 69, 153209.
[http://dx.doi.org/10.1016/j.phymed.2020.153209] [PMID: 32240928]
[46]
Zheng, T.; Chen, H. Resveratrol ameliorates the glucose uptake and lipid metabolism in gestational diabetes mellitus mice and insulin-resistant adipocytes via miR-23a-3p/NOV axis. Mol. Immunol., 2021, 137, 163-173.
[http://dx.doi.org/10.1016/j.molimm.2021.06.011] [PMID: 34256324]
[47]
Zhao, X.; Gong, L.; Wang, C.; Liu, M.; Hu, N.; Dai, X.; Peng, C.; Li, Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. J. Ethnopharmacol., 2021, 268, 113569.
[http://dx.doi.org/10.1016/j.jep.2020.113569] [PMID: 33186701]
[48]
Yan, C.; Zhang, Y.; Zhang, X.; Aa, J.; Wang, G.; Xie, Y. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed. Pharmacother., 2018, 105, 274-281.
[http://dx.doi.org/10.1016/j.biopha.2018.05.135] [PMID: 29860219]
[49]
Lee, E.S.; Kwon, M.H.; Kim, H.M.; Woo, H.B.; Ahn, C.M.; Chung, C.H. Curcumin analog CUR5–8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity. Metabolism, 2020, 103, 154015.
[http://dx.doi.org/10.1016/j.metabol.2019.154015] [PMID: 31758951]
[50]
Okla, M.; Kim, J.; Koehler, K.; Chung, S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv. Nutr., 2017, 8(3), 473-483.
[http://dx.doi.org/10.3945/an.116.014332] [PMID: 28507012]
[51]
Kabirifar, R.; Ghoreshi, Z.; Rezaifar, A.; Binesh, F.; Bamdad, K.; Moradi, A. Curcumin, quercetin and atorvastatin protected against the hepatic fibrosis by activating AMP-activated protein kinase. J. Funct. Foods, 2018, 40, 341-348.
[http://dx.doi.org/10.1016/j.jff.2017.11.020]
[52]
Ejaz, A.; Wu, D.; Kwan, P.; Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr., 2009, 139(5), 919-925.
[http://dx.doi.org/10.3945/jn.108.100966] [PMID: 19297423]
[53]
Kong, D.; Zhang, Z.; Chen, L.; Huang, W.; Zhang, F.; Wang, L.; Wang, Y.; Cao, P.; Zheng, S. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy. Redox Biol., 2020, 36, 101600.
[http://dx.doi.org/10.1016/j.redox.2020.101600] [PMID: 32526690]
[54]
Wang, L.; Zhang, B.; Huang, F.; Liu, B.; Xie, Y. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J. Lipid Res., 2016, 57(7), 1243-1255.
[http://dx.doi.org/10.1194/jlr.M067397] [PMID: 27220352]
[55]
Martín-Aragón, S.; Benedí, J.M.; Villar, A.M. Modifications on antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J. Pharm. Pharmacol., 2011, 49(1), 49-52.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06751.x] [PMID: 9120770]
[56]
Sreejayan; Rao, M.N.A. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol., 2011, 49(1), 105-107.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x] [PMID: 9120760]
[57]
Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008, 174(1), 27-37.
[http://dx.doi.org/10.1016/j.cbi.2008.05.003] [PMID: 18547552]
[58]
Zhao, D.; Pan, Y.; Yu, N.; Bai, Y.; Ma, R.; Mo, F.; Zuo, J.; Chen, B.; Jia, Q.; Zhang, D.; Liu, J.; Jiang, G.; Gao, S. Curcumin improves adipocytes browning and mitochondrial function in 3T3-L1 cells and obese rodent model. R. Soc. Open Sci., 2021, 8(3), 200974.
[http://dx.doi.org/10.1098/rsos.200974] [PMID: 33959308]
[59]
Lone, J.; Choi, J.H.; Kim, S.W.; Yun, J.W. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J. Nutr. Biochem., 2016, 27, 193-202.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.006] [PMID: 26456563]
[60]
Mitterberger, M.C.; Zwerschke, W. Mechanisms of resveratrol-induced inhibition of clonal expansion and terminal adipogenic differentiation in 3T3-L1 preadipocytes. J. Gerontol., 2013, 68(11), 1356-1376.
[http://dx.doi.org/10.1093/gerona/glt019] [PMID: 23525482]
[61]
Zhang, H.Y.; Du, Z.X.; Meng, X. Resveratrol prevents TNFα-induced suppression of adiponectin expression via PPARγ activation in 3T3-L1 adipocytes. Clin. Exp. Med., 2013, 13(3), 193-199.
[http://dx.doi.org/10.1007/s10238-012-0189-2] [PMID: 22584682]
[62]
Rayalam, S.; Yang, J.Y.; Ambati, S.; Della-Fera, M.A.; Baile, C.A. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother. Res., 2008, 22(10), 1367-1371.
[http://dx.doi.org/10.1002/ptr.2503] [PMID: 18688788]
[63]
Pacholec, M.; Bleasdale, J.E.; Chrunyk, B.; Cunningham, D.; Flynn, D.; Garofalo, R.S.; Griffith, D.; Griffor, M.; Loulakis, P.; Pabst, B.; Qiu, X.; Stockman, B.; Thanabal, V.; Varghese, A.; Ward, J.; Withka, J.; Ahn, K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem., 2010, 285(11), 8340-8351.
[http://dx.doi.org/10.1074/jbc.M109.088682] [PMID: 20061378]
[64]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[65]
Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; Kim, M.K.; Beaven, M.A.; Burgin, A.B.; Manganiello, V.; Chung, J.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012, 148(3), 421-433.
[http://dx.doi.org/10.1016/j.cell.2012.01.017] [PMID: 22304913]
[66]
Shi, H.J.; Xu, C.; Liu, M.Y.; Wang, B.K.; Liu, W.B.; Chen, D.H.; Zhang, L.; Xu, C.Y.; Li, X.F. Resveratrol improves the energy sensing and glycolipid metabolism of blunt snout bream Megalobrama amblycephala fed high-carbohydrate diets by activating the AMPK–SIRT1– PGC-1α network. Front. Physiol., 2018, 9, 1258.
[http://dx.doi.org/10.3389/fphys.2018.01258] [PMID: 30254587]
[67]
Lin, J.K.; Lin-Shiau, S.Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res., 2006, 50(2), 211-217.
[http://dx.doi.org/10.1002/mnfr.200500138] [PMID: 16404708]
[68]
Kim, H.; Hiraishi, A.; Tsuchiya, K.; Sakamoto, K. (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology, 2010, 62(3), 245-255.
[http://dx.doi.org/10.1007/s10616-010-9285-x] [PMID: 20596890]
[69]
Wu, B.T.; Hung, P.F.; Chen, H.C.; Huang, R.N.; Chang, H.H.; Kao, Y.H. The apoptotic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the CDK2 pathway. J. Agric. Food Chem., 2005, 53(14), 5695-5701.
[http://dx.doi.org/10.1021/jf050045p] [PMID: 15998135]
[70]
Ding, H.; Li, Y.; Li, W.; Tao, H.; Liu, L.; Zhang, C.; Kong, T.; Feng, S.; Li, J.; Wang, X.; Wu, J. Epigallocatechin-3-gallate activates the AMP-activated protein kinase signaling pathway to reduce lipid accumulation in canine hepatocytes. J. Cell. Physiol., 2021, 236(1), 405-416.
[http://dx.doi.org/10.1002/jcp.29869] [PMID: 32572960]
[71]
Kim, J.J.Y.; Tan, Y.; Xiao, L.; Sun, Y.L.; Qu, X. Green tea polyphenol epigallocatechin-3-gallate enhance glycogen synthesis and inhibit lipogenesis in hepatocytes. BioMed Res. Int., 2013, 2013, 920128.
[http://dx.doi.org/10.1155/2013/920128] [PMID: 24066304]
[72]
Wu, D.; Liu, Z.; Wang, Y.; Zhang, Q.; Li, J.; Zhong, P.; Xie, Z.; Ji, A.; Li, Y. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway. Oxid. Med. Cell. Longev., 2021, 2021, 5599997.
[http://dx.doi.org/10.1155/2021/5599997] [PMID: 33953830]
[73]
Santamarina, A.B.; Carvalho-Silva, M.; Gomes, L.M.; Okuda, M.H.; Santana, A.A.; Streck, E.L.; Seelaender, M.; Oller do Nascimento, C.M.; Ribeiro, E.B.; Lira, F.S.; Oyama, L.M. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. J. Nutr. Biochem., 2015, 26(11), 1348-1356.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.002] [PMID: 26300331]
[74]
Grove, K.A.; Sae-Tan, S.; Kennett, M.J.; Lambert, J.D. (-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice. Obesity (Silver Spring), 2012, 20(11), 2311-2313.
[http://dx.doi.org/10.1038/oby.2011.139] [PMID: 21633405]
[75]
Bello, M.; Basilio-Antonio, L.; Fragoso-Vázquez, J.; Avalos-Soriano, A.; Correa-Basurto, J. Molecular recognition between pancreatic lipase and natural and synthetic inhibitors. Int. J. Biol. Macromol., 2017, 98, 855-868.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.150] [PMID: 28212930]
[76]
Liu, L.; Gao, C.; Yao, P.; Gong, Z. Quercetin alleviates high-fat diet-induced oxidized low-density lipoprotein accumulation in the liver: Implication for autophagy regulation. BioMed Res. Int., 2015, 2015, 607531.
[http://dx.doi.org/10.1155/2015/607531] [PMID: 26697490]
[77]
Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med., 2017, 102, 188-202.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.037] [PMID: 27890642]
[78]
Kim, C.S.; Kwon, Y.; Choe, S.Y.; Hong, S.M.; Yoo, H.; Goto, T.; Kawada, T.; Choi, H.S.; Joe, Y.; Chung, H.T.; Yu, R. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab., 2015, 12
[http://dx.doi.org/10.1186/s12986-015-0030-5]
[79]
Ying, H.Z.; Liu, Y.H.; Yu, B.; Wang, Z.Y.; Zang, J.N.; Yu, C.H. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food Chem. Toxicol., 2013, 52, 53-60.
[http://dx.doi.org/10.1016/j.fct.2012.10.030] [PMID: 23123425]
[80]
Hajduk, P.J.; Huth, J.R.; Tse, C. Predicting protein druggability. Drug Discov. Today, 2005, 10(23-24), 1675-1682.
[http://dx.doi.org/10.1016/S1359-6446(05)03624-X] [PMID: 16376828]
[81]
Bhattacharjee, B.; Vijayasarathy, S.; Karunakar, P.; Chatterjee, J. Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode. Asian Pac. J. Cancer Prev., 2012, 13(11), 5605-5611.
[http://dx.doi.org/10.7314/APJCP.2012.13.11.5605] [PMID: 23317225]
[82]
Kharkar, P.S.; Warrier, S.; Gaud, R.S. Reverse docking: A powerful tool for drug repositioning and drug rescue. Future Med. Chem., 2014, 6(3), 333-342.
[http://dx.doi.org/10.4155/fmc.13.207] [PMID: 24575968]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy