Review Article

钴铁氧体纳米粒子在生物医学和农业应用中的安全性:近期进展综述

卷 30, 期 15, 2023

发表于: 30 December, 2022

页: [1756 - 1775] 页: 20

弟呕挨: 10.2174/0929867329666221007113951

价格: $65

摘要

钴铁氧体纳米粒子 (CFN) 作为治疗诊断剂引起了人们的关注。 CFN 独特的物理化学特性和磁性使 CFN 成为生物医学、农业和环境应用的杰出候选者。 CFN 的广泛使用可能导致出于疾病诊断和治疗目的有意接种人类或通过吸入、摄入、吸附或其他方式无意渗透 CFN。因此,了解 CFN 的潜在细胞毒性可能为其未来的生物医学和农业应用铺平道路。本综述详细审查了 CFN 在不同生物系统中的生物兼容性、可能的影响和细胞毒性机制。文献表明 CFN 毒性与其大小、合成方法、涂层材料、暴露时间、给药途径和测试浓度有关。一些体外细胞毒性试验显示了 CFN 效力的误导性结果;这可能是由于 CFN 与细胞毒性测定试剂的相互作用。迄今为止,已发表的研究表明,CFN 在植物或动物模型中的生物兼容性超过其细胞毒性作用,但在水生斑马鱼中观察到相反的结果。

关键词: 钴铁氧体纳米颗粒,治疗诊断剂,生物系统,生物兼容性,毒理学结果,细胞毒性。

[1]
Kyeong, S.; Kim, J.; Chang, H.; Lee, S.H.; Son, B.S.; Lee, J.H.; Rho, W-Y.; Pham, X-H.; Jun, B-H. In: Nanotechnology for Bioapplications; Jun, B-H., Ed.; Springer Singapore: Singapore, 2021, pp. 191-215.
[http://dx.doi.org/10.1007/978-981-33-6158-4_8]
[2]
Alromi, D.; Madani, S.; Seifalian, A. Emerging application of magnetic nanoparticles for diagnosis and treatment of cancer. Polymers (Basel), 2021, 13(23), 4146.
[http://dx.doi.org/10.3390/polym13234146] [PMID: 34883649]
[3]
Tombuloglu, H.; Albenayyan, N.; Slimani, Y.; Akhtar, S.; Tombuloglu, G.; Almessiere, M.; Baykal, A.; Ercan, I.; Sabit, H.; Manikandan, A. Fate and impact of maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles in barley (Hordeum vulgare L.). Environ. Sci. Pollut. Res. Int., 2022, 29(3), 4710-4721.
[http://dx.doi.org/10.1007/s11356-021-15965-1] [PMID: 34414536]
[4]
Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int., 2020, 133, 109141.
[http://dx.doi.org/10.1016/j.foodres.2020.109141] [PMID: 32466907]
[5]
Stanicki, D.; Vangijzegem, T.; Ternad, I.; Laurent, S. An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opin. Drug Deliv., 2022, 19(3), 321-335.
[http://dx.doi.org/10.1080/17425247.2022.2047020] [PMID: 35202551]
[6]
Mohammadi, F.; Gholami, A.; Omidifar, N.; Amini, A.; Kianpour, S.; Taghizadeh, S.M. The potential of surface nano-engineering in characteristics of cobalt-based nanoparticles and biointerface interaction with prokaryotic and human cells. Colloids Surf. B Biointerfaces, 2022, 215, 112485.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112485] [PMID: 35367746]
[7]
Islam, M.K.; Haque, M.M.; Rashid, R.; Hasan, R.; Islam, M.A.; Khan, M.N.I.; Hoque, S.M. Size effect on MRI/MFH relaxations by a high anisotropic CoFe2O4-Chitosan conjugate and imaging/angiography efficacy. J. Inorg. Organomet. Polym. Mater., 2022. [Epub ahead of print].
[http://dx.doi.org/10.1007/s10904-022-02381-2]
[8]
Teng, Y.; Yuan, S.; Shi, J.; Pong, P.W.T. A multifunctional nanoplatform based on graphene quantum dots‐cobalt ferrite for monitoring of drug delivery and fluorescence/magnetic resonance bimodal cellular imaging. Adv. NanoBiomed Res., 2022, 2020, 2200044.
[http://dx.doi.org/10.1002/anbr.202200044]
[9]
Nahar, A.; Hanium Maria, K.; Liba, S.I.; Anwaruzzaman, M.; Khan, M.N.I.; Islam, A.; Choudhury, S.; Hoque, S.M. Surface-modified CoFe2O4 nanoparticles using Folate-Chitosan for cytotoxicity Studies, hyperthermia applications and Positive/Negative contrast of MRI. J. Magn. Magn. Mater., 2022, 554, 169282.
[http://dx.doi.org/10.1016/j.jmmm.2022.169282]
[10]
Hara, S.; Aisu, J.; Kato, M.; Aono, T.; Sugawa, K.; Takase, K.; Otsuki, J.; Shimizu, S.; Ikake, H. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization. Nanoscale Res. Lett., 2018, 13(1), 176.
[http://dx.doi.org/10.1186/s11671-018-2544-z] [PMID: 29884975]
[11]
Romih, T.; Drašler, B.; Jemec, A.; Drobne, D.; Novak, S. Golobič M.; Makovec, D.; Susič R.; Kogej, K. Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber. Sci. Total Environ., 2015, 508, 76-84.
[http://dx.doi.org/10.1016/j.scitotenv.2014.11.080] [PMID: 25437955]
[12]
Rashdan, S.A.; Hazeem, L.J. Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp. Arab. J. Basic Appl. Sci., 2020, 27(1), 134-141.
[http://dx.doi.org/10.1080/25765299.2020.1733174]
[13]
Cótica, L.F.; Freitas, V.F.; Silva, D.M.; Honjoya, K.; Honjoya, K.; Santos, I.A.; Fontanive, V.C.P.; Khalil, N.M.; Mainardes, R.M.; Kioshima, E.S.; Guo, R.; Bhalla, A.S. Thermal decomposition synthesis and assessment of effects on blood cells and in vivo damages of cobalt ferrite nanoparticles. J. Nano Res., 2014, 28, 131-140.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.28.131]
[14]
Ahmad, F.; Zhou, Y. Pitfalls and challenges in nanotoxicology: A case of cobalt ferrite (CoFe2O4) nanocomposites. Chem. Res. Toxicol., 2017, 30(2), 492-507.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00377] [PMID: 28118545]
[15]
Mmelesi, O.K.; Masunga, N.; Kuvarega, A.; Nkambule, T.T.I.; Mamba, B.B.; Kefeni, K.K. Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Process., 2021, 123, 105523.
[http://dx.doi.org/10.1016/j.mssp.2020.105523]
[16]
Srinivasan, S.Y.; Paknikar, K.M.; Bodas, D.; Gajbhiye, V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine (Lond.), 2018, 13(10), 1221-1238.
[http://dx.doi.org/10.2217/nnm-2017-0379] [PMID: 29882719]
[17]
El-Sayed, E.S.R.; Abdelhakim, H.K.; Zakaria, Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater. Sci. Eng. C, 2020, 107, 110318.
[http://dx.doi.org/10.1016/j.msec.2019.110318] [PMID: 31761250]
[18]
Spanos, A.; Athanasiou, K.; Ioannou, A.; Fotopoulos, V.; Krasia-Christoforou, T. Functionalized magnetic nanomaterials in agricultural applications. Nanomaterials (Basel), 2021, 11(11), 3106.
[http://dx.doi.org/10.3390/nano11113106] [PMID: 34835870]
[19]
López-Luna, J.; Camacho-Martínez, M.M.; Solís-Domínguez, F.A.; González-Chávez, M.C.; Carrillo-González, R.; Martinez-Vargas, S.; Mijangos-Ricardez, O.F.; Cuevas-Díaz, M.C. Toxicity assessment of cobalt ferrite nanoparticles on wheat plants. J. Toxicol. Environ. Health A, 2018, 81(14), 604-619.
[http://dx.doi.org/10.1080/15287394.2018.1469060] [PMID: 29737961]
[20]
Lojk, J. Babič L.; Sušjan, P.; Bregar, V.B.; Pavlin, M.; Hafner-Bratkovič I.; Veranič P. Analysis of the direct and indirect effects of nanoparticle exposure on microglial and neuronal cells in vitro. Int. J. Mol. Sci., 2020, 21(19), 7030.
[http://dx.doi.org/10.3390/ijms21197030] [PMID: 32987760]
[21]
Abudayyak, M.; Altinçekiç Gürkaynak, T.; Özhan, G. In vitro evaluation of the toxicity of cobalt ferrite nanoparticles in kidney cell. Turkish J. Pharm. Sci., 2017, 14(2), 169-173.
[22]
Ahmad, F.; Liu, X.; Zhou, Y.; Yao, H. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo zebrafish (Danio rerio). Aquat. Toxicol., 2015, 166, 21-28.
[http://dx.doi.org/10.1016/j.aquatox.2015.07.003] [PMID: 26197244]
[23]
Hwang, D.W.; Lee, D.S.; Kim, S. Gene expression profiles for genotoxic effects of silica-free and silica-coated cobalt ferrite nanoparticles. J. Nucl. Med., 2012, 53(1), 106-112.
[http://dx.doi.org/10.2967/jnumed.111.088443] [PMID: 22147119]
[24]
Jack, J.; Rotroff, D.; Motsinger-Reif, A. Lymphoblastoid cell lines models of drug response: Successes and lessons from this pharmacogenomic model. Curr. Mol. Med., 2014, 14(7), 833-840.
[http://dx.doi.org/10.2174/1566524014666140811113946] [PMID: 25109794]
[25]
Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers (Basel), 2019, 11(8), 1098.
[http://dx.doi.org/10.3390/cancers11081098] [PMID: 31374935]
[26]
Kim, D.H.; Kim, K.N.; Kim, K.M.; Shim, I.B.; Kim, D.H.; Lee, Y.K. NSTI nanotechnology conference and trade show-NSTI nanotech. TechConnect Briefs, 2007, 2, 748-751.
[27]
Shakil, M.S.; Hasan, M.A.; Uddin, M.F.; Islam, A.; Nahar, A.; Das, H.; Khan, M.N.I.; Dey, B.P.; Rokeya, B.; Hoque, S.M. In vivo toxicity studies of chitosan-coated cobalt ferrite nanocomplex for its application as MRI contrast dye. ACS Appl. Bio Mater., 2020, 3(11), 7952-7964.
[http://dx.doi.org/10.1021/acsabm.0c01069] [PMID: 35019535]
[28]
Kapilevich, L.V.; D’yakova, E.Y.; Nosarev, A.V.; Zaitseva, T.N.; Petlina, Z.R.; Ogorodova, L.M.; Ageev, B.G.; Magaeva, A.A.; Itin, V.I.; Terekhova, O.G. Effect of nanodisperse ferrite cobalt (CoFe2O4) particles on contractile reactions in guinea pigs airways. Bull. Exp. Biol. Med., 2010, 149(1), 70-72.
[http://dx.doi.org/10.1007/s10517-010-0878-3] [PMID: 21113462]
[29]
Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Mota Morales, J.D.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol. Lett., 2017, 276, 11-20.
[http://dx.doi.org/10.1016/j.toxlet.2017.05.007] [PMID: 28483428]
[30]
Nongjai, R.; Khan, S.; Asokan, K.; Ahmed, H.; Khan, I. Magnetic and electrical properties of in doped cobalt ferrite nanoparticles. J. Appl. Phys., 2012, 112(8), 084321.
[http://dx.doi.org/10.1063/1.4759436]
[31]
Mapossa, A.B.; Mhike, W.; Adalima, J.L.; Tichapondwa, S. Removal of organic dyes from water and wastewater using magnetic ferrite-based titanium oxide and zinc oxide nanocomposites: A review. Catalysts, 2021, 11(12), 1543.
[http://dx.doi.org/10.3390/catal11121543]
[32]
Rahman, M.A.; Gafur, M.A.; Sarker, M.R. Impact of doping on structural, electronic and optical properties of cobalt ferrite prepared by solid-state reaction. Int. J. Innov. Res. Adv. Eng., 2015, 2(1), 99-107.
[33]
Goodarz Naseri, M.; Saion, E.B.; Abbastabar Ahangar, H.; Shaari, A.H.; Hashim, M. Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater., 2010, 2010, 907686.
[http://dx.doi.org/10.1155/2010/907686]
[34]
Medina, M.A.; Oza, G.; Ángeles-Pascual, A.; González, M. M.; Antaño-López, R.; Vera, A.; Leija, L.; Reguera, E.; Arriaga, L.G.; Hernández Hernández, J.M.; Ramírez, J.T. Synthesis, characterization and magnetic hyperthermia of monodispersed cobalt ferrite nanoparticles for cancer therapeutics. Molecules, 2020, 25(19), 4428.
[http://dx.doi.org/10.3390/molecules25194428] [PMID: 32992439]
[35]
Köseoğlu, Y.; Alan, F.; Tan, M.; Yilgin, R.; Öztürk, M. Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int., 2012, 38(5), 3625-3634.
[http://dx.doi.org/10.1016/j.ceramint.2012.01.001]
[36]
Saffari, J.; Ghanbari, D.; Mir, N.; Khandan-Barani, K. Sonochemical synthesis of CoFe2O4 nanoparticles and their application in magnetic polystyrene nanocomposites. J. Ind. Eng. Chem., 2014, 20(6), 4119-4123.
[http://dx.doi.org/10.1016/j.jiec.2014.01.010]
[37]
Lickmichand, M.; Shaji, C.S.; Valarmathi, N.; Benjamin, A.S.; Kumar, R.K.A.; Nayak, S.; Saraswathy, R.; Sumathi, S.; Raj, N.A.N. In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications. Mater. Today Proc., 2019, 15, 252-261.
[http://dx.doi.org/10.1016/j.matpr.2019.05.002]
[38]
Pulišová, P. Kováč J.; Voigt, A.; Raschman, P. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater., 2013, 341, 93-99.
[http://dx.doi.org/10.1016/j.jmmm.2013.04.003]
[39]
Bibani, M.; Breitwieser, R.; Aubert, A.; Loyau, V.; Mercone, S.; Ammar, S.; Mammeri, F. Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process. Beilstein J. Nanotechnol., 2019, 10(1), 1166-1176.
[http://dx.doi.org/10.3762/bjnano.10.116] [PMID: 31293854]
[40]
Amiri, S.; Shokrollahi, H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C, 2013, 33(1), 1-8.
[http://dx.doi.org/10.1016/j.msec.2012.09.003] [PMID: 25428034]
[41]
Jiang, Z.; Shan, K.; Song, J.; Liu, J.; Rajendran, S.; Pugazhendhi, A.; Jacob, J.A.; Chen, B. Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sci., 2019, 220, 156-161.
[http://dx.doi.org/10.1016/j.lfs.2019.01.056] [PMID: 30716338]
[42]
Musa, M.A.; Badisa, V.L.; Latinwo, L.M.; Waryoba, C.; Ugochukwu, N. In vitro cytotoxicity of benzopyranone derivatives with basic side chain against human lung cell lines. Anticancer Res., 2010, 30(11), 4613-4617.
[PMID: 21115914]
[43]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[44]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[45]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[46]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[47]
Segun, P.A.; Ogbole, O.O.; Ismail, F.M.D.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Resveratrol derivatives from Commiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res., 2019, 33(1), 159-166.
[http://dx.doi.org/10.1002/ptr.6209] [PMID: 30346066]
[48]
Li, J.; Gu, Y.; Zhang, W.; Bao, C.Y.; Li, C.R.; Zhang, J.Y.; Liu, T.; Li, S.; Huang, J.X.; Xie, Z.G.; Hua, S.C.; Wan, Y. Molecular mechanism for selective cytotoxicity towards cancer cells of diselenide-containing paclitaxel nanoparticles. Int. J. Biol. Sci., 2019, 15(8), 1755-1770.
[http://dx.doi.org/10.7150/ijbs.34878] [PMID: 31360117]
[49]
Omeir, R.L.; Teferedegne, B.; Foseh, G.S.; Beren, J.J.; Snoy, P.J.; Brinster, L.R.; Cook, J.L.; Peden, K.; Lewis, A.M., Jr Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells. Comp. Med., 2011, 61(3), 243-250.
[PMID: 21819694]
[50]
Kok-Yong, S.; Lawrence, L.; Ahmed, T. Drug Distribution and Drug Elimination. In: Basic pharmacokinetic concepts and some clinical applications; Intech Open: London, 2015; pp. 99-116.
[51]
Horev-Azaria, L.; Baldi, G.; Beno, D.; Bonacchi, D.; Golla-Schindler, U.; Kirkpatrick, J.C.; Kolle, S.; Landsiedel, R.; Maimon, O.; Marche, P.N.; Ponti, J.; Romano, R.; Rossi, F.; Sommer, D.; Uboldi, C.; Unger, R.E.; Villiers, C.; Korenstein, R. Predictive toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Part. Fibre Toxicol., 2013, 10(1), 32.
[http://dx.doi.org/10.1186/1743-8977-10-32] [PMID: 23895432]
[52]
Smart, D.J.; Helbling, F.R.; Verardo, M.; Huber, A.; McHugh, D.; Vanscheeuwijck, P. Development of an integrated assay in human TK6 cells to permit comprehensive genotoxicity analysis in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2020, 849, 503129.
[http://dx.doi.org/10.1016/j.mrgentox.2019.503129] [PMID: 32087850]
[53]
Di Guglielmo, C.; López, D.R.; De Lapuente, J.; Mallafre, J.M.L.; Suàrez, M.B. Embryotoxicity of cobalt ferrite and gold nanoparticles: A first in vitro approach. Reprod. Toxicol., 2010, 30(2), 271-276.
[http://dx.doi.org/10.1016/j.reprotox.2010.05.001] [PMID: 20566333]
[54]
Oliveira, A.B.B.; de Moraes, F.R.; Candido, N.M.; Sampaio, I.; Paula, A.S.; de Vasconcellos, A.; Silva, T.C.; Miller, A.H.; Rahal, P.; Nery, J.G.; Calmon, M.F. Metabolic effects of cobalt ferrite nanoparticles on cervical carcinoma cells and nontumorigenic keratinocytes. J. Proteome Res., 2016, 15(12), 4337-4348.
[http://dx.doi.org/10.1021/acs.jproteome.6b00411] [PMID: 27933982]
[55]
Mariani, V.; Ponti, J.; Giudetti, G.; Broggi, F.; Marmorato, P.; Gioria, S.; Franchini, F.; Rauscher, H.; Rossi, F. Online monitoring of cell metabolism to assess the toxicity of nanoparticles: The case of cobalt ferrite. Nanotoxicology, 2012, 6(3), 272-287.
[http://dx.doi.org/10.3109/17435390.2011.572302] [PMID: 21495878]
[56]
Shakil, M.S.; Rana, Z.; Hanif, M.; Rosengren, R.J. Key considerations when using the sulforhodamine B assay for screening novel anticancer agents. Anticancer Drugs, 2022, 33(1), 6-10.
[http://dx.doi.org/10.1097/CAD.0000000000001131] [PMID: 34261912]
[57]
Abudayyak, M.; Altincekic Gurkaynak, T.; Özhan, G. In vitro toxicological assessment of cobalt ferrite nanoparticles in several mammalian cell types. Biol. Trace Elem. Res., 2017, 175(2), 458-465.
[http://dx.doi.org/10.1007/s12011-016-0803-3] [PMID: 27411927]
[58]
Duval, K.; Grover, H.; Han, L.H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda), 2017, 32(4), 266-277.
[http://dx.doi.org/10.1152/physiol.00036.2016] [PMID: 28615311]
[59]
Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, Ł.; Lamperska, K. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch. Med. Sci., 2018, 14(4), 910-919.
[PMID: 30002710]
[60]
Wong, C.C.; Cheng, K.W.; Rigas, B. Preclinical predictors of anticancer drug efficacy: Critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J. Pharmacol. Exp. Ther., 2012, 341(3), 572-578.
[http://dx.doi.org/10.1124/jpet.112.191957] [PMID: 22448039]
[61]
Pradhan, P.; Giri, J.; Samanta, G.; Sarma, H.D.; Mishra, K.P.; Bellare, J.; Banerjee, R.; Bahadur, D. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 81B(1), 12-22.
[http://dx.doi.org/10.1002/jbm.b.30630] [PMID: 16924619]
[62]
Peeples, B.; Goornavar, V.; Peeples, C.; Spence, D.; Parker, V.; Bell, C.; Biswal, D.; Ramesh, G.T.; Pradhan, A.K. Structural, stability, magnetic, and toxicity studies of nanocrystalline iron oxide and cobalt ferrites for biomedical applications. J. Nanopart. Res., 2014, 16(2), 2290.
[http://dx.doi.org/10.1007/s11051-014-2290-9]
[63]
Motorzhina, A. Jovanović S.; Belyaev, V.K.; Murzin, D.; Pshenichnikov, S.; Kolesnikova, V.G.; Omelyanchik, A.S.; Gazvoda, L.; Spreitzer, M.; Panina, L.; Rodionova, V.; Vukomanović M.; Levada, K. Innovative gold/cobalt ferrite nanocomposite: Physicochemical and cytotoxicity properties. Processes (Basel), 2021, 9(12), 2264.
[http://dx.doi.org/10.3390/pr9122264]
[64]
Salunkhe, A.B.; Khot, V.M.; Thorat, N.D.; Phadatare, M.R.; Sathish, C.I.; Dhawale, D.S.; Pawar, S.H. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Appl. Surf. Sci., 2013, 264, 598-604.
[http://dx.doi.org/10.1016/j.apsusc.2012.10.073]
[65]
Hatamie, S.; Parseh, B.; Ahadian, M.M.; Naghdabadi, F.; Saber, R.; Soleimani, M. Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study. J. Magn. Magn. Mater., 2018, 462, 185-194.
[http://dx.doi.org/10.1016/j.jmmm.2018.05.020]
[66]
Gharibshahian, M.; Mirzaee, O.; Nourbakhsh, M.S. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. J. Magn. Magn. Mater., 2017, 425, 48-56.
[http://dx.doi.org/10.1016/j.jmmm.2016.10.116]
[67]
Mushtaq, M.W.; Kanwal, F.; Islam, A.; Ahmed, K.; Haq, Z.; Jamil, T.; Imran, M.; Abbas, S.M.; Huang, Q. Synthesis and characterisation of doxorubicin-loaded functionalised cobalt ferrite nanoparticles and their in vitro anti-tumour activity under an AC-magnetic field. Trop. J. Pharm. Res., 2017, 16(7), 1663-1674.
[http://dx.doi.org/10.4314/tjpr.v16i7.27]
[68]
Finetti, F.; Terzuoli, E.; Donnini, S.; Uva, M.; Ziche, M.; Morbidelli, L. Monitoring endothelial and tissue responses to cobalt ferrite nanoparticles and hybrid hydrogels. PLoS One, 2016, 11(12), e0168727.
[http://dx.doi.org/10.1371/journal.pone.0168727] [PMID: 28036325]
[69]
Akhtar, S.; Khan, Q.; Anwar, S.; Ali, G.; Maqbool, M.; Khan, M.; Karim, S.; Gao, L. Retracted article: A comparative study of the toxicity of polyethylene glycol–coated cobalt ferrite nanospheres and nanoparticles. Nanoscale Res. Lett, 2019, 14, p. 386.
[70]
Lojk, J.; Repas, J. Veranič P.; Bregar, V.B.; Pavlin, M. Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology, 2020, 432, 152364.
[http://dx.doi.org/10.1016/j.tox.2020.152364] [PMID: 31927068]
[71]
Mohammadi, Z.; Attaran, N.; Sazgarnia, A.; Shaegh, S.A.M.; Montazerabadi, A. Superparamagnetic cobalt ferrite nanoparticles as T2 contrast agent in MRI: In vitro study. IET Nanobiotechnol., 2020, 14(5), 396-404.
[http://dx.doi.org/10.1049/iet-nbt.2019.0210] [PMID: 32691742]
[72]
Kafi-Ahmadi, L.; Khademinia, S.; Najafzadeh Nansa, M.; Alemi, A.A.; Mahdavi, M.; Poursattar Marjani, A. Co-precipitation synthesis, characterization of CoFe2O4 nanomaterial and evaluation of its toxicity behavior on human leukemia cancer K562 cell line. J. Chil. Chem. Soc., 2020, 65(2), 4845-4848.
[http://dx.doi.org/10.4067/S0717-97072020000204845]
[73]
Nam, P.H.; Lu, L.T.; Linh, P.H.; Manh, D.H.; Thanh Tam, L.T.; Phuc, N.X.; Phong, P.T.; Lee, I-J. Polymer-coated cobalt ferrite nanoparticles: Synthesis, characterization, and toxicity for hyperthermia applications. New J. Chem., 2018, 42(17), 14530-14541.
[http://dx.doi.org/10.1039/C8NJ01701H]
[74]
Lucht, N.; Friedrich, R.P.; Draack, S.; Alexiou, C.; Viereck, T.; Ludwig, F.; Hankiewicz, B. Biophysical characterization of (silica-coated) cobalt ferrite nanoparticles for hyperthermia treatment. Nanomaterials (Basel), 2019, 9(12), 1713.
[http://dx.doi.org/10.3390/nano9121713] [PMID: 31805707]
[75]
Kanagesan, S.; Hashim, M.; Tamilselvan, S.; Alitheen, N.; Ismail, I.; Syazwan, M.; Zuikimi, M. Sol-gel auto-combustion synthesis of cobalt ferrite and it’s cytotoxicity properties. Dig. J. Nanomater. Biostruct., 2013, 8(4)
[76]
Shi, Z.; Zeng, Y.; Chen, X.; Zhou, F.; Zheng, L.; Wang, G.; Gao, J.; Ma, Y.; Zheng, L.; Fu, B.; Yu, R. Mesoporous superparamagnetic cobalt ferrite nanoclusters: Synthesis, characterization and application in drug delivery. J. Magn. Magn. Mater., 2020, 498, 166222.
[http://dx.doi.org/10.1016/j.jmmm.2019.166222]
[77]
Pašukonienė V.; Mlynska, A.; Steponkienė S.; Poderys, V.; Matulionytė M.; Karabanovas, V.; Statkutė U.; Purvinienė R.; Kraśko, J.A.; Jagminas, A.; Kurtinaitienė M.; Strioga, M.; Rotomskis, R. Accumulation and biological effects of cobalt ferrite nanoparticles in human pancreatic and ovarian cancer cells. Medicina (Kaunas), 2014, 50(4), 237-244.
[http://dx.doi.org/10.1016/j.medici.2014.09.009] [PMID: 25458961]
[78]
Balakrishnan, P.B.; Silvestri, N.; Fernandez-Cabada, T.; Marinaro, F.; Fernandes, S.; Fiorito, S.; Miscuglio, M.; Serantes, D.; Ruta, S.; Livesey, K.; Hovorka, O.; Chantrell, R.; Pellegrino, T. Exploiting unique alignment of cobalt ferrite nanoparticles, mild hyperthermia, and controlled intrinsic cobalt toxicity for cancer therapy. Adv. Mater., 2020, 32(45), 2003712.
[http://dx.doi.org/10.1002/adma.202003712] [PMID: 33002227]
[79]
López-Moreno, M.L.; Avilés, L.L.; Pérez, N.G.; Irizarry, B.Á.; Perales, O.; Cedeno-Mattei, Y.; Román, F. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci. Total Environ., 2016, 550, 45-52.
[http://dx.doi.org/10.1016/j.scitotenv.2016.01.063] [PMID: 26803683]
[80]
Ursache-Oprisan, M.; Focanici, E.; Creanga, D.; Caltun, O. Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr. J. Biotechnol., 2011, 10(36), 7092-7098.
[81]
Gupta, R.C.; Goad, J.T. Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine. Arch. Toxicol., 2000, 74(1), 13-20.
[http://dx.doi.org/10.1007/s002040050646] [PMID: 10817662]
[82]
Ramaiah, S.K. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem. Toxicol., 2007, 45(9), 1551-1557.
[http://dx.doi.org/10.1016/j.fct.2007.06.007] [PMID: 17658209]
[83]
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Kim, B.G.; Park, S.J.; Kim, H.W.; Lee, K.H.; Park, S.B.; Lee, J.K.; Cho, M.H. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci., 2006, 89(1), 338-347.
[http://dx.doi.org/10.1093/toxsci/kfj027] [PMID: 16237191]
[84]
Liu, Y.; Xu, H.; Liu, F.; Tao, R.; Yin, J. Effects of serum cobalt ion concentration on the liver, kidney and heart in mice. Orthop. Surg., 2010, 2(2), 134-140.
[http://dx.doi.org/10.1111/j.1757-7861.2010.00076.x] [PMID: 22009928]
[85]
Young, L.K.; Matthew, S.Z.; Houston, J.G. Absence of potential gadolinium toxicity symptoms following 22,897 gadoteric acid (Dotarem®) examinations, including 3,209 performed on renally insufficient individuals. Eur. Radiol., 2019, 29(4), 1922-1930.
[http://dx.doi.org/10.1007/s00330-018-5737-z] [PMID: 30276674]
[86]
Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals, 2016, 29(3), 365-376.
[http://dx.doi.org/10.1007/s10534-016-9931-7] [PMID: 27053146]
[87]
Murugadoss, S.; Lison, D.; Godderis, L.; Van Den Brule, S.; Mast, J.; Brassinne, F.; Sebaihi, N.; Hoet, P.H. Toxicology of silica nanoparticles: An update. Arch. Toxicol., 2017, 91(9), 2967-3010.
[http://dx.doi.org/10.1007/s00204-017-1993-y] [PMID: 28573455]
[88]
Pavan, C.; Delle Piane, M.; Gullo, M.; Filippi, F.; Fubini, B.; Hoet, P.; Horwell, C.J.; Huaux, F.; Lison, D.; Lo Giudice, C.; Martra, G.; Montfort, E.; Schins, R.; Sulpizi, M.; Wegner, K.; Wyart-Remy, M.; Ziemann, C.; Turci, F. The puzzling issue of silica toxicity: Are silanols bridging the gaps between surface states and pathogenicity? Part. Fibre Toxicol., 2019, 16(1), 32.
[http://dx.doi.org/10.1186/s12989-019-0315-3] [PMID: 31419990]
[89]
Akhtar, S.; An, W.; Niu, X.; Li, K.; Anwar, S.; Maaz, K.; Maqbool, M.; Gao, L. Toxicity of PEG-Coated CoFe2O4 nanoparticles with treatment effect of curcumin. Nanoscale Res. Lett., 2018, 13(1), 52.
[http://dx.doi.org/10.1186/s11671-018-2468-7] [PMID: 29445876]
[90]
Hall, P.; Cash, J. What is the real function of the liver ‘function’ tests? Ulster Med. J., 2012, 81(1), 30-36.
[PMID: 23536736]
[91]
Kückelhaus, S.; Reis, S.C.; Carneiro, M.F.; Tedesco, A.C.; Oliveira, D.M.; Lima, E.C.D.; Morais, P.C.; Azevedo, R.B.; Lacava, Z.G.M. In vivo investigation of cobalt ferrite-based magnetic fluid and magnetoliposomes using morphological tests. J. Magn. Magn. Mater., 2004, 272-276, 2402-2403.
[http://dx.doi.org/10.1016/j.jmmm.2003.12.1218]
[92]
Ahmad, F.; Liu, X.; Zhou, Y.; Yao, H.; Zhao, F.; Ling, Z.; Xu, C. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2O4) nanoparticles in zebrafish larvae. Environ. Toxicol., 2016, 31(12), 2068-2080.
[http://dx.doi.org/10.1002/tox.22206] [PMID: 26462460]
[93]
Akhtar, K.; Javed, Y.; Jamil, Y.; Muhammad, F. Functionalized cobalt ferrite cubes: Toxicity, interactions and mineralization into ferritin proteins. Appl. Nanosci., 2020, 10(9), 3659-3674.
[http://dx.doi.org/10.1007/s13204-020-01484-x]
[94]
Volatron, J.; Kolosnjaj-Tabi, J.; Javed, Y.; Vuong, Q.L.; Gossuin, Y.; Neveu, S.; Luciani, N.; Hémadi, M.; Carn, F.; Alloyeau, D.; Gazeau, F. Physiological remediation of Cobalt ferrite nanoparticles by Ferritin. Sci. Rep., 2017, 7(1), 40075.
[http://dx.doi.org/10.1038/srep40075] [PMID: 28067263]
[95]
Morgan, D.B.; Carver, M.E.; Payne, R.B. Plasma creatinine and urea: Creatinine ratio in patients with raised plasma urea. BMJ, 1977, 2(6092), 929-932.
[http://dx.doi.org/10.1136/bmj.2.6092.929] [PMID: 912370]
[96]
Urashima, M.; Toyoda, S.; Nakano, T.; Matsuda, S.; Kobayashi, N.; Kitajima, H.; Tokushige, A.; Horita, H.; Akatsuka, J.; Maekawa, K. BUN/Cr ratio as an index of gastrointestinal bleeding mass in children. J. Pediatr. Gastroenterol. Nutr., 1992, 15(1), 89-92.
[http://dx.doi.org/10.1097/00005176-199207000-00014] [PMID: 1403455]
[97]
Sattarahmady, N.; Zare, T.; Mehdizadeh, A.R.; Azarpira, N.; Heidari, M.; Lotfi, M.; Heli, H. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies. Colloids Surf. B Biointerfaces, 2015, 129, 15-20.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.021] [PMID: 25819361]
[98]
Bárcena, C.; Sra, A.K.; Chaubey, G.S.; Khemtong, C.; Liu, J.P.; Gao, J. Zinc ferrite nanoparticles as MRI contrast agents. Chem. Commun. (Camb.), 2008, (19), 2224-2226.
[http://dx.doi.org/10.1039/b801041b] [PMID: 18463747]
[99]
Simonsen, L.O.; Harbak, H.; Bennekou, P. Cobalt metabolism and toxicology-A brief update. Sci. Total Environ., 2012, 432, 210-215.
[http://dx.doi.org/10.1016/j.scitotenv.2012.06.009] [PMID: 22732165]
[100]
Shakil, M.S.; Hasan, M.A.; Sarker, S.R. Iron oxide nanoparticles for breast cancer theranostics. Curr. Drug Metab., 2019, 20(6), 446-456.
[http://dx.doi.org/10.2174/1389200220666181122105043] [PMID: 30465497]
[101]
Marmorato, P.; Ceccone, G.; Gianoncelli, A.; Pascolo, L.; Ponti, J.; Rossi, F.; Salomé, M.; Kaulich, B.; Kiskinova, M. Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts. Toxicol. Lett., 2011, 207(2), 128-136.
[http://dx.doi.org/10.1016/j.toxlet.2011.08.026] [PMID: 21925252]
[102]
Erofeev, A.; Gorelkin, P.; Garanina, A.; Alova, A.; Efremova, M.; Vorobyeva, N.; Edwards, C.; Korchev, Y.; Majouga, A. Novel method for rapid toxicity screening of magnetic nanoparticles. Sci. Rep., 2018, 8(1), 7462.
[http://dx.doi.org/10.1038/s41598-018-25852-4] [PMID: 29748550]
[103]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[104]
Rowe, L.A.; Degtyareva, N.; Doetsch, P.W. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic. Biol. Med., 2008, 45(8), 1167-1177.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.018] [PMID: 18708137]
[105]
Nomura, Y.; Okamoto, S.; Sakamoto, M.; Feng, Z.; Nakamura, T. Effect of cobalt on the liver glycogen content in the streptozotocin-induced diabetic rats. Mol. Cell. Biochem., 2005, 277(1-2), 127-130.
[http://dx.doi.org/10.1007/s11010-005-5777-y] [PMID: 16132723]
[106]
Guzelian, P.S.; Bissell, D.M. Effect of cobalt on synthesis of heme and cytochrome P-450 in the liver. Studies of adult rat hepatocytes in primary monolayer culture and in vivo. J. Biol. Chem., 1976, 251(14), 4421-4427.
[http://dx.doi.org/10.1016/S0021-9258(17)33313-6] [PMID: 932038]
[107]
Nakamura, M.; Yasukochi, Y.; Minakami, S. Effect of cobalt on heme biosynthesis in rat liver and spleen. J. Biochem., 1975, 78(2), 373-380.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a130917] [PMID: 1228174]
[108]
Meidanchi, A. Cobalt ferrite nanoparticles supported on reduced graphene oxide sheets: Optical, magnetic and magneto-antibacterial studies. Nanotechnology, 2020, 31(44), 445704.
[http://dx.doi.org/10.1088/1361-6528/aba7e2] [PMID: 32693389]
[109]
Shams, S.F.; Ghazanfari, M.R.; Pettinger, S.; Tavabi, A.H.; Siemensmeyer, K.; Smekhova, A.; Dunin-Borkowski, R.E.; Westmeyer, G.G.; Schmitz-Antoniak, C. Structural perspective on revealing heat dissipation behavior of CoFe2O4–Pd nanohybrids: Great promise for magnetic fluid hyperthermia. Phys. Chem. Chem. Phys., 2020, 22(46), 26728-26741.
[http://dx.doi.org/10.1039/D0CP02076A] [PMID: 33078790]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy