Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19

Author(s): Rishita Dey, Asmita Samadder* and Sisir Nandi*

Volume 22, Issue 29, 2022

Published on: 03 November, 2022

Page: [2410 - 2434] Pages: 25

DOI: 10.2174/1568026623666221020163831

Price: $65

Abstract

There is a need to explore natural compounds against COVID-19 due to their multitargeted actions against various targets of nCoV. They act on multiple sites rather than single targets against several diseases. Thus, there is a possibility that natural resources can be repurposed to combat COVID-19. However, the biochemical mechanisms of these inhibitors were not known. To reveal the mode of anti-nCoV action, structure-based docking plays a major role. The present study is an attempt to explore various potential targets of SARS-CoV-2 and the structure-based screening of various potential natural inhibitors to combat the novel coronavirus.

Keywords: COVID-19, SARS-CoV-2 potential targets, Structural proteins, Non-structural proteins, Natural inhibitors, Docking- based screening.

Graphical Abstract
[1]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
Yang, H.; Bartlam, M.; Rao, Z. Drug design targeting the main protease, the Achilles’ heel of coronaviruses. Curr. Pharm. Des., 2006, 12(35), 4573-4590.
[http://dx.doi.org/10.2174/138161206779010369] [PMID: 17168763]
[3]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[4]
King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. Virus Taxonomy. Ninth report of the International Committee on Taxonomy of Viruses, 1st Ed.; Elsevier: Amsterdam, 2012, pp. 486-487.
[5]
Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; Hull, R.; King, A.M.Q.; Koonin, E.V.; Krupovic, M.; Kuhn, J.H.; Lefkowitz, E.J.; Nibert, M.L.; Orton, R.; Roossinck, M.J.; Sabanadzovic, S.; Sullivan, M.B.; Suttle, C.A.; Tesh, R.B.; van der Vlugt, R.A.; Varsani, A.; Zerbini, F.M. Virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol., 2017, 15(3), 161-168.
[http://dx.doi.org/10.1038/nrmicro.2016.177] [PMID: 28134265]
[6]
Adams, M.J.; Lefkowitz, E.J.; King, A.M.Q.; Harrach, B.; Harrison, R.L.; Knowles, N.J.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Mushegian, A.R.; Nibert, M.L.; Sabanadzovic, S.; Sanfaçon, H.; Siddell, S.G.; Simmonds, P.; Varsani, A.; Zerbini, F.M.; Orton, R.J.; Smith, D.B.; Gorbalenya, A.E.; Davison, A.J. 50 years of the international committee on taxonomy of viruses: Progress and prospects. Arch. Virol., 2017, 162(5), 1441-1446.
[http://dx.doi.org/10.1007/s00705-016-3215-y] [PMID: 28078475]
[7]
Hilgenfeld, R. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J., 2014, 281(18), 4085-4096.
[http://dx.doi.org/10.1111/febs.12936] [PMID: 25039866]
[8]
McBride, R.; van Zyl, M.; Fielding, B. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6(8), 2991-3018.
[http://dx.doi.org/10.3390/v6082991] [PMID: 25105276]
[9]
Guo, Y.; Korteweg, C.; McNutt, M.A.; Gu, J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res., 2008, 133(1), 4-12.
[http://dx.doi.org/10.1016/j.virusres.2007.01.022] [PMID: 17825937]
[10]
Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2), 371-374.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[11]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[12]
Yuan, Y.; Cao, D.; Zhang, Y.; Ma, J.; Qi, J.; Wang, Q.; Lu, G.; Wu, Y.; Yan, J.; Shi, Y.; Zhang, X.; Gao, G.F. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun., 2017, 8(1), 15092.
[http://dx.doi.org/10.1038/ncomms15092] [PMID: 28393837]
[13]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[14]
Prabakaran, P.; Xiao, X.; Dimitrov, D.S. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem. Biophys. Res. Commun., 2004, 314(1), 235-241.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.081] [PMID: 14715271]
[15]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, .C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[16]
Jeffers, S.A.; Tusell, S.M.; Gillim-Ross, L.; Hemmila, E.M.; Achenbach, J.E.; Babcock, G.J.; Thomas, W.D., Jr; Thackray, L.B.; Young, M.D.; Mason, R.J.; Ambrosino, D.M.; Wentworth, D.E.; DeMartini, J.C.; Holmes, K.V. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15748-15753.
[http://dx.doi.org/10.1073/pnas.0403812101] [PMID: 15496474]
[17]
Yang, Z.Y.; Huang, Y.; Ganesh, L.; Leung, K.; Kong, W.P.; Schwartz, O.; Subbarao, K.; Nabel, G.J. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol., 2004, 78(11), 5642-5650.
[http://dx.doi.org/10.1128/JVI.78.11.5642-5650.2004] [PMID: 15140961]
[18]
Han, D.P.; Lohani, M.; Cho, M.W. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGNmediated severe acute respiratory syndrome coronavirus entry. J. Virol., 2007, 81(21), 12029-12039.
[http://dx.doi.org/10.1128/JVI.00315-07] [PMID: 17715238]
[19]
Castaño-Rodriguez, C.; Honrubia, J.M.; Gutiérrez-Álvarez, J.; DeDiego, M.L.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Fernandez-Delgado, R.; Verdia-Báguena, C.; Queralt-Martín, M.; Kochan, G.; Perlman, S.; Aguilella, V.M.; Sola, I.; Enjuanes, L. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in peplication and pathogenesis. MBio, 2018, 9(3), e02325-17.
[http://dx.doi.org/10.1128/mBio.02325-17] [PMID: 29789363]
[20]
Kuo, L.; Hurst, K.R.; Masters, P.S. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol., 2007, 81(5), 2249-2262.
[http://dx.doi.org/10.1128/JVI.01577-06] [PMID: 17182690]
[21]
Venkatagopalan, P.; Daskalova, S.M.; Lopez, L.A.; Dolezal, K.A.; Hogue, B.G. Coronavirus envelope (E) protein remains at the site of assembly. Virology, 2015, 478, 75-85.
[http://dx.doi.org/10.1016/j.virol.2015.02.005] [PMID: 25726972]
[22]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[23]
Arbely, E.; Khattari, Z.; Brotons, G.; Akkawi, M.; Salditt, T.; Arkin, I.T. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol., 2004, 341(3), 769-779.
[http://dx.doi.org/10.1016/j.jmb.2004.06.044] [PMID: 15288785]
[24]
Pervushin, K.; Tan, E.; Parthasarathy, K.; Lin, X.; Jiang, F.L.; Yu, D.; Vararattanavech, A.; Soong, T.W.; Liu, D.X.; Torres, J. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog., 2009, 5(7), e1000511.
[http://dx.doi.org/10.1371/journal.ppat.1000511] [PMID: 19593379]
[25]
Hogue, B.G.; Machamer, C.E. Coronavirus structural proteins and virus assembly. Nidoviruses, 2008, 2008, 179-200.
[26]
Arndt, A.L.; Larson, B.J.; Hogue, B.G. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J. Virol., 2010, 84(21), 11418-11428.
[http://dx.doi.org/10.1128/JVI.01131-10] [PMID: 20719948]
[27]
Wang, Y.; Liu, L. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. MBio, 2016, 7(1), e01872-15.
[http://dx.doi.org/10.1128/mBio.01872-15] [PMID: 26861016]
[28]
Chang, C.; Lo, S.C.; Wang, Y.S.; Hou, M.H. Recent insights into the development of therapeutics against coronavirus diseases by targeting N protein. Drug Discov. Today, 2016, 21(4), 562-572.
[http://dx.doi.org/10.1016/j.drudis.2015.11.015] [PMID: 26691874]
[29]
Lin, S.Y.; Liu, C.L.; Chang, Y.M.; Zhao, J.; Perlman, S.; Hou, M.H. Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target. J. Med. Chem., 2014, 57(6), 2247-2257.
[http://dx.doi.org/10.1021/jm500089r] [PMID: 24564608]
[30]
Chang, C.; Hou, M.H.; Chang, C.F.; Hsiao, C.D.; Huang, T. The SARS coronavirus nucleocapsid protein - forms and functions. Antiviral Res., 2014, 103, 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[31]
Zhou, B.; Liu, J.; Wang, Q.; Liu, X.; Li, X.; Li, P.; Ma, Q.; Cao, C. The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha. J. Virol., 2008, 82(14), 6962-6971.
[http://dx.doi.org/10.1128/JVI.00133-08] [PMID: 18448518]
[32]
Lo, Y.S.; Lin, S.Y.; Wang, S.M.; Wang, C.T.; Chiu, Y.L.; Huang, T.H.; Hou, M.H. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Lett., 2013, 587(2), 120-127.
[http://dx.doi.org/10.1016/j.febslet.2012.11.016] [PMID: 23178926]
[33]
Lindner, H.A.; Fotouhi-Ardakani, N.; Lytvyn, V.; Lachance, P.; Sulea, T.; Ménard, R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol., 2005, 79(24), 15199-15208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[34]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[35]
Shimamoto, Y.; Hattori, Y.; Kobayashi, K.; Teruya, K.; Sanjoh, A.; Nakagawa, A.; Yamashita, E.; Akaji, K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg. Med. Chem., 2015, 23(4), 876-890.
[http://dx.doi.org/10.1016/j.bmc.2014.12.028] [PMID: 25614110]
[36]
Hu, T.; Zhang, Y.; Li, L.; Wang, K.; Chen, S.; Chen, J.; Ding, J.; Jiang, H.; Shen, X. Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology, 2009, 388(2), 324-334.
[http://dx.doi.org/10.1016/j.virol.2009.03.034] [PMID: 19409595]
[37]
Hsu, M.F.; Kuo, C.J.; Chang, K.T.; Chang, H.C.; Chou, C.C.; Ko, T.P.; Shr, H.L.; Chang, G.G.; Wang, A.H.J.; Liang, P.H. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem., 2005, 280(35), 31257-31266.
[http://dx.doi.org/10.1074/jbc.M502577200] [PMID: 15788388]
[38]
Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol., 2005, 79(24), 15189-15198.
[http://dx.doi.org/10.1128/JVI.79.24.15189-15198.2005] [PMID: 16306590]
[39]
Han, Y.S.; Chang, G.G.; Juo, C.G.; Lee, H.J.; Yeh, S.H.; Hsu, J.T.A.; Chen, X. Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): Expression, purification, characterization, and inhibition. Biochemistry, 2005, 44(30), 10349-10359.
[http://dx.doi.org/10.1021/bi0504761] [PMID: 16042412]
[40]
Zeng, Q.; Langereis, M.A.; van Vliet, A.L.W.; Huizinga, E.G.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9065-9069.
[http://dx.doi.org/10.1073/pnas.0800502105] [PMID: 18550812]
[41]
Frick, D.; Lam, A. Understanding helicases as a means of virus control. Curr. Pharm. Des., 2006, 12(11), 1315-1338.
[http://dx.doi.org/10.2174/138161206776361147] [PMID: 16611118]
[42]
Karpe, Y.A.; Lole, K.S. NTPase and 5′ to 3′ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J. Virol., 2010, 84(7), 3595-3602.
[http://dx.doi.org/10.1128/JVI.02130-09] [PMID: 20071563]
[43]
Banerjee, T.; Aggarwal, M.; Sommers, J.A.; Brosh, R.M., Jr Biochemical and cell biological assays to identify and characterize DNA helicase inhibitors. Methods, 2016, 108, 130-141.
[http://dx.doi.org/10.1016/j.ymeth.2016.04.007] [PMID: 27064001]
[44]
Frieman, M.; Yount, B.; Agnihothram, S.; Page, C.; Donaldson, E.; Roberts, A.; Vogel, L.; Woodruff, B.; Scorpio, D.; Subbarao, K.; Baric, R.S. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J. Virol., 2012, 86(2), 884-897.
[http://dx.doi.org/10.1128/JVI.05957-11] [PMID: 22072787]
[45]
Egloff, M.P.; Ferron, F.; Campanacci, V.; Longhi, S.; Rancurel, C.; Dutartre, H.; Snijder, E.J.; Gorbalenya, A.E.; Cambillau, C.; Canard, B. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA, 2004, 101(11), 3792-3796.
[http://dx.doi.org/10.1073/pnas.0307877101] [PMID: 15007178]
[46]
Sutton, G.; Fry, E.; Carter, L.; Sainsbury, S.; Walter, T.; Nettleship, J.; Berrow, N.; Owens, R.; Gilbert, R.; Davidson, A.; Siddell, S.; Poon, L.L.M.; Diprose, J.; Alderton, D.; Walsh, M.; Grimes, J.M.; Stuart, D.I. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure, 2004, 12(2), 341-353.
[http://dx.doi.org/10.1016/j.str.2004.01.016] [PMID: 14962394]
[47]
Ponnusamy, R.; Moll, R.; Weimar, T.; Mesters, J.R.; Hilgenfeld, R. Variable oligomerization modes in coronavirus non-structural protein 9. J. Mol. Biol., 2008, 383(5), 1081-1096.
[http://dx.doi.org/10.1016/j.jmb.2008.07.071] [PMID: 18694760]
[48]
Kirchdoerfer, R.N.; Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun., 2019, 10(1), 2342.
[http://dx.doi.org/10.1038/s41467-019-10280-3] [PMID: 31138817]
[49]
Ahn, D.G.; Choi, J.K.; Taylor, D.R.; Oh, J.W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch. Virol., 2012, 157(11), 2095-2104.
[http://dx.doi.org/10.1007/s00705-012-1404-x] [PMID: 22791111]
[50]
Subissi, L.; Posthuma, C.C.; Collet, A.; Zevenhoven-Dobbe, J.C.; Gorbalenya, A.E.; Decroly, E.; Snijder, E.J.; Canard, B.; Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc. Natl. Acad. Sci. USA, 2014, 111(37), E3900-E3909.
[http://dx.doi.org/10.1073/pnas.1323705111] [PMID: 25197083]
[51]
McDonald, S.M. RNA synthetic mechanisms employed by diverse families of RNA viruses. Wiley Interdiscip. Rev. RNA, 2013, 4(4), 351-367.
[http://dx.doi.org/10.1002/wrna.1164] [PMID: 23606593]
[52]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, R.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368, 779-782.
[53]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNAdependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 1504, 2020(368), 1499e.
[54]
Wang, Q.; Wu, J.; Wang, H.; Gao, Y.; Liu, Q.; Mu, A.; Ji, W.; Yan, L.; Zhu, Y.; Zhu, C.; Fang, X.; Yang, X.; Huang, Y.; Gao, H.; Liu, F.; Ge, J.; Sun, Q.; Yang, X.; Xu, W.; Liu, Z.; Yang, H.; Lou, Z.; Jiang, B.; Guddat, L.W.; Gong, P.; Rao, Z. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell, 2020, 182, 417-428.
[http://dx.doi.org/10.1016/j.cell.2020.05.034]
[55]
Nandi, S.; Roy, H.; Gummadi, A.; Saxena, A.K. Exploring spike protein as potential target of novel coronavirus and to inhibit the viability utilizing natural agents. Curr. Drug Targets, 2021, 22(17), 2006-2020.
[http://dx.doi.org/10.2174/1389450122666210309105820] [PMID: 33687893]
[56]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[57]
Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148.
[http://dx.doi.org/10.1016/j.phrs.2016.11.017] [PMID: 27888157]
[58]
Jena, A.B.; Kanungo, N.; Nayak, V.; Chainy, G.B.N.; Dandapat, J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci. Rep., 2021, 11(1), 2043.
[http://dx.doi.org/10.1038/s41598-021-81462-7] [PMID: 33479401]
[59]
Mhatre, S.; Gurav, N.; Shah, M.; Patravale, V. Entry-inhibitory role of catechins against SARS-CoV-2 and its UK variant. Comput. Biol. Med., 2021, 135, 104560.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104560] [PMID: 34147855]
[60]
Kumar, G.; Kumar, D.; Singh, N.P. Therapeutic Approach against 2019-nCoV by Inhibition of ACE-2 Receptor. Drug Res. (Stuttg.), 2021, 71(4), 213-218.
[http://dx.doi.org/10.1055/a-1275-0228] [PMID: 33184809]
[61]
Marín-Palma, D.; Tabares-Guevara, J.H.; Zapata-Cardona, M.I.; Flórez-Álvarez, L.; Yepes, L.M.; Rugeles, M.T.; Zapata-Builes, W.; Hernandez, J.C.; Taborda, N.A. Curcumin inhibits in vitro SARS-CoV-2 infection in vero E6 cells through multiple antiviral mechanisms. Molecules, 2021, 26(22), 6900.
[http://dx.doi.org/10.3390/molecules26226900] [PMID: 34833991]
[62]
Udeinya, I.J.; Mbah, A.U.; Chijioke, C.P.; Shu, E.N. An antimalarial extract from neem leaves is antiretroviral. Trans. R. Soc. Trop. Med. Hyg., 2004, 98(7), 435-437.
[http://dx.doi.org/10.1016/j.trstmh.2003.10.016] [PMID: 15138081]
[63]
Biswas, K.; Chattopadhyay, I.; Banerjee, R.K.; Bandyopadhyay, U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr. Sci., 2002, 82, 1336-1345.
[64]
Shadrack, D.M.; Vuai, S.A.H.; Sahini, M.G.; Onoka, I. In silico study of the inhibition of SARS-COV-2 viral cell entry by neem tree extracts. RSC Advances, 2021, 11(43), 26524-26533.
[http://dx.doi.org/10.1039/D1RA04197E] [PMID: 35480004]
[65]
Sarkar, L.; Oko, L.; Gupta, S.; Bubak, A.N.; Das, B.; Gupta, P.; Safiriyu, A.A.; Singhal, C.; Neogi, U.; Bloom, D.; Banerjee, A.; Mahalingam, R.; Cohrs, R.J.; Koval, M.; Shindler, K.S.; Pal, D.; Nagel, M.; Sarma, J.D. Azadirachta indica A. Juss bark extract and its Nimbin isomers restrict β-coronaviral infection and replication. Virology, 2022, 569, 13-28.
[http://dx.doi.org/10.1016/j.virol.2022.01.002] [PMID: 35219218]
[66]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[67]
Straughn, A.R.; Kakar, S.S.; Withaferin, A. A potential therapeutic agent against COVID-19 infection. J. Ovarian Res., 2020, 13(1), 79.
[http://dx.doi.org/10.1186/s13048-020-00684-x] [PMID: 32684166]
[68]
Chikhale, R.V.; Gurav, S.S.; Patil, R.B.; Sinha, S.K.; Prasad, S.K.; Shakya, A.; Shrivastava, S.K.; Gurav, N.S.; Prasad, R.S. Sars-cov-2 host entry and replication inhibitors from Indian ginseng: An in-silico approach. J. Biomol. Struct. Dyn., 2021, 39(12), 4510-4521.
[PMID: 32568012]
[69]
Balkrishna, A.; Pokhrel, S.; Singh, H.; Joshi, M.; Mulay, V.P.; Haldar, S.; Varshney, A. Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model. Drug Des. Devel. Ther., 2021, 15, 1111-1133.
[http://dx.doi.org/10.2147/DDDT.S292805] [PMID: 33737804]
[70]
Kim, S.H.; Lee, Y.C. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J. Pharm. Pharmacol., 2009, 61(3), 353-359.
[http://dx.doi.org/10.1211/jpp.61.03.0010] [PMID: 19222908]
[71]
Rout, J.; Swain, B.C.; Tripathy, U. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 40(2), 860-874.
[PMID: 32938313]
[72]
Liu, W.; Zhang, X.; Liu, P.; Shen, X.; Lan, T.; Li, W.; Jiang, Q.; Xie, X.; Huang, H. Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury. Eur. J. Pharmacol., 2010, 638(1-3), 150-155.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.033] [PMID: 20447389]
[73]
Wang, Z.Z.; Li, K.; Maskey, A.R.; Huang, W.; Toutov, A.A.; Yang, N.; Srivastava, K.; Geliebter, J.; Tiwari, R.; Miao, M.; Li, X.M. A small molecule compound berberine as an orally active therapeutic candidate against COVID‐19 and SARS: A computational and mechanistic study. FASEB J., 2021, 35(4), e21360.
[http://dx.doi.org/10.1096/fj.202001792R] [PMID: 33749932]
[74]
Varghese, F.; van Woudenbergh, E.; Overheul, G.; Eleveld, M.; Kurver, L.; van Heerbeek, N.; van Laarhoven, A.; Miesen, P.; den Hartog, G.; de Jonge, M.; van Rij, R. Berberine and obatoclax inhibit SARS-Cov-2 replication in primary human nasal epithelial cells in vitro. Viruses, 2021, 13(2), 282.
[http://dx.doi.org/10.3390/v13020282] [PMID: 33670363]
[75]
Liu, Y.T.; Chen, H.W.; Lii, C.K.; Jhuang, J.H.; Huang, C.S.; Li, M.L.; Yao, H.T. A diterpenoid, 14-deoxy-11, 12-didehydroandrographolide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and highcholesterol diet. Nutrients, 2020, 12(2), 523.
[http://dx.doi.org/10.3390/nu12020523]
[76]
Sa-ngiamsuntorn, K.; Suksatu, A.; Pewkliang, Y.; Thongsri, P.; Kanjanasirirat, P.; Manopwisedjaroen, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Pitiporn, S.; Chaopreecha, J.; Kongsomros, S.; Jearawuttanakul, K.; Wannalo, W.; Khemawoot, P.; Chutipongtanate, S.; Borwornpinyo, S.; Thitithanyanont, A.; Hongeng, S. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J. Nat. Prod., 2021, 84(4), 1261-1270.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01324] [PMID: 33844528]
[77]
Basu, A.; Sarkar, A.; Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci. Rep., 2020, 10(1), 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[78]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886, 173448.
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[79]
Bhowmik, D.; Nandi, R.; Prakash, A.; Kumar, D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heylion, 2021, 7(3), E06515.
[80]
Kreft, S.; Knapp, M.; Kreft, I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem., 1999, 47(11), 4649-4652.
[http://dx.doi.org/10.1021/jf990186p] [PMID: 10552865]
[81]
Zhao, Z.; Moghadasian, M.H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem., 2008, 109(4), 691-702.
[http://dx.doi.org/10.1016/j.foodchem.2008.02.039] [PMID: 26049981]
[82]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (Amst.), 2014, 4, 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[83]
Bhowmik, D.; Nandi, R.; Jagadeesan, R.; Kumar, N.; Prakash, A.; Kumar, D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol., 2020, 84, 104451.
[http://dx.doi.org/10.1016/j.meegid.2020.104451] [PMID: 32640381]
[84]
Khuda-Bukhsh, A.R.; Das, J.; Samadder, A.; Das, S.; Paul, A. Nanopharmaceutical approach for enhanced anti-cancer activity of betulinic acid in lung-cancer treatment via activation of PARP: Interaction with dna as a target:-anti-cancer. J. Pharmacopuncture, 2016, 19(1), 37-44.
[http://dx.doi.org/10.3831/KPI.2016.19.005] [PMID: 27280048]
[85]
Mandal, A.; Jha, A.K.; Hazra, B. Plant products as inhibitors of coronavirus 3CL protease. Front. Pharmacol., 2021, 12, 583387.
[http://dx.doi.org/10.3389/fphar.2021.583387] [PMID: 33767619]
[86]
Rastogi, S.; Pandey, M.M.; Kumar Singh Rawat, A. Medicinal plants of the genus Betula—Traditional uses and a phytochemical–pharmacological review. J. Ethnopharmacol., 2015, 159, 62-83.
[http://dx.doi.org/10.1016/j.jep.2014.11.010] [PMID: 25449458]
[87]
Das, J.; Das, S.; Samadder, A.; Bhadra, K.; Khuda-Bukhsh, A.R. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur. J. Pharm. Sci., 2012, 47(2), 313-324.
[http://dx.doi.org/10.1016/j.ejps.2012.06.018] [PMID: 22771545]
[88]
Das, J.; Das, S.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Strong anticancer potential of nano-triterpenoid from Phytolacca decandra against A549 adenocarcinoma via a Ca2+-dependent mitochondrial apoptotic pathway. J. Acupunct. Meridian Stud., 2014, 7(3), 140-150.
[http://dx.doi.org/10.1016/j.jams.2013.07.009] [PMID: 24929458]
[89]
Jäger, S.; Laszczyk, M.; Scheffler, A. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex). Molecules, 2008, 13(12), 3224-3235.
[http://dx.doi.org/10.3390/molecules13123224] [PMID: 19104487]
[90]
Bildziukevich, U.; Özdemir, Z.; Wimmer, Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules, 2019, 24(19), 3546.
[http://dx.doi.org/10.3390/molecules24193546] [PMID: 31574991]
[91]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[92]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[93]
Verma, S.; Twilley, D.; Esmear, T.; Oosthuizen, C.B.; Reid, A.M.; Nel, M.; Lall, N. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Front. Pharmacol., 2020, 11, 561334.
[http://dx.doi.org/10.3389/fphar.2020.561334] [PMID: 33101023]
[94]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[95]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M-C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[96]
Hamburger, M. Isatis tinctoria – From the rediscovery of an ancient medicinal plant towards a novel anti-inflammatory phytopharmaceutical. Phytochem. Rev., 2002, 1(3), 333-344.
[http://dx.doi.org/10.1023/A:1026095608691]
[97]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[98]
Murakami, S.; Kotomo, S.; Ozawa, M.; Baba, K. Novel chalcone derivative as antiulcer agent. Patent Japan Kokai Koho 04 1992.
[99]
Fujita, T.; Sakuma, S.; Sumiya, T.; Nishida, H.; Fujimoto, Y.; Baba, K.; Kozawa, M. The effects of xanthoangelol E on arachidonic acid metabolism in the gastric antral mucosa and platelet of the rabbit. Res. Commun. Chem. Pathol. Pharmacol., 1992, 77(2), 227-240.
[PMID: 1439191]
[100]
Matsuura, M.; Kimura, Y.; Nakata, K.; Baba, K.; Okuda, H. Artery relaxation by chalcones isolated from the roots of Angelica keiskei. Planta Med., 2001, 67(3), 230-235.
[http://dx.doi.org/10.1055/s-2001-12011] [PMID: 11345693]
[101]
Nakata, K.; Baba, K. Histamine release-inhibiting activity of Angelica keiskei. Nat. Med., 2001, 55, 32-34.
[102]
Kil, Y.S.; Pham, S.T.; Seo, E.K.; Jafari, M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch. Pharm. Res., 2017, 40(6), 655-675.
[http://dx.doi.org/10.1007/s12272-017-0892-3] [PMID: 28439780]
[103]
Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30.
[http://dx.doi.org/10.3109/14756366.2014.1003215] [PMID: 25683083]
[104]
Shree, P.; Mishra, P.; Selvaraj, C.; Singh, S.K.; Chaube, R.; Garg, N.; Tripathi, Y.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J. Biomol. Struct. Dyn., 2022, 40(1), 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[105]
Murugesan, S.; Kottekad, S.; Crasta, I.; Sreevathsan, S.; Usharani, D.; Perumal, M.K.; Mudliar, S.N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants – Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) – A molecular docking and simulation study. Comput. Biol. Med., 2021, 136, 104683.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104683] [PMID: 34329860]
[106]
Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979.
[http://dx.doi.org/10.1080/07391102.2020.1758790] [PMID: 32306860]
[107]
Ngo, S.T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D.H.; Vu, V.V. Computational determination of potential inhibitors of SARS-CoV-2 Main Protease. J. Chem. Inf. Model., 2020, 60(12), 5771-5780.
[http://dx.doi.org/10.1021/acs.jcim.0c00491] [PMID: 32530282]
[108]
Khan, A.; Ali, S.S.; Khan, M.T.; Saleem, S.; Ali, A.; Suleman, M.; Babar, Z.; Shafiq, A.; Khan, M.; Wei, D.Q. Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro). J. Biomol. Struct. Dyn., 2021, 39(13), 4659-4670.
[http://dx.doi.org/10.1080/07391102.2020.1779128] [PMID: 32552361]
[109]
Khan, A.; Heng, W.; Wang, Y.; Qiu, J.; Wei, X.; Peng, S.; Saleem, S.; Khan, M.; Ali, S.S.; Wei, D.Q. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS‐COV‐2 main protease (3CLPRO). Phytother. Res., 2021, 35(6), 2841-2845.
[http://dx.doi.org/10.1002/ptr.6998] [PMID: 33448101]
[110]
Nguyen, T.T.H.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[111]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, D.S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn., 39(12), 4362-4374.
[PMID: 32568613]
[112]
Kar, P.; Kumar, V.; Vellingiri, B.; Sen, A.; Jaishee, N.; Anandraj, A.; Malhotra, H.; Bhattacharyya, S.; Mukhopadhyay, S.; Kinoshita, M.; Govindasamy, V. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: A computational investigation. J. Biomol. Struct. Dyn., 2022, 40(10), 4532-4542.
[PMID: 33305988]
[113]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[114]
Vivek-Ananth, R.P.; Krishnaswamy, S.; Samal, A. Potential phytochemical inhibitors of SARS-CoV-2 helicase Nsp13: A molecular docking and dynamic simulation study. Mol. Divers., 2022, 26(1), 429-442.
[http://dx.doi.org/10.1007/s11030-021-10251-1] [PMID: 34117992]
[115]
Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem., 1999, 47(6), 2274-2279.
[http://dx.doi.org/10.1021/jf9811065] [PMID: 10794622]
[116]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[117]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[118]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[119]
Yang, Z.F.; Bai, L.P.; Huang, W.; Li, X.Z.; Zhao, S.S.; Zhong, N.S.; Jiang, Z.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[120]
Chowdhury, P.; Sahuc, M.E.; Rouillé, Y.; Rivière, C.; Bonneau, N.; Vandeputte, A.; Brodin, P.; Goswami, M.; Bandyopadhyay, T.; Dubuisson, J.; Séron, K. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One, 2018, 13(11), e0198226.
[http://dx.doi.org/10.1371/journal.pone.0198226] [PMID: 30485282]
[121]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase. J. Med. Virol., 2020, 92(6), 693-697.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[122]
Singh, S.; Md Sk, F.; Sonawane, A.; Kar, P.; Sadhukhan, S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. J. Biomol. Struct. Dyn., 2020.
[PMID: 32720577]
[123]
Ahmed-Belkacem, A.; Guichou, J.F.; Brillet, R.; Ahnou, N.; Hernandez, E.; Pallier, C.; Pawlotsky, J.M. Inhibition of RNA binding to hepatitis C virus RNA-dependent RNA polymerase: A new mechanism for antiviral intervention. Nucleic Acids Res., 2014, 42(14), 9399-9409.
[http://dx.doi.org/10.1093/nar/gku632] [PMID: 25053847]
[124]
Koulgi, S.; Jani, V.; Uppuladinne, V.N, M.; Sonavane, U.; Joshi, R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus-2. PLoS One, 2021, 16(5), e0251801.
[http://dx.doi.org/10.1371/journal.pone.0251801] [PMID: 33984041]
[125]
Molavi, Z.; Razi, S.; Mirmotalebisohi, S.A.; Adibi, A.; Sameni, M.; Karami, F.; Niazi, V.; Niknam, Z.; Aliashrafi, M.; Taheri, M.; Ghafouri-Fard, S.; Jeibouei, S.; Mahdian, S.; Zali, H.; Ranjbar, M.M.; Yazdani, M. Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach. Biomed. Pharmacother., 2021, 138, 111544.
[http://dx.doi.org/10.1016/j.biopha.2021.111544] [PMID: 34311539]
[126]
Borquaye, L.S.; Gasu, E.N.; Ampomah, G.B.; Kyei, L.K.; Amarh, M.A.; Mensah, C.N.; Nartey, D.; Commodore, M.; Adomako, A.K.; Acheampong, P.; Mensah, J.O.; Mormor, D.B.; Aboagye, C.I. Alkaloids from Cryptolepis sanguinolenta as potential inhibitors of SARS-CoV-2 viral proteins: An in silico study. BioMed Res. Int., 2020, 2020, 5324560.
[http://dx.doi.org/10.1155/2020/5324560] [PMID: 33029513]
[127]
Bhardwaj, V.K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit, R.; Kumar, S. Identification of bioactive molecules from Tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn., 2020, 39(10), 3449-3458.
[PMID: 32397940]
[128]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[129]
Kushwaha, P.P.; Singh, A.K.; Bansal, T.; Yadav, A.; Prajapati, K.S.; Shuaib, M.; Kumar, S. Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Front. Cell. Infect. Microbiol., 2021, 11, 730288.
[http://dx.doi.org/10.3389/fcimb.2021.730288] [PMID: 34458164]
[130]
Srikanth, L.; Sarma, P.V.G.K. Andrographolide binds to spike glycoprotein and RNA-dependent RNA polymerase (NSP12) of SARS-CoV-2 by in silico approach: A probable molecule in the development of anti-coronaviral drug. J. Genet. Eng. Biotechnol., 2021, 19(1), 101.
[http://dx.doi.org/10.1186/s43141-021-00201-7] [PMID: 34255214]
[131]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2020, 1-7.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[132]
Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology, 2016, 496, 215-218.
[http://dx.doi.org/10.1016/j.virol.2016.06.012] [PMID: 27344138]
[133]
Moon, Y.J.; Morris, M.E. Pharmacokinetics and bioavailability of the bioflavonoid biochanin A: Effects of quercetin and EGCG on biochanin A disposition in rats. Mol. Pharm., 2007, 4(6), 865-872.
[http://dx.doi.org/10.1021/mp7000928] [PMID: 17970592]
[134]
Xiao, T.; Cui, M.; Zheng, C.; Wang, M.; Sun, R.; Gao, D.; Bao, J.; Ren, S.; Yang, B.; Lin, J.; Li, X.; Li, D.; Yang, C.; Zhou, H. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Front. Pharmacol., 2021, 12, 669642.
[http://dx.doi.org/10.3389/fphar.2021.669642] [PMID: 34220507]
[135]
da Silva, F.M.A.; da Silva, K.P.A.; de Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.F.; Pinheiro, M.L.B.; de Souza, A.Q.L.; de Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz, 2020, 115, e200207.
[http://dx.doi.org/10.1590/0074-02760200207] [PMID: 33027419]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy