Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Resveratrol in Cancer Therapy: From Stimulation of Genomic Stability to Adjuvant Cancer Therapy: A Comprehensive Review

Author(s): Peyman Amini, Reza Moazamiyanfar, Mohammad Sedigh Dakkali, Ali Khani, Emad Jafarzadeh, Kave Mouludi, Ehsan Khodamoradi, Ramin Johari, Shahram Taeb and Masoud Najafi*

Volume 23, Issue 8, 2023

Published on: 27 October, 2022

Page: [629 - 648] Pages: 20

DOI: 10.2174/1568026623666221014152759

Price: $65

Abstract

Cancer therapy through anticancer drugs and radiotherapy is associated with several side effects as well as tumor resistance to therapy. The genotoxic effects of chemotherapy and radiotherapy may lead to genomic instability and increased risk of second cancers. Furthermore, some responses in the tumor may induce the exhaustion of antitumor immunity and increase the resistance of cancer cells to therapy. Administration of low-toxicity adjuvants to protect normal tissues and improve therapy efficacy is an intriguing strategy. Several studies have focused on natural-derived agents for improving the antitumor efficiency of radiotherapy, chemotherapy, and novel anticancer drugs such as immunotherapy and targeted cancer therapy. Resveratrol is a naturally occurring substance with intriguing antioxidant, cardioprotective, anti-diabetes, and antitumor properties. Resveratrol has been demonstrated to modulate tumor resistance and mitigate normal tissue toxicity following exposure to various drugs and ionizing radiation. Compelling data suggest that resveratrol may be an appealing adjuvant in combination with various anticancer modalities. Although the natural form of resveratrol has some limitations, such as low absorption in the intestine and low bioavailability, several experiments have demonstrated that using certain carriers, such as nanoparticles, can increase the therapeutic efficacy of resveratrol in preclinical studies. This review highlights various effects of resveratrol that may be useful for cancer therapy. Consequently, we describe how resveratrol can protect normal tissue from genomic instability. In addition, the various mechanisms by which resveratrol exerts its antitumor effects are addressed. Moreover, the outcomes of combination therapy with resveratrol and other anticancer agents are reviewed.

Keywords: Resveratrol, Genomic instability, Cancer, Radiotherapy, Chemotherapy, Combination therapy, Drugs.

[1]
Kalimutho, M.; Nones, K.; Srihari, S.; Duijf, P.H.G.; Waddell, N.; Khanna, K.K. Patterns of genomic instability in breast cancer. Trends Pharmacol. Sci., 2019, 40(3), 198-211.
[http://dx.doi.org/10.1016/j.tips.2019.01.005] [PMID: 30736983]
[2]
Tubbs, A.; Nussenzweig, A. Endogenous DNA damage as a source of genomic instability in cancer. Cell, 2017, 168(4), 644-656.
[http://dx.doi.org/10.1016/j.cell.2017.01.002] [PMID: 28187286]
[3]
Yao, Y.; Dai, W. Genomic instability and cancer. J. Carcinog. Mutagen., 2014, 5, 5.
[PMID: 25541596]
[4]
Gorman, S.; Tosetto, M.; Lyng, F.; Howe, O.; Sheahan, K.; O’Donoghue, D.; Hyland, J.; Mulcahy, H.; O’Sullivan, J. Radiation and chemotherapy bystander effects induce early genomic instability events: Telomere shortening and bridge formation coupled with mitochondrial dysfunction. Mutat. Res., 2009, 669(1-2), 131-138.
[http://dx.doi.org/10.1016/j.mrfmmm.2009.06.003] [PMID: 19540247]
[5]
Kamiya, K.; Ozasa, K.; Akiba, S.; Niwa, O.; Kodama, K.; Takamura, N.; Zaharieva, E.K.; Kimura, Y.; Wakeford, R. Long-term effects of radiation exposure on health. Lancet, 2015, 386(9992), 469-478.
[http://dx.doi.org/10.1016/S0140-6736(15)61167-9] [PMID: 26251392]
[6]
Travis, L.B.; Rabkin, C.S.; Brown, L.M.; Allan, J.M.; Alter, B.P.; Ambrosone, C.B.; Begg, C.B.; Caporaso, N.; Chanock, S.; DeMichele, A.; Figg, W.D.; Gospodarowicz, M.K.; Hall, E.J.; Hisada, M.; Inskip, P.; Kleinerman, R.; Little, J.B.; Malkin, D.; Ng, A.K.; Offit, K.; Pui, C.H.; Robison, L.L.; Rothman, N.; Shields, P.G.; Strong, L.; Taniguchi, T.; Tucker, M.A.; Greene, M.H. Cancer survivorship--genetic susceptibility and second primary cancers: Research strategies and recommendations. J. Natl. Cancer Inst., 2006, 98(1), 15-25.
[http://dx.doi.org/10.1093/jnci/djj001] [PMID: 16391368]
[7]
Kawaguchi, T.; Matsumura, A.; Iuchi, K.; Ishikawa, S.; Maeda, H.; Fukai, S.; Komatsu, H.; Kawahara, M. Second primary cancers in patients with stage III non-small cell lung cancer successfully treated with chemo-radiotherapy. Jpn. J. Clin. Oncol., 2006, 36(1), 7-11.
[http://dx.doi.org/10.1093/jjco/hyi208] [PMID: 16368713]
[8]
Corkum, M.; Hayden, J.A.; Kephart, G.; Urquhart, R.; Schlievert, C.; Porter, G. Screening for new primary cancers in cancer survivors compared to non-cancer controls: A systematic review and meta-analysis. J. Cancer Surviv., 2013, 7(3), 455-463.
[http://dx.doi.org/10.1007/s11764-013-0278-6] [PMID: 23645522]
[9]
Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol., 2019, 25, 101084.
[http://dx.doi.org/10.1016/j.redox.2018.101084] [PMID: 30612957]
[10]
D’Andrea, G.M. Use of antioxidants during chemotherapy and radiotherapy should be avoided. CA Cancer J. Clin., 2005, 55(5), 319-321.
[http://dx.doi.org/10.3322/canjclin.55.5.319] [PMID: 16166076]
[11]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145.
[http://dx.doi.org/10.2174/1568009619666191019143539] [PMID: 31738153]
[12]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[13]
Jiang, Z.; Chen, K.; Cheng, L.; Yan, B.; Qian, W.; Cao, J.; Li, J.; Wu, E.; Ma, Q.; Yang, W. Resveratrol and cancer treatment. Updates. Ann. N. Y. Acad. Sci., 2017, 1403(1), 59-69.
[http://dx.doi.org/10.1111/nyas.13466] [PMID: 28945938]
[14]
Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and endothelial function: A literature review. Pharmacol. Res., 2021, 170, 105725.
[http://dx.doi.org/10.1016/j.phrs.2021.105725] [PMID: 34119624]
[15]
Posadino, A.M.; Giordo, R.; Cossu, A.; Nasrallah, G.K.; Shaito, A.; Abou-Saleh, H.; Eid, A.H.; Pintus, G. Flavin oxidase-induced ros generation modulates PKC biphasic effect of resveratrol on endothelial cell survival. Biomolecules, 2019, 9(6), 209.
[http://dx.doi.org/10.3390/biom9060209] [PMID: 31151226]
[16]
Giordo, R.; Nasrallah, G.K.; Posadino, A.M.; Galimi, F.; Capobianco, G.; Eid, A.H.; Pintus, G. Resveratrol-elicited PKC inhibition counteracts NOX-mediated endothelial to mesenchymal transition in human retinal endothelial cells exposed to high glucose. Antioxidants, 2021, 10(2), 224.
[http://dx.doi.org/10.3390/antiox10020224] [PMID: 33540918]
[17]
Raj, P.; Thandapilly, S.J.; Wigle, J.; Zieroth, S.; Netticadan, T. A Comprehensive analysis of the efficacy of resveratrol in atherosclerotic cardiovascular disease, myocardial infarction and heart failure. Molecules, 2021, 26(21), 6600.
[http://dx.doi.org/10.3390/molecules26216600] [PMID: 34771008]
[18]
Bhagani, H.; Nasser, S.A.; Dakroub, A.; El-Yazbi, A.F.; Eid, A.A.; Kobeissy, F.; Pintus, G.; Eid, A.H. The mitochondria: A target of polyphenols in the treatment of diabetic cardiomyopathy. Int. J. Mol. Sci., 2020, 21(14), 4962.
[http://dx.doi.org/10.3390/ijms21144962] [PMID: 32674299]
[19]
Ros, P.; Argente, J.; Chowen, J.A. Effects of maternal resveratrol intake on the metabolic health of the offspring. Int. J. Mol. Sci., 2021, 22(9), 4792.
[http://dx.doi.org/10.3390/ijms22094792] [PMID: 33946456]
[20]
Zhang, T.; He, Q.; Liu, Y.; Chen, Z.; Hu, H. Efficacy and safety of resveratrol supplements on blood lipid and blood glucose control in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med., 2021, 2021, 5644171.
[http://dx.doi.org/10.1155/2021/5644171] [PMID: 34484395]
[21]
Momtazi-Borojeni, A.A.; Katsiki, N.; Pirro, M.; Banach, M.; Rasadi, K.A.; Sahebkar, A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J. Cell. Physiol., 2019, 234(8), 12581-12594.
[http://dx.doi.org/10.1002/jcp.28134] [PMID: 30637725]
[22]
Mirhadi, E.; Roufogalis, B.D.; Banach, M.; Barati, M.; Sahebkar, A. Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol. Res., 2021, 163, 105287.
[http://dx.doi.org/10.1016/j.phrs.2020.105287] [PMID: 33157235]
[23]
Giordo, R.; Wehbe, Z.; Posadino, A.M.; Erre, G.L.; Eid, A.H.; Mangoni, A.A.; Pintus, G. Disease-associated regulation of non-coding RNAs by resveratrol: Molecular insights and therapeutic applications. Front. Cell Dev. Biol., 2022, 10, 894305.
[http://dx.doi.org/10.3389/fcell.2022.894305] [PMID: 35912113]
[24]
Ramdani, L.H.; Bachari, K. Potential therapeutic effects of Resveratrol against SARS-CoV-2. Acta Virol., 2020, 64(3), 276-280.
[http://dx.doi.org/10.4149/av_2020_309] [PMID: 32985211]
[25]
van Brummelen, R.; van Brummelen, A.C. The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 – A formulator’s perspective. Biomed. Pharmacother., 2022, 148, 112767.
[http://dx.doi.org/10.1016/j.biopha.2022.112767] [PMID: 35240527]
[26]
Brisdelli, F.; D’Andrea, G.; Bozzi, A. Resveratrol: A natural polyphenol with multiple chemopreventive properties. Curr. Drug Metab., 2009, 10(6), 530-546.
[http://dx.doi.org/10.2174/138920009789375423] [PMID: 19702538]
[27]
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol., 2017, 174(12), 1633-1646.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]
[28]
Arichi, H.; Kimura, Y.; Okuda, H.; Baba, K.; Kozawa, M.; Arichi, S. Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. Chem. Pharm. Bull. (Tokyo), 1982, 30(5), 1766-1770.
[http://dx.doi.org/10.1248/cpb.30.1766] [PMID: 7116511]
[29]
Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; Moon, R.C.; Pezzuto, J.M. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 1997, 275(5297), 218-220.
[http://dx.doi.org/10.1126/science.275.5297.218] [PMID: 8985016]
[30]
Halls, C.; Yu, O. Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol., 2008, 26(2), 77-81.
[http://dx.doi.org/10.1016/j.tibtech.2007.11.002] [PMID: 18191264]
[31]
De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers, 2019, 5(1), 1-20.
[PMID: 30617281]
[32]
Mortezaee, K.; Majidpoor, J. The impact of hypoxia on immune state in cancer. Life Sci., 2021, 286, 120057.
[http://dx.doi.org/10.1016/j.lfs.2021.120057] [PMID: 34662552]
[33]
Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[34]
Andres-Lacueva, C.; Macarulla, M.T.; Rotches-Ribalta, M.; Boto-Ordóñez, M.; Urpi-Sarda, M.; Rodríguez, V.M.; Portillo, M.P. Distribution of resveratrol metabolites in liver, adipose tissue, and skeletal muscle in rats fed different doses of this polyphenol. J. Agric. Food Chem., 2012, 60(19), 4833-4840.
[http://dx.doi.org/10.1021/jf3001108] [PMID: 22533982]
[35]
Murakami, I.; Chaleckis, R.; Pluskal, T.; Ito, K.; Hori, K.; Ebe, M.; Yanagida, M.; Kondoh, H. Metabolism of skin-absorbed resveratrol into its glucuronized form in mouse skin. PLoS One, 2014, 9(12), e115359.
[http://dx.doi.org/10.1371/journal.pone.0115359] [PMID: 25506824]
[36]
Wang, S.; Wang, Z.; Yang, S.; Yin, T.; Zhang, Y.; Qin, Y.; Weinreb, R.N.; Sun, X. Tissue distribution of trans -resveratrol and its metabolites after oral administration in human eyes. J. Ophthalmol., 2017, 2017, 4052094.
[http://dx.doi.org/10.1155/2017/4052094] [PMID: 28409021]
[37]
Singh, C.K.; Ndiaye, M.A.; Ahmad, N. Resveratrol and cancer: Challenges for clinical translation. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1178-1185.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.004]
[38]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019, 51, 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[39]
Peng, R.M.; Lin, G.R.; Ting, Y.; Hu, J.Y. Oral delivery system enhanced the bioavailability of stilbenes: Resveratrol and pterostilbene. Biofactors, 2018, 44(1), 5-15.
[http://dx.doi.org/10.1002/biof.1405] [PMID: 29322567]
[40]
Ren, B.; Kwah, M.X.Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.L.; Wang, L.; Ong, P.S.; Goh, B.C. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett., 2021, 515, 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[41]
Kong, S.M.; Costa, D.F.; Jagielska, A.; Van Vliet, K.J.; Hammond, P.T. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc. Natl. Acad. Sci. USA, 2021, 118(42), e2104826118.
[http://dx.doi.org/10.1073/pnas.2104826118] [PMID: 34649991]
[42]
Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D.T.; Moses, M.A. Nanoparticle elasticity directs tumor uptake. Nat. Commun., 2018, 9(1), 130.
[http://dx.doi.org/10.1038/s41467-017-02588-9] [PMID: 29317633]
[43]
de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans., 2007, 35(5), 1156-1160.
[http://dx.doi.org/10.1042/BST0351156] [PMID: 17956300]
[44]
Posadino, A.M.; Cossu, A.; Giordo, R.; Zinellu, A.; Sotgia, S.; Vardeu, A.; Hoa, P.T.; Nguyen, L.H.V.; Carru, C.; Pintus, G. Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food Chem. Toxicol., 2015, 78, 10-16.
[http://dx.doi.org/10.1016/j.fct.2015.01.017] [PMID: 25656643]
[45]
Ranawat, P.; Khanduja, K.L.; Pathak, C.M. Resveratrol - an ingredient of red wine abrogates the reproductive capacity in male mice. Andrologia, 2014, 46(6), 650-658.
[http://dx.doi.org/10.1111/and.12132] [PMID: 23848841]
[46]
Özyilmaz, Yay.; Şener, G.; Ercan, F. Resveratrol treatment reduces apoptosis and morphological alterations in cisplatin induced testis damage. J. Res. Pharm., 2019, 23(4), 621-631.
[47]
Reddy, K.P.; Madhu, P.; Reddy, P.S. Protective effects of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats. Food Chem. Toxicol., 2016, 91, 65-72.
[http://dx.doi.org/10.1016/j.fct.2016.02.017] [PMID: 26925769]
[48]
Singh, I.; Goyal, Y.; Ranawat, P. Potential chemoprotective role of resveratrol against cisplatin induced testicular damage in mice. Chem. Biol. Interact., 2017, 273, 200-211.
[http://dx.doi.org/10.1016/j.cbi.2017.05.024] [PMID: 28606469]
[49]
Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; Pintus, G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci., 2020, 21(6), 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[50]
Froelich, J.J.; Schneller, F.R.; Zahn, R.K. The influence of radiation and chemotherapy-related DNA strand breaks on carcinogenesis: An evaluation. Clin. Chem. Lab. Med., 1999, 37(4), 403-408.
[http://dx.doi.org/10.1515/CCLM.1999.066]
[51]
Nambiar, D.; Rajamani, P.; Singh, R.P. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat. Res. Rev. Mutat. Res., 2011, 728(3), 139-157.
[http://dx.doi.org/10.1016/j.mrrev.2011.07.005] [PMID: 22030216]
[52]
Motoyama, N.; Naka, K. DNA damage tumor suppressor genes and genomic instability. Curr. Opin. Genet. Dev., 2004, 14(1), 11-16.
[http://dx.doi.org/10.1016/j.gde.2003.12.003] [PMID: 15108799]
[53]
Schonn, I.; Hennesen, J.; Dartsch, D.C. Cellular responses to etoposide: Cell death despite cell cycle arrest and repair of DNA damage. Apoptosis, 2010, 15(2), 162-172.
[http://dx.doi.org/10.1007/s10495-009-0440-9] [PMID: 20041303]
[54]
Tsabar, M.; Mock, C.S.; Venkatachalam, V.; Reyes, J.; Karhohs, K.W.; Oliver, T.G.; Regev, A.; Jambhekar, A.; Lahav, G. A switch in p53 dynamics marks cells that escape from DSB-induced cell cycle arrest. Cell Rep., 2020, 32(5), 107995.
[http://dx.doi.org/10.1016/j.celrep.2020.107995] [PMID: 32755587]
[55]
Sener, T.E.; Atasoy, B.M.; Cevik, O.; Cilingir Kaya, O.T.; Cetinel, S.; Degerli, A.D.; Sener, G. Effects of resveratrol against scattered radiation-induced testicular damage in rats. Turk Biyokim. Derg., 2021, 46(4), 425-433.
[http://dx.doi.org/10.1515/tjb-2020-0320]
[56]
Dobrzyńska, M.M.; Gajowik, A. Protection and mitigation by resveratrol of DNA damage induced in irradiated human lymphocytes in vitro. Radiat. Res., 2022, 197(2), 149-156.
[PMID: 34724059]
[57]
Mukherjee, S.; Chakraborty, A. Radiation-induced bystander phenomenon: Insight and implications in radiotherapy. Int. J. Radiat. Biol., 2019, 95(3), 243-263.
[http://dx.doi.org/10.1080/09553002.2019.1547440] [PMID: 30496010]
[58]
Kocyigit, A.; Guler, E.M. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects; Springer: New York, 2021, pp. 1-14.
[59]
Yang, R.; Tan, C.; Najafi, M. Cardiac inflammation and fibrosis following chemo/radiation therapy: Mechanisms and therapeutic agents. Inflammopharmacology, 2021, 30(1), 73-89.
[PMID: 34813027]
[60]
Mukherjee, S.; Dutta, A.; Chakraborty, A. External modulators and redox homeostasis: Scenario in radiation-induced bystander cells. Mutat. Res. Rev. Mutat. Res., 2021, 787, 108368.
[http://dx.doi.org/10.1016/j.mrrev.2021.108368] [PMID: 34083032]
[61]
Burdak-Rothkamm, S.; Rothkamm, K. Radiation-induced bystander and systemic effects serve as a unifying model system for genotoxic stress responses. Mutat. Res. Rev. Mutat. Res., 2018, 778, 13-22.
[http://dx.doi.org/10.1016/j.mrrev.2018.08.001] [PMID: 30454679]
[62]
Zhang, H.; Wang, Y.; Meng, A.; Yan, H.; Wang, X.; Niu, J.; Li, J.; Wang, H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J. Radiat. Res. (Tokyo), 2013, 54(4), 630-636.
[http://dx.doi.org/10.1093/jrr/rrs142] [PMID: 23370919]
[63]
Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med., 2010, 48(2), 348-356.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.005] [PMID: 19925862]
[64]
Pazhanisamy, S.K.; Li, H.; Wang, Y.; Batinic-Haberle, I.; Zhou, D. NADPH oxidase inhibition attenuates total body irradiation-induced haematopoietic genomic instability. Mutagenesis, 2011, 26(3), 431-435.
[http://dx.doi.org/10.1093/mutage/ger001] [PMID: 21415439]
[65]
Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; Chang, J.; Hou, Q.; Ju, Z.; Zhou, D.; Meng, A. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2013, 54, 40-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.530] [PMID: 23124026]
[66]
Fu, X.; Tang, J.; Wen, P.; Huang, Z.; Najafi, M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch. Biochem. Biophys., 2021, 708, 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[67]
Ivanova, D.; Zhelev, Z.; Semkova, S.; Aoki, I.; Bakalova, R. Resveratrol modulates the redox-status and Cytotoxicity of anticancer drugs by sensitizing leukemic lymphocytes and protecting normal lymphocytes. Anticancer Res., 2019, 39(7), 3745-3755.
[http://dx.doi.org/10.21873/anticanres.13523] [PMID: 31262901]
[68]
Ibrahim, M.A.; Albahlol, I.A.; Wani, F.A.; Abd-Eltawab Tammam, A.; Kelleni, M.T.; Sayeed, M.U.; Abd El-Fadeal, N.M.; Mohamed, A.A. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis. Chem. Biol. Interact., 2021, 338, 109402.
[http://dx.doi.org/10.1016/j.cbi.2021.109402] [PMID: 33587916]
[69]
Silva, P.; Sureda, A.; Tur, J.A.; Andreoletti, P.; Cherkaoui-Malki, M.; Latruffe, N. How efficient is resveratrol as an antioxidant of the Mediterranean diet, towards alterations during the aging process? Free Radical Res., 2019, 53(Supl), 1101-1112.
[http://dx.doi.org/10.1080/10715762.2019.1614176]
[70]
Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49.
[http://dx.doi.org/10.1002/biof.1399] [PMID: 29193412]
[71]
Sener, T.E.; Tavukcu, H.H.; Atasoy, B.M.; Cevik, O.; Kaya, O.T.; Cetinel, S.; Dagli Degerli, A.; Tinay, I.; Simsek, F.; Akbal, C.; Butticè, S.; Sener, G. Resveratrol treatment may preserve the erectile function after radiotherapy by restoring antioxidant defence mechanisms, SIRT1 and NOS protein expressions. Int. J. Impot. Res., 2018, 30(4), 179-188.
[http://dx.doi.org/10.1038/s41443-018-0042-6] [PMID: 29973698]
[72]
Ibrahim, A.; Al-Hizab, F.A.; Abushouk, A.I.; Abdel-Daim, M.M. Nephroprotective effects of benzyl isothiocyanate and resveratrol against cisplatin-induced oxidative stress and inflammation. Front. Pharmacol., 2018, 9, 1268.
[http://dx.doi.org/10.3389/fphar.2018.01268] [PMID: 30524274]
[73]
Piska, K.; Koczurkiewicz, P.; Bucki, A.; Wójcik-Pszczoła, K.; Kołaczkowski, M.; Pękala, E. Metabolic carbonyl reduction of anthracyclines — role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Invest. New Drugs, 2017, 35(3), 375-385.
[http://dx.doi.org/10.1007/s10637-017-0443-2] [PMID: 28283780]
[74]
Sheu, M.T.; Jhan, H.J.; Hsieh, C.M.; Wang, C.J.; Ho, H.O. Efficacy of antioxidants as a Complementary and Alternative Medicine (CAM) in combination with the chemotherapeutic agent doxorubicin. Integr. Cancer Ther., 2015, 14(2), 184-195.
[http://dx.doi.org/10.1177/1534735414564425] [PMID: 25542609]
[75]
Wu, M.; Ma, L.; Xue, L.; Ye, W.; Lu, Z.; Li, X.; Jin, Y.; Qin, X.; Chen, D.; Tang, W.; Chen, Y.; Hong, Z.; Zhang, J.; Luo, A.; Wang, S. Resveratrol alleviates chemotherapy-induced oogonial stem cell apoptosis and ovarian aging in mice. Aging (Albany NY), 2019, 11(3), 1030-1044.
[http://dx.doi.org/10.18632/aging.101808] [PMID: 30779707]
[76]
van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J., 2021, 288(21), 6095-6111.
[http://dx.doi.org/10.1111/febs.15583] [PMID: 33022843]
[77]
Tatlidede, E.; Şehirli, Ö.; Velioğlu-Öğünç, A.; Çetinel, Ş.; Yeğen, B.Ç.; Yarat, A.; Süleymanoğlu, S.; Şener, G. Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic. Res., 2009, 43(3), 195-205.
[http://dx.doi.org/10.1080/10715760802673008] [PMID: 19169920]
[78]
Gu, J.; Hu, W.; Song, Z.; Chen, Y.; Zhang, D.; Wang, C. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int. Immunopharmacol., 2016, 32, 1-7.
[http://dx.doi.org/10.1016/j.intimp.2016.01.002] [PMID: 26774212]
[79]
Farkhondeh, T.; Folgado, S.L.; Pourbagher-Shahri, A.M.; Ashrafizadeh, M.; Samarghandian, S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother., 2020, 127, 110234.
[http://dx.doi.org/10.1016/j.biopha.2020.110234] [PMID: 32559855]
[80]
Salehi, S.; Bayatiani, M.R.; Yaghmaei, P.; Rajabi, S.; Goodarzi, M.T.; Jalali Mashayekhi, F. Protective effects of resveratrol against X-ray irradiation by regulating antioxidant defense system. Radioprotection, 2018, 53(4), 293-298.
[http://dx.doi.org/10.1051/radiopro/2018034]
[81]
Zhang, H.; Yan, H.; Zhou, X.; Wang, H.; Yang, Y.; Zhang, J.; Wang, H. The protective effects of resveratrol against radiation-induced intestinal injury. BMC Complement. Altern. Med., 2017, 17(1), 410-410.
[http://dx.doi.org/10.1186/s12906-017-1915-9] [PMID: 28814292]
[82]
Wang, H.; Yang, Y.; Zhang, H.; Yan, H.; Wu, X.; Zhang, C. Administration of the resveratrol analogues isorhapontigenin and heyneanol-A protects mice hematopoietic cells against irradiation injuries. BioMed Res. Int., 2014, 2014, 282657.
[http://dx.doi.org/10.1155/2014/282657] [PMID: 25050334]
[83]
Jang, M.; Pezzuto, J.M. Effects of resveratrol on 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in mouse skin. Cancer Lett., 1998, 134(1), 81-89.
[http://dx.doi.org/10.1016/S0304-3835(98)00250-X] [PMID: 10381133]
[84]
Athar, M.; Back, J.; Tang, X.; Kim, K.; Kopelovich, L.; Bickers, D.; Kim, A. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol., 2007, 224(3), 274-283.
[http://dx.doi.org/10.1016/j.taap.2006.12.025] [PMID: 17306316]
[85]
Savouret, J.F.; Quesne, M. Resveratrol and cancer: A review. Biomed. Pharmacother., 2002, 56(2), 84-87.
[http://dx.doi.org/10.1016/S0753-3322(01)00158-5] [PMID: 12000139]
[86]
Opipari, A.W., Jr; Tan, L.; Boitano, A.E.; Sorenson, D.R.; Aurora, A.; Liu, J.R. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res., 2004, 64(2), 696-703.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2404] [PMID: 14744787]
[87]
Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol., 2020, 30(16), R921-R925.
[http://dx.doi.org/10.1016/j.cub.2020.06.081] [PMID: 32810447]
[88]
Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 166.
[http://dx.doi.org/10.1038/s41392-020-00280-x] [PMID: 32843638]
[89]
Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res., 2019, 79(18), 4557-4566.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3962] [PMID: 31350295]
[90]
Ribeiro Franco, P.I.; Rodrigues, A.P.; de Menezes, L.B.; Pacheco Miguel, M. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract., 2020, 216(1), 152729.
[http://dx.doi.org/10.1016/j.prp.2019.152729] [PMID: 31735322]
[91]
Roma-Rodrigues, C.; Mendes, R.; Baptista, P.; Fernandes, A. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci., 2019, 20(4), 840.
[http://dx.doi.org/10.3390/ijms20040840] [PMID: 30781344]
[92]
Jeong, S.K.; Yang, K.; Park, Y.S.; Choi, Y.J.; Oh, S.J.; Lee, C.W.; Lee, K.Y.; Jeong, M.H.; Jo, W.S. Interferon gamma induced by resveratrol analog, HS-1793, reverses the properties of tumor associated macrophages. Int. Immunopharmacol., 2014, 22(2), 303-310.
[http://dx.doi.org/10.1016/j.intimp.2014.07.004] [PMID: 25042796]
[93]
Pradhan, R.; Chatterjee, S.; Hembram, K.C.; Sethy, C.; Mandal, M.; Kundu, C.N. Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J. Nutr. Biochem., 2021, 92, 108624.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108624] [PMID: 33705943]
[94]
Zhao, Y.; Shao, Q.; Zhu, H.; Xu, H.; Long, W.; Yu, B.; Zhou, L.; Xu, H.; Wu, Y.; Su, Z. Resveratrol ameliorates Lewis lung carcinoma-bearing mice development, decreases granulocytic myeloid-derived suppressor cell accumulation and impairs its suppressive ability. Cancer Sci., 2018, 109(9), 2677-2686.
[http://dx.doi.org/10.1111/cas.13720] [PMID: 29959821]
[95]
Wang, Y.; Ma, J.; Qiu, T.; Tang, M.; Zhang, X.; Dong, W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci., 2021, 163, 105864.
[http://dx.doi.org/10.1016/j.ejps.2021.105864] [PMID: 33965502]
[96]
Yang, Y.; Paik, J.H.; Cho, D.; Cho, J.A.; Kim, C.W. Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory T cells. Int. Immunopharmacol., 2008, 8(4), 542-547.
[http://dx.doi.org/10.1016/j.intimp.2007.12.006] [PMID: 18328445]
[97]
Choi, Y.J.; Yang, K.M.; Kim, S.D.; Yoo, Y.H.; Lee, S.W.; Seo, S.Y.; Suh, H.; Yee, S.T.; Jeong, M.H.; Jo, W.S. Resveratrol analogue HS-1793 induces the modulation of tumor-derived T cells. Exp. Ther. Med., 2012, 3(4), 592-598.
[http://dx.doi.org/10.3892/etm.2012.472] [PMID: 22969934]
[98]
Davoodvandi, A.; Darvish, M.; Borran, S.; Nejati, M.; Mazaheri, S.; Reza Tamtaji, O.; Hamblin, M.R.; Masoudian, N.; Mirzaei, H. The therapeutic potential of resveratrol in a mouse model of melanoma lung metastasis. Int. Immunopharmacol., 2020, 88, 106905.
[http://dx.doi.org/10.1016/j.intimp.2020.106905] [PMID: 32905970]
[99]
Zhang, Q.; Huang, H.; Zheng, F.; Liu, H.; Qiu, F.; Chen, Y.; Liang, C.L.; Dai, Z. Resveratrol exerts antitumor effects by downregulating CD8 + CD122 + Tregs in murine hepatocellular carcinoma. OncoImmunology, 2020, 9(1), 1829346-1829346.
[http://dx.doi.org/10.1080/2162402X.2020.1829346] [PMID: 33150044]
[100]
Golkar, L.; Ding, X.Z.; Ujiki, M.B.; Salabat, M.R.; Kelly, D.L.; Scholtens, D.; Fought, A.J.; Bentrem, D.J.; Talamonti, M.S.; Bell, R.H.; Adrian, T.E. Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1. J. Surg. Res., 2007, 138(2), 163-169.
[http://dx.doi.org/10.1016/j.jss.2006.05.037] [PMID: 17257620]
[101]
Han, X.; Zhao, N.; Zhu, W.; Wang, J.; Liu, B.; Teng, Y. Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. Cell. Immunol., 2021, 368, 104423.
[http://dx.doi.org/10.1016/j.cellimm.2021.104423] [PMID: 34399171]
[102]
Mukherjee, S.; Hussaini, R.; White, R.; Atwi, D.; Fried, A.; Sampat, S.; Piao, L.; Pan, Q.; Banerjee, P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol. Immunother., 2018, 67(5), 761-774.
[http://dx.doi.org/10.1007/s00262-018-2130-3] [PMID: 29453519]
[103]
Singh, V.; Singh, R.; Kujur, P.K.; Singh, R.P. Combination of resveratrol and quercetin causes cell growth inhibition, DNA damage, cell cycle arrest, and apoptosis in oral cancer cells. Assay Drug Dev. Technol., 2020, 18(5), 226-238.
[http://dx.doi.org/10.1089/adt.2020.972] [PMID: 32423320]
[104]
Wang, L.Y.; Zhao, S.; Lv, G.J.; Ma, X.J.; Zhang, J.B. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. World J. Clin. Cases, 2020, 8(12), 2425-2437.
[http://dx.doi.org/10.12998/wjcc.v8.i12.2425] [PMID: 32607320]
[105]
Ashrafizadeh, M.; Javanmardi, S.; Moradi-Ozarlou, M.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S.; Garg, M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: An updated review on resveratrol. Biosci. Rep., 2020, 40(4), BSR20200257.
[http://dx.doi.org/10.1042/BSR20200257] [PMID: 32163546]
[106]
Zhang, Y.; Guo, L.; Law, B.; Liang, X.; Ma, N.; Xu, G.; Wang, X.; Yuan, X.; Tang, H.; Chen, Q.; Wong, V.; Wang, X. Resveratrol decreases cell apoptosis through inhibiting DNA damage in bronchial epithelial cells. Int. J. Mol. Med., 2020, 45(6), 1673-1684.
[http://dx.doi.org/10.3892/ijmm.2020.4539] [PMID: 32186748]
[107]
Ji, S.; Zheng, Z.; Liu, S.; Ren, G.; Gao, J.; Zhang, Y.; Li, G. Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. Exp. Cell Res., 2018, 370(2), 292-302.
[http://dx.doi.org/10.1016/j.yexcr.2018.06.031] [PMID: 29964052]
[108]
Tamaki, N.; Cristina Orihuela-Campos, R.; Inagaki, Y.; Fukui, M.; Nagata, T.; Ito, H.O. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic. Biol. Med., 2014, 75, 222-229.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.034] [PMID: 25091897]
[109]
Ashrafizadeh, M.; Taeb, S.; Haghi-Aminjan, H.; Afrashi, S.; Moloudi, K.; Musa, A.E.; Najafi, M.; Farhood, B. Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review. Anticancer. Agents Med. Chem., 2021, 21(17), 2327-2336.
[110]
Leon-Galicia, I.; Diaz-Chavez, J.; Garcia-Villa, E.; Uribe-Figueroa, L.; Hidalgo-Miranda, A.; Herrera, L.A.; Alvarez-Rios, E.; Garcia-Mena, J.; Gariglio, P. Resveratrol induces downregulation of DNA repair genes in MCF-7 human breast cancer cells. Eur. J. Cancer Prev., 2013, 22(1), 11-20.
[http://dx.doi.org/10.1097/CEJ.0b013e328353edcb] [PMID: 22644231]
[111]
Leon-Galicia, I.; Diaz-Chavez, J.; Albino-Sanchez, M.E.; Garcia-Villa, E.; Bermudez-Cruz, R.; Garcia-Mena, J.; Herrera, L.A.; García-Carrancá, A.; Gariglio, P. Resveratrol decreases Rad51 expression and sensitizes cisplatin resistant MCF 7 breast cancer cells. Oncol. Rep., 2018, 39(6), 3025-3033.
[http://dx.doi.org/10.3892/or.2018.6336] [PMID: 29620223]
[112]
Ruíz, G.; Valencia-González, H.A.; León-Galicia, I.; García-Villa, E.; García-Carrancá, A.; Gariglio, P. Inhibition of RAD51 by siRNA and Resveratrol Sensitizes Cancer Stem Cells Derived from HeLa Cell Cultures to Apoptosis. Stem Cells Int., 2018, 2018, 2493869.
[http://dx.doi.org/10.1155/2018/2493869] [PMID: 29681946]
[113]
Ko, J.C.; Syu, J.J.; Chen, J.C.; Wang, T.J.; Chang, P.Y.; Chen, C.Y.; Jian, Y.T.; Jian, Y.J.; Lin, Y.W. Resveratrol enhances etoposide-induced cytotoxicity through down-regulating ERK1/2 and AKT-Mediated X-ray Repair Cross-Complement Group 1 (XRCC1) protein expression in human non-small-cell lung cancer cells. Basic Clin. Pharmacol. Toxicol., 2015, 117(6), 383-391.
[http://dx.doi.org/10.1111/bcpt.12425] [PMID: 26046675]
[114]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J. Cell. Physiol., 2019, 234(10), 17187-17204.
[http://dx.doi.org/10.1002/jcp.28504] [PMID: 30912132]
[115]
Huang, H.; Lin, H.; Zhang, X.; Li, J. Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncol. Rep., 2012, 27(6), 2050-2056.
[PMID: 22426504]
[116]
Yu, C.; Yang, B.; Najafi, M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin. Pharmacol. Toxicol., 2021, 129(6), 397-415.
[http://dx.doi.org/10.1111/bcpt.13648] [PMID: 34473898]
[117]
Siska, P.J.; Rathmell, J.C. T cell metabolic fitness in antitumor immunity. Trends Immunol., 2015, 36(4), 257-264.
[http://dx.doi.org/10.1016/j.it.2015.02.007] [PMID: 25773310]
[118]
Ostrand-Rosenberg, S. Immune surveillance: A balance between protumor and antitumor immunity. Curr. Opin. Genet. Dev., 2008, 18(1), 11-18.
[http://dx.doi.org/10.1016/j.gde.2007.12.007] [PMID: 18308558]
[119]
Yang, X.; Li, X.; Ren, J. From French paradox to cancer treatment: Anti-Cancer activities and mechanisms of resveratrol. Anticancer. Agents Med. Chem., 2014, 14(6), 806-825.
[120]
Zheng, T.; Meng, X.; Wang, J.; Chen, X.; Yin, D.; Liang, Y.; Song, X.; Pan, S.; Jiang, H.; Liu, L. PTEN- and p53-mediated apoptosis and cell cycle arrest by FTY720 in gastric cancer cells and nude mice. J. Cell. Biochem., 2010, 111(1), 218-228.
[http://dx.doi.org/10.1002/jcb.22691] [PMID: 20506484]
[121]
Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov., 2008, 7(12), 979-987.
[http://dx.doi.org/10.1038/nrd2656] [PMID: 19043449]
[122]
Carnero, A.; Blanco-Aparicio, C.; Renner, O.; Link, W.; Leal, J. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets, 2008, 8(3), 187-198.
[http://dx.doi.org/10.2174/156800908784293659] [PMID: 18473732]
[123]
Liu, Z.; Wu, X.; Lv, J.; Sun, H.; Zhou, F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol. Lett., 2019, 17(4), 3783-3789.
[http://dx.doi.org/10.3892/ol.2019.10034] [PMID: 30881498]
[124]
Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195.
[http://dx.doi.org/10.1074/jbc.M501250200] [PMID: 15749705]
[125]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[126]
Kumar, A.; Devineni, S.R.; Dubey, S.K.; Kumar, P.; Srivastava, V.; Ambulgekar, G.; Jain, M.; Gupta, D.K.; Singh, G.; Kumar, R.; Hiriyanna, S.G.; Kumar, P. Identification, synthesis and structural characterization of process related and degradation impurities of acrivastine and validation of HPLC method. J. Pharm. Biomed. Anal., 2017, 133, 15-26.
[http://dx.doi.org/10.1016/j.jpba.2016.10.015] [PMID: 27969063]
[127]
Wyld, L.; Bellantuono, I.; Tchkonia, T.; Morgan, J.; Turner, O.; Foss, F.; George, J.; Danson, S.; Kirkland, J.L. Senescence and cancer: A review of clinical implications of senescence and senotherapies. Cancers (Basel), 2020, 12(8), 2134.
[http://dx.doi.org/10.3390/cancers12082134] [PMID: 32752135]
[128]
Shen, W.H.; Liu, L.; Zeng, S. Senescence and cancer. Cancer Transl. Med., 2018, 4(3), 70-74.
[http://dx.doi.org/10.4103/ctm.ctm_22_18] [PMID: 30766922]
[129]
Li, B.; Hou, D.; Guo, H.; Zhou, H.; Zhang, S.; Xu, X.; Liu, Q.; Zhang, X.; Zou, Y.; Gong, Y.; Shao, C. Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells. Sci. Rep., 2017, 7(1), 208.
[http://dx.doi.org/10.1038/s41598-017-00315-4] [PMID: 28303009]
[130]
Young, L.F.; Martin, K.R. Time-dependent resveratrol-mediated mRNA and protein expression associated with cell cycle in WR-21 cells containing mutated human c-Ha-Ras. Mol. Nutr. Food Res., 2006, 50(1), 70-77.
[http://dx.doi.org/10.1002/mnfr.200500149] [PMID: 16369916]
[131]
Zhang, M.; Harashima, N.; Moritani, T.; Huang, W.; Harada, M. The roles of ROS and caspases in TRAIL-induced apoptosis and necroptosis in human pancreatic cancer cells. PLoS One, 2015, 10(5), e0127386.
[http://dx.doi.org/10.1371/journal.pone.0127386] [PMID: 26000607]
[132]
Dunai, Z.; Bauer, P.I.; Mihalik, R. Necroptosis: Biochemical, physiological and pathological aspects. Pathol. Oncol. Res., 2011, 17(4), 791-800.
[http://dx.doi.org/10.1007/s12253-011-9433-4] [PMID: 21773880]
[133]
Folkman, J. Angiogenesis and apoptosis. In: Seminars in Cancer Biology; Elsevier: Amsterdam, 2003; Vol. 13, pp. 159-167.
[134]
Zhang, P.; Li, H.; Wu, M.L.; Chen, X.Y.; Kong, Q.Y.; Wang, X.W.; Sun, Y.; Wen, S.; Liu, J. c-Myc downregulation: A critical molecular event in resveratrol-induced cell cycle arrest and apoptosis of human medulloblastoma cells. J. Neurooncol., 2006, 80(2), 123-131.
[http://dx.doi.org/10.1007/s11060-006-9172-7] [PMID: 16724266]
[135]
Pan, J.; Shen, J.; Si, W.; Du, C.; Chen, D.; Xu, L.; Yao, M.; Fu, P.; Fan, W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget, 2017, 8(39), 65743-65758.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[136]
Dai, H.; Deng, H.B.; Wang, Y.H.; Guo, J.J. Resveratrol inhibits the growth of gastric cancer via the Wnt/β-catenin pathway. Oncol. Lett., 2018, 16(2), 1579-1583.
[http://dx.doi.org/10.3892/ol.2018.8772] [PMID: 30008840]
[137]
Ji, Q.; Liu, X.; Fu, X.; Zhang, L.; Sui, H.; Zhou, L.; Sun, J.; Cai, J.; Qin, J.; Ren, J.; Li, Q. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One, 2013, 8(11), e78700-e78700.
[http://dx.doi.org/10.1371/journal.pone.0078700] [PMID: 24244343]
[138]
Ma, S.; Pradeep, S.; Hu, W.; Zhang, D.; Coleman, R.; Sood, A. The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000 Res., 2018, 7, 326-326.
[http://dx.doi.org/10.12688/f1000research.11771.1] [PMID: 29560266]
[139]
Xiao, Y.; Qin, T.; Sun, L.; Qian, W.; Li, J.; Duan, W.; Lei, J.; Wang, Z.; Ma, J.; Li, X.; Ma, Q.; Xu, Q. Resveratrol ameliorates the malignant progression of pancreatic cancer by inhibiting hypoxia-induced pancreatic stellate cell activation. Cell Transplant., 2020, 29, 0963689720929987.
[http://dx.doi.org/10.1177/0963689720929987] [PMID: 32463297]
[140]
Kim, D.H.; Sung, B.; Kim, J.A.; Kang, Y.J.; Hwang, S.Y.; Hwang, N.L.; Suh, H.; Choi, Y.H. Im, E.; Chung, H.Y.; Kim, N.D. HS-1793, a resveratrol analogue, downregulates the expression of hypoxia-induced HIF-1 and VEGF and inhibits tumor growth of human breast cancer cells in a nude mouse xenograft model. Int. J. Oncol., 2017, 51(2), 715-723.
[http://dx.doi.org/10.3892/ijo.2017.4058] [PMID: 28656256]
[141]
Seghezzi, G.; Patel, S.; Ren, C.J.; Gualandris, A.; Pintucci, G.; Robbins, E.S.; Shapiro, R.L.; Galloway, A.C.; Rifkin, D.B.; Mignatti, P. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: An autocrine mechanism contributing to angiogenesis. J. Cell Biol., 1998, 141(7), 1659-1673.
[http://dx.doi.org/10.1083/jcb.141.7.1659] [PMID: 9647657]
[142]
Brâkenhielm, E.; Cao, R.; Cao, Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J., 2001, 15(10), 1798-1800.
[http://dx.doi.org/10.1096/fj.01-0028fje] [PMID: 11481234]
[143]
Wong, J.C.; Fiscus, R.R. Resveratrol at anti-angiogenesis/anticancer concentrations suppresses protein kinase G signaling and decreases IAPs expression in HUVECs. Anticancer Res., 2015, 35(1), 273-281.
[PMID: 25550561]
[144]
Kimura, Y.; Sumiyoshi, M. Resveratrol prevents tumor growth and metastasis by inhibiting lymphangiogenesis and M2 macrophage activation and differentiation in tumor-associated macrophages. Nutr. Cancer, 2016, 68(4), 667-678.
[http://dx.doi.org/10.1080/01635581.2016.1158295] [PMID: 27145432]
[145]
Delmas, D.; Limagne, E.; Ghiringhelli, F.; Aires, V. Immune Th17 lymphocytes play a critical role in the multiple beneficial properties of resveratrol. Food Chem. Toxicol., 2020, 137, 111091.
[http://dx.doi.org/10.1016/j.fct.2019.111091] [PMID: 31883989]
[146]
Mu, Q.; Najafi, M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int. Immunopharmacol., 2021, 98, 107895.
[http://dx.doi.org/10.1016/j.intimp.2021.107895] [PMID: 34171623]
[147]
Farhood, B. khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Motevaseli, E.; Mirtavoos-Mahyari, H.; Eleojo Musa, A.; Najafi, M. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury. Pharmacol. Res., 2020, 155, 104745.
[http://dx.doi.org/10.1016/j.phrs.2020.104745] [PMID: 32145401]
[148]
Igura, K.; Ohta, T.; Kuroda, Y.; Kaji, K. Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett., 2001, 171(1), 11-16.
[http://dx.doi.org/10.1016/S0304-3835(01)00443-8] [PMID: 11485823]
[149]
Trapp, V.; Parmakhtiar, B.; Papazian, V.; Willmott, L.; Fruehauf, J.P. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis, 2010, 13(4), 305-315.
[http://dx.doi.org/10.1007/s10456-010-9187-8] [PMID: 20927579]
[150]
Zhang, D.; Zhang, J.; Zeng, J.; Li, Z.; Zuo, H.; Huang, C.; Zhao, X. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J. Biomed. Nanotechnol., 2019, 15(2), 288-300.
[http://dx.doi.org/10.1166/jbn.2019.2682] [PMID: 30596551]
[151]
Chen, L.; Musa, A.E. Boosting immune system against cancer by resveratrol. Phytother. Res., 2021, 35(10), 5514-5526.
[http://dx.doi.org/10.1002/ptr.7189] [PMID: 34101276]
[152]
Baek, S.H.; Ko, J.H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.; Lee, J.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Lee, S.G.; Shim, B.S.; Sethi, G.; Kim, S.H.; Yang, W.M.; Um, J.Y.; Ahn, K.S. Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 2016, 23(5), 566-577.
[http://dx.doi.org/10.1016/j.phymed.2016.02.011] [PMID: 27064016]
[153]
Liao, H.F.; Kuo, C.D.; Yang, Y.C.; Lin, C.P.; Tai, H.C.; Chen, Y.Y.; Chen, Y.J. Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation. J. Radiat. Res. (Tokyo), 2005, 46(4), 387-393.
[http://dx.doi.org/10.1269/jrr.46.387] [PMID: 16394628]
[154]
Taniguchi, K. Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[155]
Ji, K.; Sun, X.; Liu, Y.; Du, L.; Wang, Y.; He, N.; Wang, J.; Xu, C.; Liu, Q. Regulation of apoptosis and radiation sensitization in lung cancer cells via the Sirt1/NF-κB/Smac pathway. Cell. Physiol. Biochem., 2018, 48(1), 304-316.
[http://dx.doi.org/10.1159/000491730] [PMID: 30016782]
[156]
Fang, Y.; DeMarco, V.G.; Nicholl, M.B. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci., 2012, 103(6), 1090-1098.
[http://dx.doi.org/10.1111/j.1349-7006.2012.02272.x] [PMID: 22417066]
[157]
Grimaldi, A.; Cammarata, I.; Martire, C.; Focaccetti, C.; Piconese, S.; Buccilli, M.; Mancone, C.; Buzzacchino, F.; Berrios, J.R.G.; D’Alessandris, N.; Tomao, S.; Giangaspero, F.; Paroli, M.; Caccavale, R.; Spinelli, G.P.; Girelli, G.; Peruzzi, G.; Nisticò, P.; Spada, S.; Panetta, M.; Letizia Cecere, F.; Visca, P.; Facciolo, F.; Longo, F.; Barnaba, V. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Commun. Biol., 2020, 3(1), 85.
[http://dx.doi.org/10.1038/s42003-020-0811-x] [PMID: 32099064]
[158]
Dun, J.; Chen, X.; Gao, H.; Zhang, Y.; Zhang, H.; Zhang, Y. Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis. Exp. Biol. Med. (Maywood), 2015, 240(12), 1672-1681.
[http://dx.doi.org/10.1177/1535370215573396] [PMID: 25736303]
[159]
Wu, S.L.; Sun, Z-J.; Yu, L.; Meng, K-W.; Qin, X-L.; Pan, C-E. Effect of resveratrol and in combination with 5-FU on murine liver cancer. World J. Gastroenterol., 2004, 10(20), 3048-3052.
[http://dx.doi.org/10.3748/wjg.v10.i20.3048] [PMID: 15378791]
[160]
Komina, O.; Węsierska-Gądek, J. Action of resveratrol alone or in combination with roscovitine, a CDK inhibitor, on cell cycle progression in human HL-60 leukemia cells. Biochem. Pharmacol., 2008, 76(11), 1554-1562.
[http://dx.doi.org/10.1016/j.bcp.2008.08.002] [PMID: 18761329]
[161]
Dai, C.; Zhang, Y.; Xu, Z.; Jin, M. MicroRNA-122-5p inhibits cell proliferation, migration and invasion by targeting CCNG1 in pancreatic ductal adenocarcinoma. Cancer Cell Int., 2020, 20(1), 98.
[http://dx.doi.org/10.1186/s12935-020-01185-z] [PMID: 32256207]
[162]
Zhang, W.; Jiang, H.; Chen, Y.; Ren, F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J. Cell. Biochem., 2019, 120(9), 16283-16292.
[http://dx.doi.org/10.1002/jcb.28910] [PMID: 31155753]
[163]
Hernandez-Valencia, J.; Garcia-Villa, E.; Arenas-Hernandez, A.; Garcia-Mena, J.; Diaz-Chavez, J.; Gariglio, P. Induction of p53 Phosphorylation at Serine 20 by Resveratrol Is Required to Activate p53 Target Genes, Restoring Apoptosis in MCF-7 Cells Resistant to Cisplatin. Nutrients, 2018, 10(9), 1148.
[http://dx.doi.org/10.3390/nu10091148] [PMID: 30142917]
[164]
Hwang, J.T.; Kwak, D.W.; Lin, S.K.; Kim, H.M.; Kim, Y.M.; Park, O.J. Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann. N. Y. Acad. Sci., 2007, 1095(1), 441-448.
[http://dx.doi.org/10.1196/annals.1397.047] [PMID: 17404056]
[165]
Jin, X.; Wei, Y.; Liu, Y.; Lu, X.; Ding, F.; Wang, J.; Yang, S. Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer. Cancer Med., 2019, 8(3), 1246-1257.
[http://dx.doi.org/10.1002/cam4.1993] [PMID: 30697969]
[166]
Chen, J.M.; Bai, J.Y.; Yang, K.X. Effect of resveratrol on doxorubicin resistance in breast neoplasm cells by modulating PI3K/Akt signaling pathway. IUBMB Life, 2018, 70(6), 491-500.
[http://dx.doi.org/10.1002/iub.1749] [PMID: 29637742]
[167]
Zhou, C.; Qian, W.; Ma, J.; Cheng, L.; Jiang, Z.; Yan, B.; Li, J.; Duan, W.; Sun, L.; Cao, J.; Wang, F.; Wu, E.; Wu, Z.; Ma, Q.; Li, X. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif., 2019, 52(1)e12514
[http://dx.doi.org/10.1111/cpr.12514] [PMID: 30341797]
[168]
Huang, L.; Zhang, S.; Zhou, J.; Li, X. Effect of resveratrol on drug resistance in colon cancer chemotherapy. RSC Advances, 2019, 9(5), 2572-2580.
[http://dx.doi.org/10.1039/C8RA08364A] [PMID: 35520503]
[169]
Uvez, A.; Aydinlik, S.; Esener, O.; Erkisa, M.; Karakus, D.; Armutak, E. Synergistic interactions between resveratrol and doxorubicin inhibit angiogenesis both in vitro and in vivo. Pol. J. Vet. Sci., 2020, 571-580.
[170]
Harikumar, K.B.; Kunnumakkara, A.B.; Sethi, G.; Diagaradjane, P.; Anand, P.; Pandey, M.K.; Gelovani, J.; Krishnan, S.; Guha, S.; Aggarwal, B.B. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int. J. Cancer, 2010, 127(2), 257-268.
[PMID: 19908231]
[171]
Lee, S.H.; Koo, B.S.; Park, S.Y.; Kim, Y.M. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol. Med. Rep., 2015, 12(2), 2777-2783.
[http://dx.doi.org/10.3892/mmr.2015.3675] [PMID: 25936796]
[172]
Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128.
[http://dx.doi.org/10.1016/j.gene.2019.02.076] [PMID: 30849534]
[173]
Han, Y.; Ma, R.; Cao, G.; Liu, H.; He, L.; Tang, L.; Li, H.; Luo, Q. Combined treatment of cinobufotalin and gefitinib exhibits potent efficacy against lung cancer. Evid. Based Complement. Altern. Med., 2021, 2021, 6612365.
[http://dx.doi.org/10.1155/2021/6612365]
[174]
Zhu, Y.; He, W.; Gao, X.; Li, B.; Mei, C.; Xu, R.; Chen, H. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci. Rep., 2015, 5(1), 17730.
[http://dx.doi.org/10.1038/srep17730] [PMID: 26635117]
[175]
Nie, P.; Hu, W.; Zhang, T.; Yang, Y.; Hou, B.; Zou, Z. Synergistic induction of erlotinib-mediated apoptosis by resveratrol in human non-small-cell lung cancer cells by down-regulating survivin and up-regulating PUMA. Cell. Physiol. Biochem., 2015, 35(6), 2255-2271.
[http://dx.doi.org/10.1159/000374030] [PMID: 25895606]
[176]
Abdel-Latif, G.A.; Al-Abd, A.M.; Tadros, M.G.; Al-Abbasi, F.A.; Khalifa, A.E.; Abdel-Naim, A.B. The chemomodulatory effects of resveratrol and didox on herceptin cytotoxicity in breast cancer cell lines. Sci. Rep., 2015, 5(1), 12054.
[http://dx.doi.org/10.1038/srep12054] [PMID: 26156237]
[177]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[178]
Majidpoor, J.; Mortezaee, K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin. Immunol., 2021, 226, 108707.
[http://dx.doi.org/10.1016/j.clim.2021.108707] [PMID: 33662590]
[179]
Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[180]
Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Commun. Signal., 2021, 16(3), 333-348.
[PMID: 34611852]
[181]
Fu, X.; He, Y.; Li, M.; Huang, Z.; Najafi, M. Targeting of the tumor microenvironment by curcumin. Biofactors, 2021, 47(6), 914-932.
[http://dx.doi.org/10.1002/biof.1776] [PMID: 34375483]
[182]
Verdura, S.; Cuyàs, E.; Cortada, E.; Brunet, J.; Lopez-Bonet, E.; Martin-Castillo, B.; Bosch-Barrera, J.; Encinar, J.A.; Menendez, J.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging (Albany NY), 2020, 12(1), 8-34.
[http://dx.doi.org/10.18632/aging.102646] [PMID: 31901900]
[183]
Lucas, J.; Hsieh, T.C.; Halicka, H.D.; Darzynkiewicz, Z.; Wu, J. Upregulation of PD L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300 mediated NF κB signaling. Int. J. Oncol., 2018, 53(4), 1469-1480.
[http://dx.doi.org/10.3892/ijo.2018.4512] [PMID: 30066852]
[184]
Yang, M.; Li, Z.; Tao, J.; Hu, H.; Li, Z.; Zhang, Z.; Cheng, F.; Sun, Y.; Zhang, Y.; Yang, J.; Wei, H.; Wu, Z. Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells. J. Cancer Res. Clin. Oncol., 2021, 147(4), 1101-1113.
[http://dx.doi.org/10.1007/s00432-021-03510-z] [PMID: 33471184]
[185]
Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Zarrin, V.; Moghadam, E.R.; Zabolian, A.; Tavakol, S.; Samarghandian, S.; Najafi, M. PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci., 2020, 256, 117899.
[http://dx.doi.org/10.1016/j.lfs.2020.117899] [PMID: 32504749]
[186]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[187]
Crezee, J.; Franken, N.A.P.; Oei, A.L. Hyperthermia-based anti-cancer treatments. Cancers (Basel), 2021, 13(6), 1240.
[http://dx.doi.org/10.3390/cancers13061240] [PMID: 33808948]
[188]
Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[189]
Nodooshan, S.J.; Amini, P.; Ashrafizadeh, M.; Tavakoli, S.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Ahmadi, A.; Farhood, B. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr. Drug Res. Rev., 2021, 13(2), 148-153.
[http://dx.doi.org/10.2174/2589977512666201228104528] [PMID: 33371865]
[190]
Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Eftekhari, S.M.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Farhood, B. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr. Mol. Med., 2021, 21(2), 142-150.
[http://dx.doi.org/10.2174/18755666MTA2dODEdz] [PMID: 32436827]
[191]
Levi, F.; Pasche, C.; Lucchini, F.; Ghidoni, R.; Ferraroni, M.; La Vecchia, C. Resveratrol and breast cancer risk. Eur. J. Cancer Prev., 2005, 14(2), 139-142.
[http://dx.doi.org/10.1097/00008469-200504000-00009] [PMID: 15785317]
[192]
Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.P.; Gescher, A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila.), 2011, 4(9), 1419-1425.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[193]
Popat, R.; Plesner, T.; Davies, F.; Cook, G.; Cook, M.; Elliott, P.; Jacobson, E.; Gumbleton, T.; Oakervee, H.; Cavenagh, J. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br. J. Haematol., 2013, 160(5), 714-717.
[http://dx.doi.org/10.1111/bjh.12154] [PMID: 23205612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy