Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

A Brief Review of Radioactive Materials for Therapeutic and Diagnostic Purposes

Author(s): Manisha Bharti, Md. Aftab Alam*, Gudhanti Siva Nago Koteswara Rao and Pramod Kumar Sharma

Volume 16, Issue 1, 2023

Published on: 14 November, 2022

Page: [23 - 37] Pages: 15

DOI: 10.2174/1874471016666221028110222

Price: $65

Abstract

Radiation treatment has been advancing ever since the discovery of X-rays in 1895. The goal of radiotherapy is to shape the best isodose on the tumor volume while preserving normal tissues. There are three advantages: patient cure, organ preservation, and cost-effectiveness. Randomized trials in many various forms of cancer (including breast, prostate, and rectum) with a high degree of scientific proof confirmed radiotherapy's effectiveness and tolerance. Such accomplishments, critical to patients' quality of life, have been supported in the past. Radiopharmaceuticals were developed to diagnose and treat various disorders, including hyperthyroidism, bone discomfort, cancer of the thyroid gland, and other conditions like metastases, renal failure, and myocardial infarction and cerebral infarction perfusion. It is also possible to sterilize thermo-labile materials with a radioactive substance. This includes surgical dressings and a wide range of other medical supplies. Nuclear medicine provides various advantages, including tumor localization, safe diagnosis, no radiation buildup, and excellent treatment effectiveness. Nowadays, the field of nuclear pharmacy is focused on developing novel radioactive pharmaceutical substances that will be useful.

Keywords: Radiotherapy, diagnosis, GMP of radiopharmaceuticals, radioactive agents, computational advancement, radioimmunotherapy.

Graphical Abstract
[1]
Nadugopal, B.; Swain, S.S.; Ojha, S.K.; Meher, C.P. Impact of radiopharmaceuticals in healthcare system. PharmaTutor, 2017, 5(8), 23-31. https://www.pharmatutor.org/magazines/articles/august-2017/impact-of-radiopharmaceuticals-in-healthcare-system
[2]
Heske, S.M.; Hladik, W.B.; Laven, D.L.; Kavula, M.P. Status of radiologic pharmacy education in colleges of pharmacy. Am. J. Pharm. Educ., 1996, 60(2), 152-161.
[3]
Skanjeti, A.; Miranti, A.; Delgado, Y.G.M.; Bianciotto, D.; Trevisiol, E.; Stasi, M.; Podio, V. A simple and accurate dosimetry protocol to estimate activity for hyperthyroidism treatment. Nucl. Med. Rev., 2015, 18(1), 13-18.
[http://dx.doi.org/10.5603/NMR.2015.0004] [PMID: 25633511]
[4]
Nakagawa, Y.; Mori, K.; Hoshikawa, S.; Ozaki, H.; Ito, S.; Yoshida, K. Development of subclinical hyperthyroidism due to Graves’ disease in a hypothyroid woman who had undergone hemithyroidectomy for adenomatous goiter and radiotherapy for nasopharyngeal cancer. Endocr. J., 2007, 54(1), 35-37.
[http://dx.doi.org/10.1507/endocrj.K06-132] [PMID: 17053292]
[5]
Paes, F.M.; Serafini, A.N. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin. Nucl. Med., 2010, 40, 89-104.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.10.003]
[6]
Paes, F.M.; Ernani, V.; Hosein, P.; Serafini, A.N. Radiopharmaceuticals: when and how to use them to treat metastatic bone pain. J. Support. Oncol., 2011, 9(6), 197-205.
[http://dx.doi.org/10.1016/j.suponc.2011.06.004] [PMID: 22055888]
[7]
Taylor, A.T. Radionuclides in nephrourology, part 1: Radiopharmaceuticals, quality control, and quantitative indices. J. Nucl. Med., 2014, 55(4), 608-615.
[http://dx.doi.org/10.2967/jnumed.113.133447] [PMID: 24549283]
[8]
Pauwels, E.K.J.; McCready, V.R.; Stoot, J.H.M.B.; Van Deurzen, D.F.P. The mechanism of accumulation of tumour-localising radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging, 1998, 25(3), 277-305.
[http://dx.doi.org/10.1007/s002590050229] [PMID: 9580862]
[9]
Volkert, W.A.; Hoffman, T.J. Therapeutic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2269-2292.
[http://dx.doi.org/10.1021/cr9804386] [PMID: 11749482]
[10]
Dar, M.; Masoodi, M.; Farooq, S. Medical uses of radiopharmaceuticals. Pharmatutor., 2015, 3(8), 24-29.
[11]
Jalilian, A.R.; Beiki, D.; Hassanzadeh, R.A.; Eftekhari, A.; Geramifar, P.; Eftekhari, M. Production and clinical applications of radiopharmaceuticals and medical radioisotopes in Iran. Semin. Nucl. Med., 2016, 46(4), 340-358.
[http://dx.doi.org/10.1053/j.semnuclmed.2016.01.006]
[12]
Plaizier, M.A.B.D.; Roos, J.C.; Teule, G.J.J.; Van Dieren, E.B.; Den Hollander, W.; Haisma, H.J.; DeJager, R.L.; Van Lingen, A. Comparison of non-invasive approaches to red marrow dosimetry for radiolabelled monoclonal antibodies. Eur. J. Nucl. Med., 1994, 21(3), 216-222.
[http://dx.doi.org/10.1007/BF00188669] [PMID: 8200389]
[13]
Roentgen, W.C. On a new kind of ray (first report). Munch. Med. Wochenschr., 1959, 101, 1237-1239.
[14]
Paterson, R. The Treatment of Malignant Disease by Radium and X-Rays; Edward Arnold: London, 1948.
[15]
Becquerel, J.; Crowther, J.A. Discovery of radioactivity. Nature, 1948, 161(4094), 609.
[http://dx.doi.org/10.1038/161609b0] [PMID: 18916835]
[16]
Curie, E. Marie and Pierre Curie and the discovery of radium. Br. J. Radiol., 1950, 23(271), 409-412.
[http://dx.doi.org/10.1259/0007-1285-23-271-409] [PMID: 15426739]
[17]
Chaoul, H. Short-distance roentgenotherapy (contact roentgenotherapy). J. Radiol. Electrol. Arch. Electr. Med., 1950, 31(5-6), 290-298.
[PMID: 15437475]
[18]
Thariat, J.; Hannoun, L.J.M.; Sun, M.A.; Vuong, T.; Gérard, J.P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol., 2013, 10(1), 52-60.
[http://dx.doi.org/10.1038/nrclinonc.2012.203] [PMID: 23183635]
[19]
Baclesse, F. Comparative study of results obtained with conventional radiotherapy (200 KV) and cobalt therapy in the treatment of cancer of the larynx. Clin. Radiol., 1967, 18(3), 292-300.
[http://dx.doi.org/10.1016/S0009-9260(67)80077-1] [PMID: 6029383]
[20]
Pierquin, B.; Chassange, D.; Gasiorowski, M. Technical presentation and dosimetry in curiepuncture with gold 198 wire. J. Radiol. Electrol. Med. Nucl., 1959, 40, 690-693.
[PMID: 14432858]
[21]
Brugarolas, P.; Comstock, J.; Dick, D.W.; Ellmer, T.; Engle, J.W.; Lapi, S.E.; Liang, S.H.; Parent, E.E.; Kishore Pillarsetty, N.V.; Selivanova, S.; Sun, X.; Vavere, A.; Scott, P.J.H. Fifty years of radiopharmaceuticals. J. Nucl. Med. Technol., 2020, 48(Suppl. 1), 34S-39S.
[PMID: 32605944]
[22]
Kramer, R. Radiation therapy in early laryngeal cancer. J. Mt. Sinai Hosp. N. Y., 1947, 14(1), 24-28.
[PMID: 20242856]
[23]
Fernandez, B. From the discovery of the atomic nucleus to the DWBA. In: 17th EUROSCHOOL ON EXOTIC BEAMS; Santiago de Compostela, Spain, 2010, pp. 1-58.
[24]
Regaud, C.; Ferroux, R. Discordance of the effects of X-rays, on the one hand in the testicle, by the skin, on the other hand in the fractionation of the dose. Compt. Rend. Soc. Biol., 1927, 97, 431.
[25]
Courageot, E.; Huet, C.; Clairand, I.; Bottollier, D.J.F.; Gourmelon, P. Numerical dosimetric reconstruction of a radiological accident in South America in April 2009. Radiat. Prot. Dosimetry, 2011, 144(1-4), 540-542.
[http://dx.doi.org/10.1093/rpd/ncq338] [PMID: 21051432]
[26]
Perrier, C.; Segrè, E. Radioactive isotopes of element 43. Nature, 1937, 140(3535), 193-194.
[http://dx.doi.org/10.1038/140193b0]
[27]
Pierquin, B.; Dutreix, A. For a new methodology in curietherapy: the system of Paris (endo-and plesio radiotherapy with non-radioactive preparation). A preliminary note. Ann. Radiol., 19669(9), 757-760.
[28]
Reivich, M.; Kuhl, D.; Wolf, A.; Greenberg, J.; Phelps, M.; Ido, T.; Casella, V.; Fowler, J.; Hoffman, E.; Alavi, A.; Som, P.; Sokoloff, L. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res., 1979, 44(1), 127-137.
[http://dx.doi.org/10.1161/01.RES.44.1.127] [PMID: 363301]
[29]
Johns, H.E.; Cunningham, J.R. The physics of radiology; Springfield, Illinois, 1969.
[30]
Fry, D.W.; Shersby, R.H.R.B. A traveling-wave linear accelerator for 4-MeV. electrons. Nature, 1948, 162(4126), 859-861.
[http://dx.doi.org/10.1038/162859a0] [PMID: 18103121]
[31]
Taylor, L.S. History of the International Commission on Radiological Protection (ICRP). Health Phys., 1958, 1(2), 97-104.
[http://dx.doi.org/10.1097/00004032-195804000-00001] [PMID: 13598297]
[32]
Bernier, J.; Hall, E.J.; Giaccia, A. Radiation oncology: A century of achievements. Nat. Rev. Cancer, 2004, 4(9), 737-747.
[http://dx.doi.org/10.1038/nrc1451] [PMID: 15343280]
[33]
Puck, T.T.; Marcus, P.I. Action of x-rays on mammalian cells. J. Exp. Med., 1956, 103(5), 653-666.
[http://dx.doi.org/10.1084/jem.103.5.653] [PMID: 13319584]
[34]
Withers, H.R. The dose-survival relationship for irradiation of epithelial cells of mouse skin. Br. J. Radiol., 1967, 40(471), 187-194.
[http://dx.doi.org/10.1259/0007-1285-40-471-187] [PMID: 6019041]
[35]
Withers, H.R. Regeneration of intestinal mucosa after irradiation. Cancer, 1971, 28(1), 75-81.
[http://dx.doi.org/10.1002/1097-0142(197107)28:1<75::AID-CNCR2820280115>3.0.CO;2-8] [PMID: 5110648]
[36]
Gianfaldoni, S.; Gianfaldoni, R.; Wollina, U.; Lotti, J.; Tchernev, G.; Lotti, T. An overview on radiotherapy: From its history to its current applications in dermatology. Open Access Maced. J. Med. Sci., 2017, 5(4), 521-525.
[http://dx.doi.org/10.3889/oamjms.2017.122] [PMID: 28785349]
[37]
Alongi, F.; Di Muzio, N. Image-guided radiation therapy: A new era for the radiation oncologist? Int. J. Clin. Oncol., 2009, 14(6), 568-569.
[http://dx.doi.org/10.1007/s10147-009-0896-1] [PMID: 19967499]
[38]
Ruka, W.; Rutkowski, P.; Morysiński, T.; Nowecki, Z.; Zdzienicki, M.; Makula, D.; Ptaszyński, K.; Bylina, E.; Grzesiakowska, U. The megavoltage radiation therapy in treatment of patients with advanced or difficult giant cell tumors of bone. Int. J. Radiat. Oncol. Biol. Phys., 2010, 78(2), 494-498.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1704] [PMID: 20004531]
[39]
Desjardins, B.; Kazerooni, E.A. ECG-gated cardiac CT. AJR Am. J. Roentgenol., 2004, 182(4), 993-1010.
[http://dx.doi.org/10.2214/ajr.182.4.1820993] [PMID: 15039178]
[40]
Dutreix, A. The computer in radiotherapy. Rev. Prat., 1972, 22(8), 1359-1360, passim.
[PMID: 4647332]
[41]
Mohan, R. Field shaping for three-dimensional conformal radiation therapy and multileaf collimation. Semin. Radiat. Oncol., 1995, 5(2), 86-99.
[http://dx.doi.org/10.1016/S1053-4296(95)80003-4]
[42]
Pommert, A.; Höhne, K.H.; Burmester, E.; Gehrmann, S.; Leuwer, R.; Petersik, A.; Pflesser, B.; Tiede, U. Computer-based anatomy. Acad. Radiol., 2006, 13(1), 104-112.
[http://dx.doi.org/10.1016/j.acra.2005.08.034] [PMID: 16399038]
[43]
Gall, K.P.; Verhey, L.J.; Wagner, M. Computer-assisted positioning of radiotherapy patients using implanted radiopaque fiducials. Med. Phys., 1993, 20(4), 1153-1159.
[http://dx.doi.org/10.1118/1.596969] [PMID: 8413025]
[44]
Image-based computer-assisted radiation therapy;; Arimura, H., Ed.; Springer: Sci. Rev, Germany, Berlin, 2017.
[http://dx.doi.org/10.1007/978-981-10-2945-5]
[45]
Schlegel, W. Computer assisted radiation therapy planning. In3D imaging in medicine; Springer: Berlin, Heidelberg, 1990, pp. 399-410.
[46]
Kost, S.D.; Dewaraja, Y.K.; Abramson, R.G.; Stabin, M.G. VIDA: A voxel-based dosimetry method for targeted radionuclide therapy using Geant4. Cancer Biother. Radiopharm., 2015, 30(1), 16-26.
[http://dx.doi.org/10.1089/cbr.2014.1713] [PMID: 25594357]
[47]
Del Guerra, A.; Panetta, D. Fundamentals of natural and artificial radioactivity and interaction of ionizing radiations with the matter. In: Nuclear Medicine Textbook; Springer: Berlin, Heidelberg, 2019; pp. 3-19.
[http://dx.doi.org/10.1007/978-3-319-95564-3_1]
[48]
Dobrescu, L.; Stanciu, S.; Pleșca, C.; Ropot, A. Towards an integrated medical system for radiological medical imaging investigations. Rom. J. Mil. Med., 2017, 120(1), 5-14.
[http://dx.doi.org/10.55453/rjmm.2017.120.1.1]
[49]
Radvanyi, P.; Villain, J. The discovery of radioactivity. C. R. Phys., 2017, 18(9-10), 544-550.
[http://dx.doi.org/10.1016/j.crhy.2017.10.008]
[50]
Adam, M.J.; Wilbur, D.S. Radiohalogens for imaging and therapy. Chem. Soc. Rev., 2005, 34(2), 153-163.
[http://dx.doi.org/10.1039/b313872k] [PMID: 15672179]
[51]
Currie, G.M.; Wheat, J.M.; Davidson, R.; Kiat, H. Radionuclide production. Radiographer, 2011, 58(3), 46-52.
[http://dx.doi.org/10.1002/j.2051-3909.2011.tb00155.x]
[52]
Blower, J.E.; Cooper, M.S.; Imberti, C.; Ma, M.T.; Marshall, C.; Young, J.D. The radiopharmaceutical chemistry of the radionuclides of gallium and indium. In: Radiopharmaceutical Chemistry; Lewis, J.; Windhorst, A.; Zeglis, B., Eds.; Springer: Berlin, Heidelberg, 2019; pp. 255-271.
[http://dx.doi.org/10.1007/978-3-319-98947-1_14]
[53]
Eppard, E.; Wuttke, M.; Nicodemus, P.L.; Rösch, F. Ethanol-based postprocessing of generator-derived 68Ga toward kit-type preparation of 68Ga-radiopharmaceuticals. J. Nucl. Med., 2014, 55(6), 1023-1028.
[http://dx.doi.org/10.2967/jnumed.113.133041] [PMID: 24752674]
[54]
Good manufacturing practices for pharmaceutical products: main principles., 2014. Available from: https://apps. who.int/medicinedocs/documents/s21467en/s21467en.pdf
[55]
Quality assurance of pharmaceuticals. A compendium of guidelines and related materials. In: Good manufacturing practices and inspection, 2nd edition; World Health Organization: Geneva, 2007; 2, . Available from: https://apps.who.int/iris/bitstream/handle/10665/43532/9789241547086_eng.pdf?sequence=1&isAllowed=y
[56]
WHO good manufacturing practices for sterile pharmaceutical products. In: WHO Expert Committee on Specifications for Pharmaceutical Preparations: forty-fifth report;; World Health Organization: Geneva, 2011. Available from: https://www.who.int/medicines/areas/quality_safety/quality_assurance/GMPSterilePharmaceutical ProductsTRS961Annex6.pdf
[57]
IAEA safety standards for protecting people and the environment. Radiation protection and safety of radiation sources: international basic safety standards. Jointly sponsored by EC, FAO, IAEA, ILO, OECD/NEA, PAHO, UNEP, WHO. 2014. Available from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1578_web-57265295.pdf [accessed on: 4 December 2019].
[58]
IAEA safety standards for protecting people and the environment. Radiation protection and safety in medicinal uses of ionizing radiation. Jointly sponsored by IAEA, ILO, PAHO, WHO. 2018. Available from: https://www-pub. iaea.org/MTCD/Publications/PDF/PUB1775_web.pdf [accessed on: 4 December 2019].
[59]
Good manufacturing practices: guidelines on validation. Appendix 4. Analytical procedure validation. In: WHO Expert Committee on Specifications for Pharmaceutical Preparations: fifty third report; World Health Organization: Geneva, 2019. Available from: https://www.who.int/medicines/areas/quality_safety/quality_assurance/WHO_TRS_ [accessed on: 29 January 2020].
[60]
ICH harmonised tripartite guideline. Validation of analytical procedures: text and methodology. Q2(R1). 2005. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-textmethodology-step-5_en.pdf
[61]
Good manufacturing practices: guidelines on validation. In: WHO Expert Committee on Specifications for Pharmaceutical Preparations: fifty-third report;; Available from: https://www.who.int/medicines/areas/quality_safety/quality_assurance/WHO_TRS_1019_Annex3.pdf?ua=1
[62]
ISO 14644:2019(en). Cleanrooms and associated controlled environments – Part 3: Test methods. 2015. Available from: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1782_web.pdf [Accessed on: 4 December 2019].
[63]
Good practice for introducing radiopharmaceuticals for clinical use. 2015. Available from: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1782_web.pdf [Accessed on: 4 December 2019].
[64]
Decristoforo, C.; Elsinga, P.; Faivre, C.A.; Farstad, B.; Meyer, G.; Mikolajczak, R.; Penuelas, I.; Unak, P.; Westera, G. The specific case of radiopharmaceuticals and GMP-activities of the radiopharmacy committee. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(7), 1400-1401.
[http://dx.doi.org/10.1007/s00259-008-0827-9] [PMID: 18481061]
[65]
Poli, M.; Petroni, D.; Pardini, S.; Salvadori, P.A.; Menichetti, L. Implementation of a quality assurance system according to GMP and ISO 9001:2008 standard for radiopharmaceutical production in a public research centre. Accredit. Qual. Assur., 2012, 17(3), 341-348.
[http://dx.doi.org/10.1007/s00769-012-0877-3]
[66]
Gillings, N.; Hjelstuen, O.; Ballinger, J.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; Mindt, T.L.; Neels, O.; Ocak, M.; Patt, M.; Todde, S. Guideline on Current Good Radiopharmacy Practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. EJNMMI Radiopharm. Chem., 2021, 6(1), 8.
[http://dx.doi.org/10.1186/s41181-021-00123-2] [PMID: 33580358]
[67]
Reed, B.C. An examination of the potential fission-bomb weaponizability of nuclides other than 235U and 239Pu. Am. J. Phys., 2017, 85(1), 38-44.
[http://dx.doi.org/10.1119/1.4966630]
[68]
Willowson, K.P. Production of radionuclides for clinical nuclear medicine. Eur. J. Phys., 2019, 40(4), 043001.
[http://dx.doi.org/10.1088/1361-6404/ab169b]
[69]
Didi, A.; Dadouch, A.; Bekkouri, H.E. Feasibility study for production of iodine-131 using dioxide of tellurium-130. Int. J. Pharm. Pharm. Sci., 2016, 8(11), 327.
[http://dx.doi.org/10.22159/ijpps.2016v8i11.13595]
[70]
Neves, M.; Kling, A.; Lambrecht, R.M. Radionuclide production for therapeutic radiopharmaceuticals. Appl. Radiat. Isot., 2002, 57(5), 657-664.
[http://dx.doi.org/10.1016/S0969-8043(02)00180-X] [PMID: 12433039]
[71]
Qaim, S.M. Medical radionuclide production. In: Medical Radionuclide Production;; Berlin: Boston, 2019.
[http://dx.doi.org/10.1515/9783110604375]
[72]
Gillings, N.; Todde, S.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Hjelstuen, O.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; Mindt, T.L.; Ocak, M.; Patt, M. EANM guideline on the validation of analytical methods for radiopharmaceuticals. EJNMMI Radiopharm. Chem., 2020, 5(1), 7.
[http://dx.doi.org/10.1186/s41181-019-0086-z] [PMID: 32052212]
[73]
CPMP/ICH/381/95 - ICH harmonised tripartite guideline - Validation of Analytical Procedures. Text and Methodology Q2(R1), 2014. Available from: https://www.ich.org/page/quality-guidelines
[74]
Qiao, J.; Nielsen, S. Radiochemcial methods-Radionuclide Monitoring. In: Encyclopedia of Analytical Science; Elsevier: Amsterdam, Netherlands, 2019; pp. 31-39.
[75]
Ory, D.; Van den Brande, J.; De Groot, T.; Serdons, K.; Bex, M.; Declercq, L.; Cleeren, F.; Ooms, M.; Van Laere, K.; Verbruggen, A.; Bormans, G. Retention of [18F]fluoride on reversed phase HPLC columns. J. Pharm. Biomed. Anal., 2015, 111, 209-214.
[http://dx.doi.org/10.1016/j.jpba.2015.04.009] [PMID: 25898315]
[76]
Loveless, V.S. Quality control of compounded radiopharmaceuticals. Continuing education for nuclear pharmacists and nuclear medicine professionals; University of New Mexico Health Sciences Center, 2009.
[77]
European Pharmacopeia 9.5, 2.2.66 Detection and Measurement of Radioactivity. Springer: Heildelberg, Germany, 2016.
[78]
European Pharmacopeia 9.5, 2.2.46 Chromatographic Separation Techniques. Springer: Heildelberg, Germany, 2016.
[79]
Guinn, V.P. Radioactivity. In: Encyclopedia of Physical Science and Technology, (Third Edition); Acedemic Press: Massachusetts, United States, 2003; pp. 661-674.
[http://dx.doi.org/10.1016/B0-12-227410-5/00643-8]
[80]
Lassmann, M.; Eberlein, U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann. ICRP, 2018, 47(3-4), 187-195.
[http://dx.doi.org/10.1177/0146645318756253] [PMID: 29664326]
[81]
Maulany, G.J.; Manggau, F.X.; Jayadi, J.; Waremra, R.S.; Fenanlampir, C.A. Radiation detection of alfa, beta, and gamma rays with geiger muller detector. Int J Mech Eng Technol, 2018, 9, 21-27.
[82]
Magill, J.; Galy, J. Radioactivity radionuclides radiation; Springer: Heidelberg, Germany, 2004.
[83]
Hoefnagel, C.A. Radionuclide therapy revisited. Eur. J. Nucl. Med., 1991, 18(6), 408-431.
[http://dx.doi.org/10.1007/BF02258432] [PMID: 1879447]
[84]
Volkert, W.A.; Goeckeler, W.F.; Ehrhardt, G.J.; Ketring, A.R. Therapeutic radionuclides: Production and decay property considerations. J. Nucl. Med., 1991, 32(1), 174-185.
[PMID: 1988628]
[85]
Kassis, A.I.; Adelstein, S.J. Radiobiologic principles in radionuclide therapy. J. Nucl. Med., 2005, 46(S1)(Suppl. 1), 4S-12S.
[PMID: 15653646]
[86]
Toohey, R.E.; Stabin, M.G.; Watson, E.E. The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics, 2000, 20(2), 533-546.
[http://dx.doi.org/10.1148/radiographics.20.2.g00mc33533] [PMID: 10715348]
[87]
Weber, D.; Eckerman, K.; Dillman, L.T. MIRD: radionuclide Data and Decay Scheme; Society of Nuclear Medicine: New York, 1989.
[88]
Qaim, S.M. Therapeutic radionuclides and nuclear data. Radiochim. Acta, 2001, 89(4-5), 297-304.
[http://dx.doi.org/10.1524/ract.2001.89.4-5.297]
[89]
Ersahin, D.; Doddamane, I.; Cheng, D. Targeted radionuclide therapy. Cancers, 2011, 3(4), 3838-3855.
[http://dx.doi.org/10.3390/cancers3043838] [PMID: 24213114]
[90]
Qaim, S.M.; Tarkanyi, F.; Capote, R. Nulcear data for the production of therapeutic radionuclides; International Atomic Energy Agency: Vienna, Austria, 2011. Available from: https://inis.iaea.org/search/search.aspx?orig_q=RN:43038210
[91]
Kucuk, O.N.; Soydal, C.; Lacin, S.; Ozkan, E.; Bilgic, S. Selective intraarterial radionuclide therapy with Yttrium-90 (Y-90) microspheres for unresectable primary and metastatic liver tumors. World J. Surg. Oncol., 2011, 9(1), 86.
[http://dx.doi.org/10.1186/1477-7819-9-86] [PMID: 21819613]
[92]
IAEA. Vienna, Austria. Janet, F.E., Winfried, B;; Nuclear Medicine Therapy. Informa Healthcare USA: New York, 2007.
[93]
Donald, W.K.; Raphael, E.P.; Ralph, R.W. Holland-Frei Cancer Medicine; BC Decker: Hamilton, 2003.
[94]
Grigsby, P.W.; Baglan, K.; Siegel, B.A. Surveillance of patients to detect recurrent thyroid carcinoma. Cancer, 1999, 85(4), 945-951.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990215)85:4<945::AID-CNCR24>3.0.CO;2-I]
[95]
Clarke, S.E.M. Radionuclide therapy in oncology. Cancer Treat. Rev., 1994, 20(1), 51-71.
[http://dx.doi.org/10.1016/0305-7372(94)90010-8] [PMID: 8293428]
[96]
Lubberink, M.; Lundqvist, H.; Tolmachev, V. Production, PET performance and dosimetric considerations of 134 Ce/134 La, an Auger electron and positron-emitting generator for radionuclide therapy. Phys. Med. Biol., 2002, 47(4), 615-629.
[http://dx.doi.org/10.1088/0031-9155/47/4/305] [PMID: 11900194]
[97]
Pirich, C.; Prüfert, U.; Havlik, E.; Schwarmeis, E.; Flores, J.; Kvaternik, H.; Angelberger, P.; Aiginger, J.; Wanivenhaus, A.; Sinzinger, H. Monitoring of the biodistribution and biokinetics of dysprosium-165 ferric hydroxide with a shadow-shield whole-body counter. Eur. J. Nucl. Med., 1997, 24(4), 398-402.
[http://dx.doi.org/10.1007/BF00881811] [PMID: 9096090]
[98]
Wheldon, T.E. Radionuclide therapy of cancer. Nucl. Med. Commun., 1993, 14(6), 408-410.
[http://dx.doi.org/10.1097/00006231-199306000-00002] [PMID: 8321481]
[99]
Knapp, F.F.R., Jr.; Mirzadeh, S. The continuing important role of radionuclide generator systems for nuclear medicine. Eur. J. Nucl. Med., 1994, 21(10), 1151-1165.
[http://dx.doi.org/10.1007/BF00181073] [PMID: 7828627]
[100]
Knut, L. Radiosynovectomy in the therapeutic management of arthritis. World J. Nucl. Med., 2015, 14(1), 10-15.
[http://dx.doi.org/10.4103/1450-1147.150509] [PMID: 25709538]
[101]
Coffey, R.J.; Flickinger, J.C.; Bissonette, D.J.; Dade, L.L. Radiosurgery for solitary brain metastases using the cobalt-60 gamma unit: methods and results in 24 patients. Int. J. Radiat. Oncol. Biol. Phys., 1991, 20(6), 1287-1295.
[http://dx.doi.org/10.1016/0360-3016(91)90240-5] [PMID: 1646195]
[102]
Fourquet, A.; Campana, F.; Mosseri, V.; Cetingoz, R.; Luciani, S.; Labib, A.; Asselain, B.; Vilcoq, J.R. Iridium-192 versus cobalt-60 boost in 3–7 cm breast cancer treated by irradiation alone: Final results of a randomized trial. Radiother. Oncol., 1995, 34(2), 114-120.
[http://dx.doi.org/10.1016/0167-8140(94)01492-L] [PMID: 7597209]
[103]
Nordyke, R.A.; Gilbert, F.I., Jr Optimal iodine-131 dose for eliminating hyperthyroidism in Graves’ disease. J. Nucl. Med., 1991, 32(3), 411-416.
[PMID: 2005449]
[104]
Sangro, B.; Bilbao, J.I.; Boan, J.; Martinez, C.A.; Benito, A.; Rodriguez, J.; Panizo, A.; Gil, B.; Inarrairaegui, M.; Herrero, I.; Quiroga, J.; Prieto, J. Radioembolization using 90Y-resin microspheres for patients with advanced hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2006, 66(3), 792-800.
[http://dx.doi.org/10.1016/j.ijrobp.2006.05.065] [PMID: 16904840]
[105]
Leahy, M.F.; Seymour, J.F.; Hicks, R.J.; Turner, J.H. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J. Clin. Oncol., 2006, 24(27), 4418-4425.
[http://dx.doi.org/10.1200/JCO.2005.05.3470] [PMID: 16940276]
[106]
Kraeber, B.F.; Campion, L.; Rousseau, C.; Bourdin, S.; Chatal, J.F.; Resche, I. Treatment of bone metastases of prostate cancer with strontium-89 chloride: Efficacy in relation to the degree of bone involvement. Eur. J. Nucl. Med., 2000, 27(10), 1487-1493.
[http://dx.doi.org/10.1007/s002590000315] [PMID: 11083537]
[107]
De Klerk, J.M.H.; Van Dijk, A.; Van Het Schip, A.D.; Zonnenberg, B.A.; Van Rijk, P.P. Pharmacokinetics of rhenium-186 after administration of rhenium-186-HEDP to patients with bone metastases. J. Nucl. Med., 1992, 33(5), 646-651.
[PMID: 1373767]
[108]
Fettich, J.; Padhy, A.; Nair, N.; Morales, R.; Tanumihardja, M.; Riccabonna, G. Comparative clinical efficacy and safety of phosphorus-32 and strontium-89 in the palliative treatment of metastatic bone pain: Results of an IAEA coordinated research project. World J. Nucl. Med., 2003, 2, 226-231.
[109]
Milenic, D.E.; Brady, E.D.; Brechbiel, M.W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov., 2004, 3(6), 488-499.
[http://dx.doi.org/10.1038/nrd1413] [PMID: 15173838]
[110]
Boccato, P.F.; Massabni, A.C.; Orvig, C. Radiopharmaceuticals for diagnosis in nuclear medicine: A short review. Eclét. Quím., 2019, 44(3), 11-19.
[http://dx.doi.org/10.26850/1678-4618eqj.v44.3.2019.p11-19]
[111]
Debnath, S.; Babu, M.N.; Kumar, G.V. Radiopharmaceuticals and their therapeutic applications in health care system. Pharm. Times, 2016, 48(3), 15-18.
[112]
McAfee, J.G.; Subramanian, G. Radioactive agents for imaging. In: Freeman and Johnson's clinical radionuclide imaging;; United States: Florida, 1986; p. 640. https://inis.iaea.org/search/search.aspx?orig_q=RN:18009348
[113]
Di Chiro, G. New radiographic and isotopic procedures in neurological diagnosis: Useful new diagnostic tools are a refinement of pneumoencephalography, a new tracer for radioactive brain scanning, and the use of radio-iodinated serum albumin injected into the cerebrospinal fluid cavities for head scanning purposes. JAMA, 1964, 188(6), 524-529.
[http://dx.doi.org/10.1001/jama.1964.03060320046011]
[114]
Jackson, I.M.; Lee, S.J.; Sowa, A.R.; Rodnick, M.E.; Bruton, L.; Clark, M.; Preshlock, S.; Rothley, J.; Rogers, V.E.; Botti, L.E.; Henderson, B.D.; Hockley, B.G.; Torres, J.; Raffel, D.M.; Brooks, A.F.; Frey, K.A.; Kilbourn, M.R.; Koeppe, R.A.; Shao, X.; Scott, P.J.H. Use of 55 PET radiotracers under approval of a Radioactive Drug Research Committee (RDRC). EJNMMI Radiopharm. Chem., 2020, 5(1), 24.
[http://dx.doi.org/10.1186/s41181-020-00110-z] [PMID: 33175263]
[115]
Dickhoff, L.R.; Vrancken, P.M.J.; Bosman, P.A.; Alderliesten, T. Therapeutic applications of radioactive sources: from image-guided brachytherapy to radio-guided surgical resection. Q. J. Nucl. Med. Mol. Imaging, 2021, 65(3), 190-201.
[http://dx.doi.org/10.23736/S1824-4785.21.03370-7] [PMID: 34105339]
[116]
Zaret, B.L. Myocardial imaging with radioactive potassium and its analogs. Prog. Cardiovasc. Dis., 1977, 20(2), 81-94.
[http://dx.doi.org/10.1016/0033-0620(77)90001-9] [PMID: 897197]
[117]
Stevens, L.A.; Nolin, T.D.; Richardson, M.M.; Feldman, H.I.; Lewis, J.B.; Rodby, R.; Townsend, R.; Okparavero, A.; Zhang, Y.L.; Schmid, C.H.; Levey, A.S. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am. J. Kidney Dis., 2009, 54(1), 33-42.
[http://dx.doi.org/10.1053/j.ajkd.2009.03.008] [PMID: 19446939]
[118]
O’Keefe, S.J.D.; Ogden, J.M.; Young, G.O.; Dicker, J.; Gird wood, A.H.; Marks, I.N. Measurement of pancreatic enzyme synthesis in humans. Int. J. Pancreatol., 1989, 4(1), 13-27.
[http://dx.doi.org/10.1007/BF02924144] [PMID: 2466916]
[119]
Bekerman, C.; Hoffer, P.B.; Bitran, J.D. The role of gallium-67 in the clinical evaluation of cancer. Semin. Nucl. Med., 1984, 14(4), 296-323.
[http://dx.doi.org/10.1016/S0001-2998(84)80005-7] [PMID: 6093265]
[120]
Ebaugh, F.G., Jr.; Emerson, C.P.; Ross, J.F.; Aloia, R.; Halperin, P.; Richards, H. The use of radioactive chromium 51 as an erythrocyte tagging agent for the determination or red cell survival in vivo. J. Clin. Invest., 1953, 32(12), 1260-1276.
[http://dx.doi.org/10.1172/JCI102855] [PMID: 13108994]
[121]
Gross, G.J.; Warltier, D.C.; Hardman, H.F.; Somani, P. The effect of ouabain on nutritional circulation and regional myocardial blood flow. Am. Heart J., 1977, 93(4), 487-495.
[http://dx.doi.org/10.1016/S0002-8703(77)80411-0] [PMID: 842444]
[122]
Vente, M.A.D.; De Wit, T.C.; Van Den Bosch, M.A.A.J.; Bult, W.; Seevinck, P.R.; Zonnenberg, B.A.; de Jong, H.W.A.M.; Krijger, G.C.; Bakker, C.J.G.; Van Het Schip, A.D.; Nijsen, J.F.W. Holmium-166 poly(L-lactic acid) microsphere radioembolisation of the liver: technical aspects studied in a large animal model. Eur. Radiol., 2010, 20(4), 862-869.
[http://dx.doi.org/10.1007/s00330-009-1613-1] [PMID: 19789880]
[123]
Hartman, A.W.; Nesbitt, R.U., Jr; Smith, F.M.; Nuessle, N.O. Viscosities of acacia and sodium alginate after sterilization by cobalt-60. J. Pharm. Sci., 1975, 64(5), 802-805.
[http://dx.doi.org/10.1002/jps.2600640515] [PMID: 1151649]
[124]
Jeong, K.; Jung, K.J.; Bae, J.; Kim, J.; Seo, J.; Park, C.H.; Kim, S.; Song, I.H. Laser sterilization of hydroxyapatite implants as an alternative to using radioactive facility. Optik, 2020, 218, 165200.
[http://dx.doi.org/10.1016/j.ijleo.2020.165200]
[125]
Ilem, O.D.; Asikoglu, M. Radioimaging and diagnostic applications. In: Nanotechnology in progress pharmaceutical application;; Research Signpost; India: Kerala, 2012; pp. 163-176.
[126]
Schmidt, B.J.; Papin, J.A.; Musante, C.J. Mechanistic systems modeling to guide drug discovery and development. Drug Discov. Today, 2013, 18(3-4), 116-127.
[http://dx.doi.org/10.1016/j.drudis.2012.09.003] [PMID: 22999913]
[127]
Snyder, W.S.; Ford, M.R.; Warner, G.G.; Fisher, H.L. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom; Society of Nuclear Medicine: New York, NY, 1969.
[128]
Lee, C.; Lodwick, D.; Hurtado, J.; Pafundi, D.; Williams, J.L.; Bolch, W.E. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys. Med. Biol., 2010, 55(2), 339-363.
[http://dx.doi.org/10.1088/0031-9155/55/2/002] [PMID: 20019401]
[129]
Fernald, G.H.; Capriotti, E.; Daneshjou, R.; Karczewski, K.J.; Altman, R.B. Bioinformatics challenges for personalized medicine. Bioinformatics, 2011, 27(13), 1741-1748.
[http://dx.doi.org/10.1093/bioinformatics/btr295] [PMID: 21596790]
[130]
Demir, E.S.; Ozgenc, E.; Ekinci, M.; Gundogdu, E.A.; Özdemir, D.İ.; Asikoglu, M. Computational study of radiopharmaceuticals. In: Molecular docking and molecular dynamics;; IntechOpen: London, UK, 2019.
[http://dx.doi.org/10.5772/intechopen.85140]
[131]
Kim, C.H.; Yeom, Y.S.; Nguyen, T.T.; Han, M.C.; Choi, C.; Lee, H.; Han, H.; Shin, B.; Lee, J.K.; Kim, H.S.; Zankl, M.; Petoussi, H.N.; Bolch, W.E.; Lee, C.; Chung, B.S.; Qiu, R.; Eckerman, K. New mesh-type phantoms and their dosimetric applications, including emergencies. Ann. ICRP, 2018, 47(3-4), 45-62.
[http://dx.doi.org/10.1177/0146645318756231] [PMID: 29651869]
[132]
Goodwin, R.J.A.; Bunch, J.; McGinnity, D.F. Mass spectrometry imaging in oncology drug discovery. Adv. Cancer Res., 2017, 134, 133-171. https://pubmed.ncbi.nlm.nih.gov/28110649/
[133]
Francisco, D.C.; Liberala, G.; Alexandre, A.; Tavares, S.; Manuel, R.S. Comparative analysis of different radioisotopes for palliative treatment of bone metastases by computational methods. Med. Phys., 2014, 14(3), 191-199.
[134]
Chen, K.; Adelstein, S.J.; Kassis, A.I. Molecular modeling of the interaction of iodinated Hoechst analogs with DNA: implications for new radiopharmaceutical design. J. Mol. Struct. THEOCHEM, 2004, 711(1-3), 49-56.
[http://dx.doi.org/10.1016/j.theochem.2004.08.032]
[135]
El-Motaleb, M.A.; Farrag, A.S.; Ibrahim, I.T.; Sarhan, M.O.; Ismail, M.F. Preparation and molecular modeling of radioio propranolol as a novel potential radiopharmaceutical for lung perfusion scan. Int. J. Pharm. Pharm. Sci., 2015, 7(8), 110-116.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy