Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Bacteriophages Concept and Applications: A Review on Phage Therapy

Author(s): Rasti Sahu, Ankit Kumar Singh, Adarsh Kumar, Kuldeep Singh* and Pradeep Kumar*

Volume 24, Issue 10, 2023

Published on: 21 November, 2022

Page: [1245 - 1264] Pages: 20

DOI: 10.2174/1389201024666221104142457

Price: $65

Abstract

The nature of phages was a matter of dispute, which was resolved in 1940, and it was continued to develop their activity and application in the Soviet Union and Eastern Europe. Bacteriophages were first employed in 1919 to treat bacterial illnesses caused by Citrobacter, Enterobacter, and Pseudomonas.

Bacteriophages range in complexity from simple spherical viruses with genome sizes of less than 5 kbp to complicated viruses with genome sizes surpassing 280 kbp. They have two significant parts, head and tail, and are made up of numerous copies of more than 40 distinct proteins. Bacteriophages have been demonstrated to bind with receptors in the walls of both gram-positive and gram-negative bacteria, ranging from peptide sequences to polysaccharide moieties. Depending on the type of phage and the physiological state of the bacterium, the life cycle may diverge into the lytic cycle or lysogenic cycle. Lytic-lysogenic switch depends on a variety of inducing factors.

Bacteriophage therapy can be administered via several routes, but parenteral routes are the most effective. Auto-dosing, single-dose potential, lack of cross-resistance with antibiotics, etc., are several advantages of phage therapy over antibiotic treatment. Bacteriophages are attracting much attention because of their potential advantages and wide applications as antibacterial agents, diagnostic technologies, phage-based products, and biocontrol agents. They also have several applications in the food industry, agriculture/crop, farm animal and bee protection, environmental, and biosensor development.

Keywords: Bacteriophage, biofilms, bacteria, phage, lysogenic, lytic.

Graphical Abstract
[1]
Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol., 2018, 8, 376.
[http://dx.doi.org/10.3389/fcimb.2018.00376] [PMID: 30406049]
[2]
Wittebole, X.; De Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 2014, 5(1), 226-235.
[http://dx.doi.org/10.4161/viru.25991] [PMID: 23973944]
[3]
Harper, D.R.; Anderson, J.; Enright, M.C. Phage therapy: Delivering on the promise. Ther. Deliv., 2011, 2(7), 935-947.
[http://dx.doi.org/10.4155/tde.11.64] [PMID: 22833904]
[4]
Sulakvelidze, A.; Alavidze, Z.; Morris, J.G., Jr Bacteriophage therapy. Antimicrob. Agents Chemother., 2001, 45(3), 649-659.
[http://dx.doi.org/10.1128/AAC.45.3.649-659.2001] [PMID: 11181338]
[5]
Deen, J.; Mengel, M.A.; Clemens, J.D. Epidemiology of Cholera. Vaccine, 2020, 38(S1), A31-A40.
[http://dx.doi.org/10.1016/j.vaccine.2019.07.078] [PMID: 31395455]
[6]
Taati Moghadam, M.; Amirmozafari, N.; Shariati, A.; Hallajzadeh, M.; Mirkalantari, S.; Khoshbayan, A.; Masjedian Jazi, F. How phages overcome the challenges of drug-resistant bacteria in clinical infections. Infect. Drug Resist., 2020, 13, 45-61.
[http://dx.doi.org/10.2147/IDR.S234353] [PMID: 32021319]
[7]
Kasman, L.M.; Porter, L.D. Bacteriophages; StatPearls, 2020.
[8]
Hantke, K.; Braun, V. Functional interaction of the tonA/tonB receptor system in Escherichia coli. J. Bacteriol., 1978, 135(1), 190-197.
[http://dx.doi.org/10.1128/jb.135.1.190-197.1978] [PMID: 353030]
[9]
Sinha, S.; Srivastava, S. Bacteriophage and phage-therapy: An alternative to antibiotics. eLifePress, 2020, 1(1), 21-27.
[10]
Dutta, S.; Sarkar, R.; Bordoloi, K.P.; Deka, C.; Sonowal, P.J. Bacteriophage therapy to combat antibiotic resistance: A brief review. Pharma Innov., 2021, 10(5), 389-394.
[11]
Navarro, F.; Muniesa, M. Phages in the human body. Front. Microbiol., 2017, 8, 566.
[http://dx.doi.org/10.3389/fmicb.2017.00566] [PMID: 28421059]
[12]
Merril, C.R.; Scholl, D.; Adhya, S.L. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov., 2003, 2(6), 489-497.
[http://dx.doi.org/10.1038/nrd1111] [PMID: 12776223]
[13]
Rohde, C.; Wittmann, J.; Kutter, E. Bacteriophages: A therapy concept against multi-drug–resistant bacteria. Surg. Infect., 2018, 19(8), 737-744.
[http://dx.doi.org/10.1089/sur.2018.184] [PMID: 30256176]
[14]
Raza, A.; jamil, M.; Tahir Aleem, M.; Aamir Aslam, M.; Muhammad Ali, H.; khan, S.; Kareem, N.; Asghar, T.; Gul, K.; Nadeem, H.; Ab-bass, J.; Khan, S. Bacteriophage therapy: Recent development and applications. Scholars Bulletin, 2021, 7(3), 27-37.
[http://dx.doi.org/10.36348/sb.2021.v07i03.003]
[15]
Ackermann, H.W. Bacteriophage observations and evolution. Res. Microbiol., 2003, 154(4), 245-251.
[http://dx.doi.org/10.1016/S0923-2508(03)00067-6] [PMID: 12798228]
[16]
Roux, S.; Krupovic, M.; Poulet, A.; Debroas, D.; Enault, F. Evolution and diversity of the Microviridae viral family through a collection of 81 new complete genomes assembled from virome reads. PLoS One, 2012, 7(7), e40418.
[http://dx.doi.org/10.1371/journal.pone.0040418] [PMID: 22808158]
[17]
Knezevic, P.; Adriaenssens, E.M.; Consortium, I.R. ICTV Virus Taxonomy Profile: Inoviridae. J. Gen. Virol., 2021, 102(7), 001614.
[http://dx.doi.org/10.1099/jgv.0.001614] [PMID: 34227934]
[18]
Prangishvili, D.; Krupovic, M. A new proposed taxon for double-stranded DNA viruses, the order “Ligamenvirales”. Arch. Virol., 2012, 157(4), 791-795.
[http://dx.doi.org/10.1007/s00705-012-1229-7] [PMID: 22270758]
[19]
Oksanen, H.M.; Consortium, I.R. ICTV virus taxonomy profile. J. Gen. Virol., 2017, 98(5), 888-889.
[http://dx.doi.org/10.1099/jgv.0.000795] [PMID: 28581380]
[20]
Caruso, S.M.; deCarvalho, T.N.; Huynh, A.; Morcos, G.; Kuo, N.; Parsa, S.; Erill, I. A novel genus of actinobacterial Tectiviridae. Viruses, 2019, 11(12), 1134.
[http://dx.doi.org/10.3390/v11121134] [PMID: 31817897]
[21]
Bollback, J.P.; Huelsenbeck, J.P. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Levi-viridae). J. Mol. Evol., 2001, 52(2), 117-128.
[http://dx.doi.org/10.1007/s002390010140] [PMID: 11231891]
[22]
Gottlieb, P.; Alimova, A. RNA packaging in the cystovirus bacteriophages: Dynamic interactions during capsid maturation. Int. J. Mol. Sci., 2022, 23(5), 2677.
[http://dx.doi.org/10.3390/ijms23052677] [PMID: 35269819]
[23]
Krupovic, M. ICTV virus taxonomy profile. J. Gen. Virol., 2018, 99(5), 617-618.
[http://dx.doi.org/10.1099/jgv.0.001060] [PMID: 29611799]
[24]
Ceballos, R.M.; Marceau, C.D.; Marceau, J.O.; Morris, S.; Clore, A.J.; Stedman, K.M. Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: Implications for evolution in extreme environments. Front. Microbiol., 2012, 3, 295.
[http://dx.doi.org/10.3389/fmicb.2012.00295] [PMID: 22936928]
[25]
Criscuolo, E.; Spadini, S.; Lamanna, J.; Ferro, M.; Burioni, R. Bacteriophages and their immunological applications against infectious threats. J. Immunol. Res., 2017, 2017, 3780697.
[http://dx.doi.org/10.1155/2017/3780697] [PMID: 28484722]
[26]
Leiman, P.G.; Kanamaru, S.; Mesyanzhinov, V.V.; Arisaka, F.; Rossmann, M.G. Structure and morphogenesis of bacteriophage T4. Cell. Mol. Life Sci., 2003, 60(11), 2356-2370.
[http://dx.doi.org/10.1007/s00018-003-3072-1] [PMID: 14625682]
[27]
Hatfull, G.F. Bacteriophage genomics. Curr. Opin. Microbiol., 2008, 11(5), 447-453.
[http://dx.doi.org/10.1016/j.mib.2008.09.004] [PMID: 18824125]
[28]
Rao, V.B.; Black, L.W. Structure and assembly of bacteriophage T4 head. Virol. J., 2010, 7(1), 356.
[http://dx.doi.org/10.1186/1743-422X-7-356] [PMID: 21129201]
[29]
Jamal, M.; Bukhari, S.M.A.U.S.; Andleeb, S.; Ali, M.; Raza, S.; Nawaz, M.A.; Hussain, T.; Rahman, S.; Shah, S.S.A. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol., 2019, 59(2), 123-133.
[http://dx.doi.org/10.1002/jobm.201800412] [PMID: 30485461]
[30]
Yap, M.L.; Rossmann, M.G. Structure and function of bacteriophage T4. Future Microbiol., 2014, 9(12), 1319-1327.
[http://dx.doi.org/10.2217/fmb.14.91] [PMID: 25517898]
[31]
Prabhurajeshwar, C.; Desai, P.; Waghmare, T.; Rashmi, S. An overview of bacteriophage therapy over antibiotics; as an alternative for controlling bacterial infections. Int. J. Pharm. Sci. Res., 2020, 11(3), 993-996.
[32]
Baschong, W.; Baschong-Prescianotto, C.; Engel, A.; Kellenberger, E.; Lustig, A.; Reichelt, R.; Zulauf, M.; Aebi, U. Mass analysis of bac-teriophage T4 proheads and mature heads by scanning transmission electron microscopy and hydrodynamic measurements. J. Struct. Biol., 1991, 106(2), 93-101.
[http://dx.doi.org/10.1016/1047-8477(91)90078-B] [PMID: 1804277]
[33]
Kostyuchenko, V.A.; Chipman, P.R.; Leiman, P.G.; Arisaka, F.; Mesyanzhinov, V.V.; Rossmann, M.G. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat. Struct. Mol. Biol., 2005, 12(9), 810-813.
[http://dx.doi.org/10.1038/nsmb975] [PMID: 16116440]
[34]
Linares, R.; Arnaud, C.A.; Degroux, S.; Schoehn, G.; Breyton, C. Structure, function and assembly of the long, flexible tail of siphophag-es. Curr. Opin. Virol., 2020, 45, 34-42.
[http://dx.doi.org/10.1016/j.coviro.2020.06.010] [PMID: 32777752]
[35]
Nobrega, F.L.; Vlot, M.; de Jonge, P.A.; Dreesens, L.L.; Beaumont, H.J.E.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J.J. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol., 2018, 16(12), 760-773.
[http://dx.doi.org/10.1038/s41579-018-0070-8] [PMID: 30104690]
[36]
Egido, J.E.; Costa, A.R.; Aparicio-Maldonado, C.; Haas, P.J.; Brouns, S.J.J. Mechanisms and clinical importance of bacteriophage re-sistance. FEMS Microbiol. Rev., 2022, 46(1), fuab048.
[http://dx.doi.org/10.1093/femsre/fuab048] [PMID: 34558600]
[37]
Rakhuba, D.V.; Kolomiets, E.I.; Dey, S.; Novik, G.I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol., 2010, 59(3), 145-155.
[http://dx.doi.org/10.33073/pjm-2010-023] [PMID: 21033576]
[38]
Silva, J-B.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett., 2016, 363(4), fnw002.
[http://dx.doi.org/10.1093/femsle/fnw002] [PMID: 26755501]
[39]
Xia, G.; Corrigan, R.M.; Winstel, V.; Goerke, C.; Gründling, A.; Peschel, A. Wall teichoic Acid-dependent adsorption of Staphylococcal siphovirus and myovirus. J. Bacteriol., 2011, 193(15), 4006-4009.
[http://dx.doi.org/10.1128/JB.01412-10] [PMID: 21642458]
[40]
Marti, R.; Zurfluh, K.; Hagens, S.; Pianezzi, J.; Klumpp, J.; Loessner, M.J. Long tail fibres of the novel broad-host-range T-even bacterio-phage S16 specifically recognize Salmonella OmpC. Mol. Microbiol., 2013, 87(4), 818-834.
[http://dx.doi.org/10.1111/mmi.12134] [PMID: 23289425]
[41]
Letarov, A.V.; Kulikov, E.E. Adsorption of bacteriophages on bacterial cells. Biochemistry, 2017, 82(13), 1632-1658.
[http://dx.doi.org/10.1134/S0006297917130053] [PMID: 29523063]
[42]
Edwards, P.; Smit, J. A transducing bacteriophage for Caulobacter crescentus uses the paracrystalline surface layer protein as a receptor. J. Bacteriol., 1991, 173(17), 5568-5572.
[http://dx.doi.org/10.1128/jb.173.17.5568-5572.1991] [PMID: 1885534]
[43]
Verhoef, C.; de Graaff, P.J.; Lugtenberg, E.J.J. Mapping of a gene for a major outer membrane protein of Escherichia coli K12 with the aid of a newly isolated bacteriophage. Mol. Gen. Genet., 1977, 150(1), 103-105.
[http://dx.doi.org/10.1007/BF02425330] [PMID: 319339]
[44]
Hashemolhosseini, S.; Montag, D.; Krämer, L.; Henning, U. Determinants of receptor specificity of coliphages of the T4 family. A chaper-one alters the host range. J. Mol. Biol., 1994, 241(4), 524-533.
[http://dx.doi.org/10.1006/jmbi.1994.1529] [PMID: 8057378]
[45]
Morona, R.; Henning, U. Host range mutants of bacteriophage Ox2 can use two different outer membrane proteins of Escherichia coli K-12 as receptors. J. Bacteriol., 1984, 159(2), 579-582.
[http://dx.doi.org/10.1128/jb.159.2.579-582.1984] [PMID: 6378883]
[46]
Langenscheid, J.; Killmann, H.; Braun, V. A FhuA mutant of Escherichia coli is infected by phage T1-independent of TonB. FEMS Microbiol. Lett., 2004, 234(1), 133-137.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09524.x] [PMID: 15109731]
[47]
Hancock, R.W.; Braun, V. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and phi80 to Escherichia coli. J. Bacteriol., 1976, 125(2), 409-415.
[http://dx.doi.org/10.1128/jb.125.2.409-415.1976] [PMID: 128553]
[48]
Hantke, K. Major outer membrane proteins of E. coli K12 serve as receptors for the phages T2 (protein Ia) and 434 (protein Ib). Mol. Gen. Genet., 1978, 164(2), 131-135.
[http://dx.doi.org/10.1007/BF00267377] [PMID: 360042]
[49]
Hantke, K.; Braun, V. Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett., 1975, 49(3), 301-305.
[http://dx.doi.org/10.1016/0014-5793(75)80771-X] [PMID: 1089064]
[50]
Black, P.N. The fadL gene product of Escherichia coli is an outer membrane protein required for uptake of long-chain fatty acids and involved in sensitivity to bacteriophage T2. J. Bacteriol., 1988, 170(6), 2850-2854.
[http://dx.doi.org/10.1128/jb.170.6.2850-2854.1988] [PMID: 3286621]
[51]
Prehm, P.; Jann, B.; Jann, K.; Schmidt, G.; Stirm, S. On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia coli B. J. Mol. Biol., 1976, 101(2), 277-281.
[http://dx.doi.org/10.1016/0022-2836(76)90377-6] [PMID: 772219]
[52]
Goldberg, E. Recognition attachment, and injection. Molecular biology of bacteriophage T4, 1994, 347-356.
[53]
Trojet, S.N.; Caumont-Sarcos, A.; Perrody, E.; Comeau, A.M.; Krisch, H.M. The gp38 adhesins of the T4 superfamily: A complex modu-lar determinant of the phage’s host specificity. Genome Biol. Evol., 2011, 3, 674-686.
[http://dx.doi.org/10.1093/gbe/evr059] [PMID: 21746838]
[54]
Mutoh, N.; Furukawa, H.; Mizushima, S. Role of lipopolysaccharide and outer membrane protein of Escherichia coli K-12 in the receptor activity for bacteriophage T4. J. Bacteriol., 1978, 136(2), 693-699.
[http://dx.doi.org/10.1128/jb.136.2.693-699.1978] [PMID: 361717]
[55]
Braun, V.; Wolff, H. Characterization of the receptor protein for phage T5 and colicin M in the outer membrane of E. coli B. FEBS Lett., 1973, 34(1), 77-80.
[http://dx.doi.org/10.1016/0014-5793(73)80707-0] [PMID: 4580999]
[56]
Sayers, J. Bacteriophage T5. The bacteriophages; Oxford University Press: New York, NY, 2006, pp. 268-276.
[57]
Heller, K.; Braun, V. Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J. Virol., 1982, 41(1), 222-227.
[http://dx.doi.org/10.1128/jvi.41.1.222-227.1982] [PMID: 7045389]
[58]
Braun, V.; Schaller, K.; Wolff, H. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. Biochim. Biophys. Acta Biomembr., 1973, 323(1), 87-97.
[http://dx.doi.org/10.1016/0005-2736(73)90433-1] [PMID: 4584483]
[59]
Manning, P.A.; Reeves, P. Outer membrane of Escherichia coli K-12: differentiation of proteins 3A and 3B on acrylamide gels and further characterization of con (tolG) mutants. J. Bacteriol., 1976, 127(3), 1070-1079.
[http://dx.doi.org/10.1128/jb.127.3.1070-1079.1976] [PMID: 783128]
[60]
Lindberg, A.A. Bacteriophage receptors. Annu. Rev. Microbiol., 1973, 27(1), 205-241.
[http://dx.doi.org/10.1146/annurev.mi.27.100173.001225] [PMID: 4584686]
[61]
Baptista, C.; Santos, M.A.; São-José, C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. J. Bacteriol., 2008, 190(14), 4989-4996.
[http://dx.doi.org/10.1128/JB.00349-08] [PMID: 18487323]
[62]
Dowah, A.S.A.; Clokie, M.R.J. Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria. Biophys. Rev., 2018, 10(2), 535-542.
[http://dx.doi.org/10.1007/s12551-017-0382-3] [PMID: 29299830]
[63]
São-José, C.; Baptista, C.; Santos, M.A. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J. Bacteriol., 2004, 186(24), 8337-8346.
[http://dx.doi.org/10.1128/JB.186.24.8337-8346.2004] [PMID: 15576783]
[64]
Wolin, M.J.; Douglas, L.J. Cell wall polymers and phage lysis of Lactobacillus plantarum. Biochemistry, 1971, 10(9), 1551-1555.
[http://dx.doi.org/10.1021/bi00785a007] [PMID: 5580669]
[65]
Wendlinger, G.; Loessner, M.J.; Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology, 1996, 142(4), 985-992.
[http://dx.doi.org/10.1099/00221287-142-4-985] [PMID: 8936325]
[66]
Kivelä, H.M.; Madonna, S.; Krupovìč, M.; Tutino, M.L.; Bamford, J.K.H. Genetics for Pseudoalteromonas provides tools to manipulate marine bacterial virus PM2. J. Bacteriol., 2008, 190(4), 1298-1307.
[http://dx.doi.org/10.1128/JB.01639-07] [PMID: 18083813]
[67]
Meadow, P.M.; Wells, P.L. Receptor sites for R-type pyocins and bacteriophage E79 in the Core Part of the lipopolysaccharide of Pseu-domonas aeruginosa PAC1. Microbiology, 1978, 108(2), 339-343.
[68]
Jarrell, K.F.; Kropinski, A.M. Pseudomonas aeruginosa bacteriophage phi PLS27-lipopolysaccharide interactions. J. Virol., 1981, 40(2), 411-420.
[http://dx.doi.org/10.1128/jvi.40.2.411-420.1981] [PMID: 6798225]
[69]
Mindich, L.; Qiao, X.; Qiao, J.; Onodera, S.; Romantschuk, M.; Hoogstraten, D. Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. J. Bacteriol., 1999, 181(15), 4505-4508.
[http://dx.doi.org/10.1128/JB.181.15.4505-4508.1999] [PMID: 10419946]
[70]
Shin, H.; Lee, J.H.; Kim, H.; Choi, Y.; Heu, S.; Ryu, S. Receptor diversity and host interaction of bacteriophages infecting Salmonella en-terica serovar Typhimurium. PLoS One, 2012, 7(8), e43392.
[http://dx.doi.org/10.1371/journal.pone.0043392] [PMID: 22927964]
[71]
Filippov, A.A.; Sergueev, K.V.; He, Y.; Huang, X.Z.; Gnade, B.T.; Mueller, A.J.; Fernandez-Prada, C.M.; Nikolich, M.P. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One, 2011, 6(9), e25486.
[http://dx.doi.org/10.1371/journal.pone.0025486] [PMID: 21980477]
[72]
Silva, C.; Sá, S.; Guedes, C.; Oliveira, C.; Lima, C.; Oliveira, M.; Mendes, J.; Novais, G.; Baylina, P.; Fernandes, R. The history and appli-cations of phage therapy in Pseudomonas aeruginosa. Microbiol. Res., 2021, 13(1), 14-37.
[http://dx.doi.org/10.3390/microbiolres13010002]
[73]
Abd-Allah, I.M.; El-Housseiny, G.S.; Yahia, I.S.; Aboshanab, K.M.; Hassouna, N.A. Rekindling of a masterful precedent; Bacteriophage: Reappraisal and future pursuits. Front. Cell. Infect. Microbiol., 2021, 11, 635597.
[http://dx.doi.org/10.3389/fcimb.2021.635597] [PMID: 34136415]
[74]
Rastogi, V. Pragya; Verma, N.; Mishra, A.K.; Nath, G.; Gaur, P.K.; Verma, A. An overview on bacteriophages: A natural nanostructured antibacterial agent. Curr. Drug Deliv., 2018, 15(1), 3-20.
[http://dx.doi.org/10.2174/1567201813666160406115744] [PMID: 27048165]
[75]
Santos, S.B.; Costa, A.R.; Carvalho, C.; Nóbrega, F.L.; Azeredo, J. Exploiting bacteriophage proteomes: The hidden biotechnological po-tential. Trends Biotechnol., 2018, 36(9), 966-984.
[http://dx.doi.org/10.1016/j.tibtech.2018.04.006] [PMID: 29778530]
[76]
Makky, S.; Dawoud, A.; Safwat, A.; Abdelsattar, A.S.; Rezk, N.; El-Shibiny, A. The bacteriophage decides own tracks: When they are with or against the bacteria. Curr. Res. Microb. Sci., 2021, 2, 100050.
[http://dx.doi.org/10.1016/j.crmicr.2021.100050] [PMID: 34841341]
[77]
Fischetti, V.A. Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol., 2008, 11(5), 393-400.
[http://dx.doi.org/10.1016/j.mib.2008.09.012] [PMID: 18824123]
[78]
Gründling, A.; Manson, M.D.; Young, R. Holins kill without warning. Proc. Natl. Acad. Sci., 2001, 98(16), 9348-9352.
[http://dx.doi.org/10.1073/pnas.151247598] [PMID: 11459934]
[79]
Abdelrahman, F.; Easwaran, M.; Daramola, O.I.; Ragab, S.; Lynch, S.; Oduselu, T.J.; Khan, F.M.; Ayobami, A.; Adnan, F.; Torrents, E.; Sanmukh, S.; El-Shibiny, A. Phage-encoded endolysins. Antibiotics, 2021, 10(2), 124.
[http://dx.doi.org/10.3390/antibiotics10020124] [PMID: 33525684]
[80]
Saier, M.H.; Reddy, L. Holins: Proteins of diverse function with potential for biomedical and biotechnological advances. J. Microbiol. Biotechnol., 2018, 7(1), 2347-2286.
[81]
Young, R.F., III; White, R.L. Lysis of the host by bacteriophage.Encyclopedia of Virology; Britannica; Elsevier: Amsterdam, 2008.
[http://dx.doi.org/10.1016/B978-012374410-4.00752-4]
[82]
Cahill, J.; Young, R. Phage lysis: multiple genes for multiple barriers. Adv. Virus Res., 2019, 103, 33-70.
[http://dx.doi.org/10.1016/bs.aivir.2018.09.003] [PMID: 30635077]
[83]
Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A review of phage therapy against bacterial pathogens of aquatic and terrestri-al organisms. Viruses, 2017, 9(3), 50.
[http://dx.doi.org/10.3390/v9030050] [PMID: 28335451]
[84]
Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage, 2011, 1(1), 31-45.
[http://dx.doi.org/10.4161/bact.1.1.14942] [PMID: 21687533]
[85]
Brady, A.; Felipe-Ruiz, A.; Gallego del Sol, F.; Marina, A.; Quiles-Puchalt, N.; Penadés, J.R. Molecular basis of lysis–lysogeny decisions in gram-positive phages. Annu. Rev. Microbiol., 2021, 75(1), 563-581.
[http://dx.doi.org/10.1146/annurev-micro-033121-020757] [PMID: 34343015]
[86]
Ofir, G.; Sorek, R. Contemporary phage biology: From classic models to new insights. Cell, 2018, 172(6), 1260-1270.
[http://dx.doi.org/10.1016/j.cell.2017.10.045] [PMID: 29522746]
[87]
Choi, J.; Kotay, S.M.; Goel, R. Various physico-chemical stress factors cause prophage induction in Nitrosospira multiformis 25196- an ammonia oxidizing bacteria. Water Res., 2010, 44(15), 4550-4558.
[http://dx.doi.org/10.1016/j.watres.2010.04.040] [PMID: 20630557]
[88]
Pinto, A.M.; Silva, M.D.; Pastrana, L.M.; Bañobre-López, M.; Sillankorva, S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol. Rev., 2021, 45(5), fuab019.
[http://dx.doi.org/10.1093/femsre/fuab019] [PMID: 33784387]
[89]
Qadir, M.I.; Mobeen, T.; Masood, A. Phage therapy: Progress in pharmacokinetics. Braz. J. Pharm. Sci., 2018, 54(1), e17093.
[http://dx.doi.org/10.1590/s2175-97902018000117093]
[90]
Vandamme, E.J.; Mortelmans, K. A century of bacteriophage research and applications: Impacts on biotechnology, health, ecology and the economy! J. Chem. Technol. Biotechnol., 2019, 94(2), 323-342.
[http://dx.doi.org/10.1002/jctb.5810]
[91]
Omardien, S.; Brul, S.; Zaat, S.A.J. Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Front. Cell Dev. Biol., 2016, 4, 111.
[http://dx.doi.org/10.3389/fcell.2016.00111] [PMID: 27790614]
[92]
Del Cogliano, M.E.; Hollmann, A.; Martinez, M.; Semorile, L.; Ghiringhelli, P.D.; Maffía, P.C.; Bentancor, L.V. Cationic antimicrobial peptides inactivate Shiga toxin encoding bacteriophages. Front Chem., 2017, 5, 122.
[http://dx.doi.org/10.3389/fchem.2017.00122] [PMID: 29312928]
[93]
Parisien, A.; Allain, B.; Zhang, J.; Mandeville, R.; Lan, C.Q. Novel alternatives to antibiotics: Bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol., 2008, 104(1), 1-13.
[PMID: 18171378]
[94]
Loc-Carrillo, C.; Abedon, S.T. Pros and cons of phage therapy. Bacteriophage, 2011, 1(2), 111-114.
[http://dx.doi.org/10.4161/bact.1.2.14590] [PMID: 22334867]
[95]
Principi, N.; Silvestri, E.; Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol., 2019, 10, 513.
[http://dx.doi.org/10.3389/fphar.2019.00513] [PMID: 31139086]
[96]
Karthik, K.; Muneeswaran, N.S.; Manjunathachar, H.V.; Gopi, M.; Elamurugan, A.; Kalaiyarasu, S. Bacteriophages: Effective alternative to antibiotics. Adv. Anim. Vet. Sci., 2014, 2(3S), 1-7.
[http://dx.doi.org/10.14737/journal.aavs/2014/2.3s.1.7]
[97]
Abbaszadeh, F.; Leylabadlo, H.E.; Alinezhad, F.; Feizi, H.; Mobed, A.; Baghbanijavid, S.; Baghi, H.B. Bacteriophages: Cancer diagnosis, treatment, and future prospects. J. Pharm. Investig., 2021, 51(1), 23-34.
[http://dx.doi.org/10.1007/s40005-020-00503-x]
[98]
Mansour, N.M. Bacteriophages are natural gift, could we pay further attention. Bacteriol. Rev., 1976, 40, 793-802.
[99]
Sharma, S.; Datta, S.; Chatterjee, S.; Vairale, M.G.; Dwivedi, S.K. Potential application of bacteriophage in decontaminating biothreat agents. Def. Life Sci. J., 2021, 6(1), 70-84.
[http://dx.doi.org/10.14429/dlsj.6.15537]
[100]
Sarhan, W.A.; Azzazy, H.M.E. Phage approved in food, why not as a therapeutic? Expert Rev. Anti Infect. Ther., 2015, 13(1), 91-101.
[http://dx.doi.org/10.1586/14787210.2015.990383] [PMID: 25488141]
[101]
Moye, Z.; Woolston, J.; Sulakvelidze, A. Bacteriophage applications for food production and processing. Viruses, 2018, 10(4), 205.
[http://dx.doi.org/10.3390/v10040205] [PMID: 29671810]
[102]
Ganeshan, S.D.; Hosseinidoust, Z. Phage therapy with a focus on the human microbiota. Antibiotics, 2019, 8(3), 131.
[http://dx.doi.org/10.3390/antibiotics8030131] [PMID: 31461990]
[103]
Cooper, C.J.; Khan Mirzaei, M.; Nilsson, A.S. Adapting drug approval pathways for bacteriophage based therapeutics. Front. Microbiol., 2016, 7, 1209.
[http://dx.doi.org/10.3389/fmicb.2016.01209] [PMID: 27536293]
[104]
Cheng, S.; Wang, H.; Pan, X.; Zhang, C.; Zhang, K.; Chen, Z.; Dong, W.; Xie, A.; Qi, X. Dendritic hydrogels with robust inherent antibacte-rial properties for promoting bacteria-infected wound healing. ACS Appl. Mater. Interfaces, 2022, 14(9), 11144-11155.
[http://dx.doi.org/10.1021/acsami.1c25014] [PMID: 35195389]
[105]
Qi, X.; Tong, X.; You, S.; Mao, R.; Cai, E.; Pan, W.; Zhang, C.; Hu, R.; Shen, J. Mild hyperthermia-assisted ROS scavenging hydrogels achieve diabetic wound healing. ACS Macro Lett., 2022, 11(7), 861-867.
[http://dx.doi.org/10.1021/acsmacrolett.2c00290] [PMID: 35759676]
[106]
Qi, X.; Xiang, Y.; Cai, E.; You, S.; Gao, T.; Lan, Y.; Deng, H.; Li, Z.; Hu, R.; Shen, J. All-in-one: Harnessing multifunctional injectable natural hydrogels for ordered therapy of bacteria-infected diabetic wounds. Chem. Eng. J., 2022, 439, 135691.
[http://dx.doi.org/10.1016/j.cej.2022.135691]
[107]
Anomaly, J. The future of phage: Ethical challenges of using phage therapy to treat bacterial infections. Public Health Ethics, 2020, 13(1), 82-88.
[http://dx.doi.org/10.1093/phe/phaa003] [PMID: 32760449]
[108]
Culot, A.; Grosset, N.; Gautier, M. Overcoming the challenges of phage therapy for industrial aquaculture: A review. Aquaculture, 2019, 513, 734423.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734423]
[109]
Skurnik, M.; Pajunen, M.; Kiljunen, S. Biotechnological challenges of phage therapy. Biotechnol. Lett., 2007, 29(7), 995-1003.
[http://dx.doi.org/10.1007/s10529-007-9346-1] [PMID: 17364214]
[110]
Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev., 2020, 44(6), 684-700.
[http://dx.doi.org/10.1093/femsre/fuaa017] [PMID: 32472938]
[111]
Ng, R.N.; Tai, A.S.; Chang, B.J.; Stick, S.M.; Kicic, A. Overcoming challenges to make bacteriophage therapy standard clinical treatment practice for cystic fibrosis. Front. Microbiol., 2021, 11, 593988.
[http://dx.doi.org/10.3389/fmicb.2020.593988] [PMID: 33505366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy