Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanoparticle-based CRISPR/Cas Delivery: An Emerging Tactic for Cancer Therapy

Author(s): Fahima Dilnawaz* and Sarbari Acharya*

Volume 30, Issue 31, 2023

Published on: 21 December, 2022

Page: [3562 - 3581] Pages: 20

DOI: 10.2174/0929867329666221006112615

Price: $65

Abstract

Genome editing arose as a new promising approach for treating numerous intricate ailm ents including cancer. Over the past couple of decades, delivery technologies that have serendipitously been developed using viral vectors are successful to some extent in protein and nucleic acid delivery but their effectiveness still lags due to their efficiency, tissue targeting capabilities, and toxicity which must be further improved. With the infiltration of nanotechnology into every sphere of life, nano-vehicles can be implemented as an ideal modality that can overcome challenges, also can be introspective as new genome editing tools for cancer therapy owing to the safety and efficiency in clinical settings. Such projected substitution can help in developing highly efficacious therapy regimes which are successful in clinical settings. This emerging approach of incorporation of genome editors (CRISPR/Cas) in different nano vehicles and their utility in targeting various aspects of cancer therapy like treatment, diagnostics, modelling has been comprehensively done in this review.

Keywords: CRISPR, Cas9, nanotechnology, nanoparticles, cancer, gene editing.

[1]
Ghosh, D.; Venkataramani, P.; Nandi, S. CRISPR–Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int., 2019, 19, 12.
[http://dx.doi.org/10.1186/s12935-019-0726-0]
[2]
Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells, 2020, 9(1608), 1-23.
[3]
Wang, H.X.; Li, M.; Lee, C.M.; Chakraborty, S.; Kim, H.W.; Bao, G.; Leong, K.W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev., 2017, 117(15), 9874-9906.
[http://dx.doi.org/10.1021/acs.chemrev.6b00799] [PMID: 28640612]
[4]
Jacinto, F.V.; Link, W.; Ferreira, B.I. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. J. Cell. Mol. Med., 2020, 24(7), 3766-3778.
[http://dx.doi.org/10.1111/jcmm.14916] [PMID: 32096600]
[5]
Cyranoski, D. Chinese scientists to pioneer first human CRISPR trial. Nature, 2016, 535(7613), 476-477.
[http://dx.doi.org/10.1038/nature.2016.20302] [PMID: 27466105]
[6]
Wilbie, D.; Walther, J.; Mastrobattista, E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc. Chem. Res., 2019, 52(6), 1555-1564.
[http://dx.doi.org/10.1021/acs.accounts.9b00106] [PMID: 31099553]
[7]
Yip, B. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules, 2020, 10(6), 839.
[http://dx.doi.org/10.3390/biom10060839] [PMID: 32486234]
[8]
Marraffini, L.A.; Sontheimer, E.J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 2010, 463(7280), 568-571.
[http://dx.doi.org/10.1038/nature08703] [PMID: 20072129]
[9]
Xu, X.; Wan, T.; Xin, H.; Li, D.; Pan, H.; Wu, J.; Ping, Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J. Gene Med., 2019, 21(7), e3107.
[http://dx.doi.org/10.1002/jgm.3107] [PMID: 31237055]
[10]
Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014, 343(6166), 80-84.
[http://dx.doi.org/10.1126/science.1246981] [PMID: 24336569]
[11]
Sahel, D.K.; Mittal, A.; Chitkara, D. CRISPR/Cas system for genome editing: Progress and prospects as therapeutic a tool. J. Exp. Pharm. Exp. Ther., 2021, 379(2), 1-41.
[12]
Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol., 1987, 169(12), 5429-5433.
[http://dx.doi.org/10.1128/jb.169.12.5429-5433.1987] [PMID: 3316184]
[13]
Jansen, R.; Embden, J.D.A.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol., 2002, 43(6), 1565-1575.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[14]
Song, X.; Liu, C.; Wang, N.; Huang, H.; He, S.; Gong, C.; Wei, Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv. Drug Deliv. Rev., 2021, 168, 158-180.
[http://dx.doi.org/10.1016/j.addr.2020.04.010] [PMID: 32360576]
[15]
Karimian, A.; Azizian, K.; Parsian, H.; Rafieian, S.; Shafiei-Irannejad, V.; Kheyrollah, M.; Yousefi, M.; Majidinia, M.; Yousefi, B. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J. Cell. Physiol., 2019, 234(8), 12267-12277.
[http://dx.doi.org/10.1002/jcp.27972] [PMID: 30697727]
[16]
Marraffini, L.A. The CRISPR-Cas system of streptococcus pyogenes: Function and applications function and applications. In: Streptococcus pyogenes: Basic biology to clinical manifestations; Ferretti, J.J.; Stevens, D.L.; Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, 2016.
[17]
Li, L.; Hu, S.; Chen, X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 2018, 171, 207-218.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.031] [PMID: 29704747]
[18]
Duckert, B.; Vinkx, S.; Braeken, D.; Fauvart, M. Single-cell transfection technologies for cell therapies and gene editing. J. Control. Release, 2021, 330, 963-975.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.068] [PMID: 33160005]
[19]
Shi, J.; Ma, Y.; Zhu, J.; Chen, Y.; Sun, Y.; Yao, Y.; Yang, Z.; Xie, J. A review on electroporation-based intracellular delivery. Molecules, 2018, 23(11), 3044.
[http://dx.doi.org/10.3390/molecules23113044] [PMID: 30469344]
[20]
Eoh, J.; Gu, L. Biomaterials as vectors for the delivery of CRISPR–Cas9. Biomater. Sci., 2019, 7(4), 1240-1261.
[http://dx.doi.org/10.1039/C8BM01310A] [PMID: 30734775]
[21]
Padayachee, J.; Singh, M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine (Rij), 2020, 7, 1849543520983196.
[http://dx.doi.org/10.1177/1849543520983196] [PMID: 33488814]
[22]
Liu, C.; Zhang, L.; Liu, H.; Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release, 2017, 266, 17-26.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.012] [PMID: 28911805]
[23]
Wong, J.K.L.; Mohseni, R.; Hamidieh, A.A.; MacLaren, R.E.; Habib, N.; Seifalian, A.M. Will nanotechnology bring new hope for gene delivery? Trends Biotechnol., 2017, 35(5), 434-451.
[http://dx.doi.org/10.1016/j.tibtech.2016.12.009] [PMID: 28108036]
[24]
Naeem, M.; Hoque, M.Z.; Ovais, M.; Basheer, C.; Ahmad, I. Stimulus-responsive smart nanoparticles-based CRISPR-Cas delivery for therapeutic genome editing. Int. J. Mol. Sci., 2021, 22(20), 11300.
[http://dx.doi.org/10.3390/ijms222011300] [PMID: 34681959]
[25]
Asai, T.; Tsuzuku, T.; Takahashi, S.; Okamoto, A.; Dewa, T.; Nango, M.; Hyodo, K.; Ishihara, H.; Kikuchi, H.; Oku, N. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem. Biophys. Res. Commun., 2014, 444(4), 599-604.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.107] [PMID: 24486551]
[26]
Cardarelli, F.; Pozzi, D.; Bifone, A.; Marchini, C.; Caracciolo, G. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol. Pharm., 2012, 9(2), 334-340.
[http://dx.doi.org/10.1021/mp200374e] [PMID: 22196199]
[27]
Nelson, C.E.; Gersbach, C.A. Engineering delivery vehicles for genome editing. Annu. Rev. Chem. Biomol. Eng., 2016, 7(1), 637-662.
[http://dx.doi.org/10.1146/annurev-chembioeng-080615-034711] [PMID: 27146557]
[28]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[29]
Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J. RNA-programmed genome editing in human cells. eLife, 2013, 2, e00471.
[http://dx.doi.org/10.7554/eLife.00471] [PMID: 23386978]
[30]
Radaic, A.; Paula, E.D.; Jesus, M.B.D. Factorial design and development of Solid Lipid Nanoparticles (SLN) for gene delivery. J. Nanosci. Nanotechnol., 2015, 15(2), 1793-1800.
[http://dx.doi.org/10.1166/jnn.2015.9002] [PMID: 26353734]
[31]
Suñé-Pou, M.; Limeres, M.J.; Moreno-Castro, C.; Hernández-Munain, C.; Suñé-Negre, J.M.; Cuestas, M.L.; Suñé, C. Innovative therapeutic and delivery approaches using nanotechnology to correct splicing defects underlying disease. Front. Genet., 2020, 11(731), 731.
[http://dx.doi.org/10.3389/fgene.2020.00731] [PMID: 32760425]
[32]
Wei, T.; Cheng, Q.; Min, Y.L.; Olson, E.N.; Siegwart, D.J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun., 2020, 11(1), 3232.
[http://dx.doi.org/10.1038/s41467-020-17029-3] [PMID: 32591530]
[33]
Zhang, Z.; Zhang, Y.; Gao, F.; Han, S.; Cheah, K.S.; Tse, H.F.; Lian, Q. CRISPR/Cas9 genome-editing system in human stem cells: Current status and future prospects. Mol. Ther. Nucleic Acids, 2017, 9, 230-241.
[http://dx.doi.org/10.1016/j.omtn.2017.09.009] [PMID: 29246302]
[34]
Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; Shah, R.R.; Shah, A.; Ling, D.; Growe, J.; Pink, M.; Rohde, E.; Wood, K.M.; Salomon, W.E.; Harrington, W.F.; Dombrowski, C.; Strapps, W.R.; Chang, Y.; Morrissey, D.V. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep., 2018, 22(9), 2227-2235.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[35]
Miller, J.B.; Zhang, S.; Kos, P.; Xiong, H.; Zhou, K.; Perelman, S.S.; Zhu, H.; Siegwart, D.J. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed., 2017, 56(4), 1059-1063.
[http://dx.doi.org/10.1002/anie.201610209] [PMID: 27981708]
[36]
Guo, P.; Yang, J.; Huang, J.; Auguste, D.T.; Moses, M.A. Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel. Proc. Natl. Acad. Sci. USA, 2019, 116(37), 18295-18303.
[http://dx.doi.org/10.1073/pnas.1904697116] [PMID: 31451668]
[37]
Mukherjee, A.; Waters, A.K.; Kalyan, P.; Achrol, A.S.; Kesari, S.; Yenugonda, V.M. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine, 2019, 14, 1937-1952.
[http://dx.doi.org/10.2147/IJN.S198353] [PMID: 30936695]
[38]
Yang, Q.; Zhou, Y.; Chen, J.; Huang, N.; Wang, Z.; Cheng, Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int. J. Nanomedicine, 2021, 16, 185-199.
[http://dx.doi.org/10.2147/IJN.S286221] [PMID: 33447034]
[39]
Chang, J.; Chen, X.; Glass, Z.; Gao, F.; Mao, L.; Wang, M.; Xu, Q. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Acc. Chem. Res., 2019, 52(3), 665-675.
[http://dx.doi.org/10.1021/acs.accounts.8b00493] [PMID: 30586281]
[40]
Li, Y.; Yang, T.; Yu, Y.; Shi, N.; Yang, L.; Glass, Z.; Bolinger, J.; Finkel, I.J.; Li, W.; Xu, Q. Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins. Biomaterials, 2018, 178, 652-662.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.011] [PMID: 29549971]
[41]
Zhu, D.; Shen, H.; Tan, S.; Hu, Z.; Wang, L.; Yu, L.; Tian, X.; Ding, W.; Ren, C.; Gao, C.; Cheng, J.; Deng, M.; Liu, R.; Hu, J.; Xi, L.; Wu, P.; Zhang, Z.; Ma, D.; Wang, H. Nanoparticles based on poly (β-amino ester) and HPV16 targeting CRISPR/shRNA as potential drugs for HPV16 related cervical malignancy. Mol. Ther., 2018, 26(10), 2443-2455.
[http://dx.doi.org/10.1016/j.ymthe.2018.07.019] [PMID: 30241742]
[42]
Liu, B.Y.; He, X.Y.; Zhuo, R.X.; Cheng, S.X. Tumor targeted genome editing mediated by a multi-functional gene vector for regulating cell behaviors. J. Control. Release, 2018, 291, 90-98.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.018] [PMID: 30339905]
[43]
Zhang, L.; Wang, P.; Feng, Q.; Wang, N.; Chen, Z.; Huang, Y.; Zheng, W.; Jiang, X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater., 2017, 9(10), e441.
[http://dx.doi.org/10.1038/am.2017.185]
[44]
Chen, Z.; Liu, F.; Chen, Y.; Liu, J.; Wang, X.; Chen, A.T.; Deng, G.; Zhang, H.; Liu, J.; Hong, Z.; Zhou, J. Targeted delivery of CRISPR/Cas9-mediated cancer gene therapy via liposome-templated hydrogel nanoparticles. Adv. Funct. Mater., 2017, 27(46), 1703036.
[http://dx.doi.org/10.1002/adfm.201703036] [PMID: 29755309]
[45]
Wang, H.X.; Song, Z.; Lao, Y.H.; Xu, X.; Gong, J.; Cheng, D.; Chakraborty, S.; Park, J.S.; Li, M.; Huang, D.; Yin, L.; Cheng, J.; Leong, K.W. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl. Acad. Sci. USA, 2018, 115(19), 4903-4908.
[http://dx.doi.org/10.1073/pnas.1712963115] [PMID: 29686087]
[46]
Fu, Y.; Foden, J.A.; Khayter, C.; Maeder, M.L.; Reyon, D.; Joung, J.K.; Sander, J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 2013, 31(9), 822-826.
[http://dx.doi.org/10.1038/nbt.2623] [PMID: 23792628]
[47]
Zhang, X.H.; Tee, L.Y.; Wang, X.G.; Huang, Q.S.; Yang, S.H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids, 2015, 4, e264.
[http://dx.doi.org/10.1038/mtna.2015.37] [PMID: 26575098]
[48]
Fu, Y.; Sander, J.D.; Reyon, D.; Cascio, V.M.; Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 2014, 32(3), 279-284.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[49]
Guilinger, J.P.; Thompson, D.B.; Liu, D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 2014, 32(6), 577-582.
[http://dx.doi.org/10.1038/nbt.2909] [PMID: 24770324]
[50]
Kim, D.; Kim, S.; Kim, S.; Park, J.; Kim, J.S. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res., 2016, 26(3), 406-415.
[http://dx.doi.org/10.1101/gr.199588.115] [PMID: 26786045]
[51]
Shen, B.; Zhang, W.; Zhang, J.; Zhou, J.; Wang, J.; Chen, L.; Wang, L.; Hodgkins, A.; Iyer, V.; Huang, X.; Skarnes, W.C. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods, 2014, 11(4), 399-402.
[http://dx.doi.org/10.1038/nmeth.2857] [PMID: 24584192]
[52]
Kim, S.; Kim, D.; Cho, S.W.; Kim, J.; Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 2014, 24(6), 1012-1019.
[http://dx.doi.org/10.1101/gr.171322.113] [PMID: 24696461]
[53]
Chiang, T.W.W.; le Sage, C.; Larrieu, D.; Demir, M.; Jackson, S.P. CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing. Sci. Rep., 2016, 6(1), 24356.
[http://dx.doi.org/10.1038/srep24356]
[54]
Zuris, J.A.; Thompson, D.B.; Shu, Y.; Guilinger, J.P.; Bessen, J.L.; Hu, J.H.; Maeder, M.L.; Joung, J.K.; Chen, Z.Y.; Liu, D.R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol., 2015, 33(1), 73-80.
[http://dx.doi.org/10.1038/nbt.3081] [PMID: 25357182]
[55]
Wang, X.; Niu, D.; Hu, C.; Li, P. Polyethyleneimine-based nanocarriers for gene delivery. Curr. Pharm. Des., 2015, 21(42), 6140-6156.
[http://dx.doi.org/10.2174/1381612821666151027152907] [PMID: 26503146]
[56]
Kodama, Y.; Noda, R.; Sato, K.; Harasawa, H.; Kurosaki, T.; Nakagawa, H.; Nakamura, T.; Kitahara, T.; Muro, T.; Sasaki, H. Methotrexate-coated complexes of plasmid DNA and polyethylenimine for gene delivery. Biol. Pharm. Bull., 2018, 41(10), 1537-1542.
[http://dx.doi.org/10.1248/bpb.b18-00144] [PMID: 30270323]
[57]
Sun, W.; Ji, W.; Hall, J.M.; Hu, Q.; Wang, C.; Beisel, C.L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed., 2015, 54(41), 12029-12033.
[http://dx.doi.org/10.1002/anie.201506030] [PMID: 26310292]
[58]
Sun, W.; Jiang, T.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc., 2014, 136(42), 14722-14725.
[http://dx.doi.org/10.1021/ja5088024] [PMID: 25336272]
[59]
Liu, Q.; Zhao, K.; Wang, C.; Zhang, Z.; Zheng, C.; Zhao, Y.; Zheng, Y.; Liu, C.; An, Y.; Shi, L.; Kang, C.; Liu, Y. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. (Weinh.), 2019, 6(1), 1801423.
[http://dx.doi.org/10.1002/advs.201801423] [PMID: 30643726]
[60]
Moffett, H.F.; Coon, M.E.; Radtke, S.; Stephan, S.B.; McKnight, L.; Lambert, A.; Stoddard, B.L.; Kiem, H.P.; Stephan, M.T. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat. Commun., 2017, 8(1), 389.
[http://dx.doi.org/10.1038/s41467-017-00505-8] [PMID: 28855514]
[61]
Smith, T.T.; Stephan, S.B.; Moffett, H.F.; McKnight, L.E.; Ji, W.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M.E.; Pillai, S.P.S.; Stephan, M.T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol., 2017, 12(8), 813-820.
[http://dx.doi.org/10.1038/nnano.2017.57] [PMID: 28416815]
[62]
Sheikh, O.; Yokota, T. Developing DMD therapeutics: A review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin. Investig. Drugs, 2021, 30(2), 167-176.
[http://dx.doi.org/10.1080/13543784.2021.1868434] [PMID: 33393390]
[63]
Xie, J.; Bi, Y.; Zhang, H.; Dong, S.; Teng, L.; Lee, R.J.; Yang, Z. Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Front. Pharmacol., 2020, 11, 697.
[http://dx.doi.org/10.3389/fphar.2020.00697] [PMID: 32508641]
[64]
Ramakrishna, S.; Kwaku Dad, A.B.; Beloor, J.; Gopalappa, R.; Lee, S.K.; Kim, H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 2014, 24(6), 1020-1027.
[http://dx.doi.org/10.1101/gr.171264.113] [PMID: 24696462]
[65]
Hu, H.; Wang, J.; Wang, H.; Tan, T.; Li, J.; Wang, Z.; Sun, K.; Li, Y.; Zhang, Z. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics, 2018, 8(13), 3597-3610.
[http://dx.doi.org/10.7150/thno.25608] [PMID: 30026869]
[66]
Mout, R.; Ray, M.; Yesilbag Tonga, G.; Lee, Y.W.; Tay, T.; Sasaki, K.; Rotello, V.M. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 2017, 11(3), 2452-2458.
[http://dx.doi.org/10.1021/acsnano.6b07600] [PMID: 28129503]
[67]
Jain, P.K.; Lo, J.H.; Rananaware, S.; Downing, M.; Panda, A.; Tai, M.; Raghavan, S.; Fleming, H.E.; Bhatia, S.N. Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes. Nanoscale, 2019, 11(44), 21317-21323.
[http://dx.doi.org/10.1039/C9NR01786K] [PMID: 31670340]
[68]
Liang, H.; Zhang, X.B.; Lv, Y.; Gong, L.; Wang, R.; Zhu, X.; Yang, R.; Tan, W. Functional DNA-containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 2014, 47(6), 1891-1901.
[http://dx.doi.org/10.1021/ar500078f] [PMID: 24780000]
[69]
Ray, M.; Lee, Y.W.; Hardie, J.; Mout, R.; Yeşilbag Tonga, G.; Farkas, M.E.; Rotello, V.M. CRISPRed macrophages for cell-based cancer immunotherapy. Bioconjug. Chem., 2018, 29(2), 445-450.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00768] [PMID: 29298051]
[70]
Cheng, W.J.; Chen, L.C.; Ho, H.O.; Lin, H.L.; Sheu, M.T. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Int. J. Nanomedicine, 2018, 13, 7079-7094.
[http://dx.doi.org/10.2147/IJN.S181440] [PMID: 30464460]
[71]
Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater., 2012, 24(11), 1418-1423.
[http://dx.doi.org/10.1002/adma.201104714] [PMID: 22318874]
[72]
Wang, P.; Zhang, L.; Zheng, W.; Cong, L.; Guo, Z.; Xie, Y.; Wang, L.; Tang, R.; Feng, Q.; Hamada, Y.; Gonda, K.; Hu, Z.; Wu, X.; Jiang, X. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew. Chem. Int. Ed., 2018, 57(6), 1491-1496.
[http://dx.doi.org/10.1002/anie.201708689] [PMID: 29282854]
[73]
Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm., 2021, 605, 120807.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120807] [PMID: 34144133]
[74]
Rezvantalab, S.; Drude, N.I.; Moraveji, M.K.; Güvener, N.; Koons, E.K.; Shi, Y.; Lammers, T.; Kiessling, F. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol., 2018, 9, 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[75]
Jo, A.; Ringel-Scaia, V.M.; McDaniel, D.K.; Thomas, C.A.; Zhang, R.; Riffle, J.S.; Allen, I.C.; Davis, R.M. Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmid. J. Nanobiotechnol., 2020, 18(1), 16.
[http://dx.doi.org/10.1186/s12951-019-0564-1] [PMID: 31959180]
[76]
Srivastav, A.; Gupta, K.; Chakraborty, D. Efficiency of chitosan-coated PLGA nanocarriers for cellular delivery of siRNA and CRISPR/Cas9 complex. J. Pharm. Innov., 2022, 17, 180-193.
[http://dx.doi.org/10.1007/s12247-020-09496-4]
[77]
Yue, H.; Zhou, X.; Cheng, M.; Xing, D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale, 2018, 10(3), 1063-1071.
[http://dx.doi.org/10.1039/C7NR07999K] [PMID: 29266160]
[78]
Zhou, W.; Cui, H.; Ying, L.; Yu, X.F. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angew. Chem. Int. Ed., 2018, 57(32), 10268-10272.
[http://dx.doi.org/10.1002/anie.201806941] [PMID: 29939484]
[79]
Yang, X.; Tang, Q.; Jiang, Y.; Zhang, M.; Wang, M.; Mao, L. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc., 2019, 141(9), 3782-3786.
[http://dx.doi.org/10.1021/jacs.8b11996] [PMID: 30722666]
[80]
Meng, W.; He, C.; Hao, Y.; Wang, L.; Li, L.; Zhu, G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv., 2020, 27(1), 585-598.
[http://dx.doi.org/10.1080/10717544.2020.1748758] [PMID: 32264719]
[81]
Xu, Q.; Zhang, Z.; Zhao, L.; Qin, Y.; Cai, H.; Geng, Z.; Zhu, X.; Zhang, W.; Zhang, Y.; Tan, J.; Wang, J.; Zhou, J. Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B- cell malignancies. J. Control. Release, 2020, 326, 455-467.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.033] [PMID: 32711027]
[82]
Li, Z.; Zhou, X.; Wei, M.; Gao, X.; Zhao, L.; Shi, R.; Sun, W.; Duan, Y.; Yang, G.; Yuan, L. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett., 2019, 19(1), 19-28.
[http://dx.doi.org/10.1021/acs.nanolett.8b02689] [PMID: 30517011]
[83]
Zhuang, J.; Tan, J.; Wu, C.; Zhang, J.; Liu, T.; Fan, C.; Li, J.; Zhang, Y. Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. Nucleic Acids Res., 2020, 48(16), 8870-8882.
[http://dx.doi.org/10.1093/nar/gkaa683] [PMID: 32810272]
[84]
He, C.; Jaffar Ali, D.; Xu, H.; Kumaravel, S.; Si, K.; Li, Y.; Sun, B.; Ma, J.; Xiao, Z. Epithelial cell -derived microvesicles: A safe delivery platform of CRISPR/Cas9 conferring synergistic anti-tumor effect with sorafenib. Exp. Cell Res., 2020, 392(2), 112040.
[http://dx.doi.org/10.1016/j.yexcr.2020.112040] [PMID: 32380039]
[85]
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release, 2017, 266(266), 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[86]
Tu, K.; Deng, H.; Kong, L.; Wang, Y.; Yang, T.; Hu, Q.; Hu, M.; Yang, C.; Zhang, Z. Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with crispr/cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl. Mater. Interfaces, 2020, 12(14), 16018-16030.
[http://dx.doi.org/10.1021/acsami.9b23084] [PMID: 32192326]
[87]
Chen, C; Ma, Y; Du, S; Wu, Y; Shen, P; Yan, T; Li, X; Song, Y; Zha, Z; Han, X. Controlled CRISPR-Cas9 ribonucleoprotein delivery for sensitized photothermal therapy. Small, 2021, 17(33), e2101155.
[88]
Shi, J.; Yang, X.; Li, Y.; Wang, D.; Liu, W.; Zhang, Z.; Liu, J.; Zhang, K. MicroRNA-responsive release of Cas9/sgRNA from DNA nanoflower for cytosolic protein delivery and enhanced genome editing. Biomaterials, 2020, 256, 120221.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120221] [PMID: 32738651]
[89]
Pu, Y.; Yin, H.; Dong, C.; Xiang, H.; Wu, W.; Zhou, B.; Du, D.; Chen, Y.; Xu, H. Sono-controllable and ROS-sensitive CRISPR-Cas9 genome editing for augmented/synergistic ultrasound tumor nanotherapy. Adv. Mater., 2021, 33(45), 2104641.
[http://dx.doi.org/10.1002/adma.202104641] [PMID: 34536041]
[90]
Liu, B.Y.; He, H.X.; Xu, C.; Xu, L.; Ai, S.L.; Cheng, S.X.; Zhuo, R.X. A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells. Biomacromolecules, 2018, 19(7), 2957-2968.
[http://dx.doi.org/10.1021/acs.biomac.8b00511]
[91]
Noureddine, A.; Maestas-Olguin, A.; Saada, E.A.; LaBauve, A.E.; Agola, J.O.; Baty, K.E.; Howard, T.; Sabo, J.K.; Espinoza, C.R.S.; Doudna, J.A.; Schoeniger, J.S.; Butler, K.S.; Negrete, O.A.; Brinker, C.J.; Serda, R.E. Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomater., 2020, 114, 358-368.
[http://dx.doi.org/10.1016/j.actbio.2020.07.027] [PMID: 32702530]
[92]
Liu, Q.; Wang, C.; Zheng, Y.; Zhao, Y.; Wang, Y.; Hao, J.; Zhao, X.; Yi, K.; Shi, L.; Kang, C.; Liu, Y. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy. Biomaterials, 2020, 258, 120275.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120275] [PMID: 32798741]
[93]
Hryhorowicz, M.; Grześkowiak, B.; Mazurkiewicz, N.; Śledziński, P.; Lipiński, D.; Słomski, R. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol. Biotechnol., 2019, 61(3), 173-180.
[http://dx.doi.org/10.1007/s12033-018-0145-9] [PMID: 30560399]
[94]
Kaushik, A.; Yndart, A.; Atluri, V.; Tiwari, S.; Tomitaka, A.; Gupta, P.; Jayant, R.D.; Alvarez-Carbonell, D.; Khalili, K.; Nair, M. Magnetically guided non-invasive CRISPR-Cas9/gRNA delivery across blood-brain barrier to eradicate latent HIV-1 infection. Sci. Rep., 2019, 9(1), 3928.
[http://dx.doi.org/10.1038/s41598-019-40222-4] [PMID: 30850620]
[95]
Deng, S.; Li, X.; Liu, S.; Chen, J.; Li, M.; Chew, S.Y.; Leong, K.W.; Cheng, D. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci. Adv., 2020, 6(29), eabb4005.
[http://dx.doi.org/10.1126/sciadv.abb4005] [PMID: 32832641]
[96]
Xu, X.; Koivisto, O.; Liu, C.; Zhou, J.; Miihkinen, M.; Jacquemet, G. Effective delivery of the CRISPR/Cas9 system enabled by functionalized mesoporous silica nanoparticles for GFP-tagged paxillin knock-. Adv. Therap., 2021, 4(1), 2000072.
[97]
Khalaf, K.; Janowicz, K.; Dyszkiewicz-Konwińska, M.; Hutchings, G.; Dompe, C.; Moncrieff, L.; Jankowski, M.; Machnik, M.; Oleksiewicz, U.; Kocherova, I.; Petitte, J.; Mozdziak, P.; Shibli, J.A.; Iżycki, D.; Józkowiak, M.; Piotrowska-Kempisty, H.; Skowroński, M.T.; Antosik, P.; Kempisty, B. CRISPR/Cas9 in cancer immunotherapy: Animal models and human clinical trials. Genes (Basel), 2020, 11(8), 921.
[http://dx.doi.org/10.3390/genes11080921] [PMID: 32796761]
[98]
Xu, M.; Weng, Q.; Ji, J. Applications and advances of CRISPR/Cas9 in animal cancer model. Brief. Funct. Genom., 2020, 19(3), 235-241.
[http://dx.doi.org/10.1093/bfgp/elaa002] [PMID: 32124927]
[99]
Wen, W.S.; Yuan, Z.M.; Ma, S.J.; Xu, J.; Yuan, D.T. CRISPR-Cas9 systems: Versatile cancer modelling platforms and promising therapeutic strategies. Int. J. Cancer, 2016, 138(6), 1328-1336.
[http://dx.doi.org/10.1002/ijc.29626] [PMID: 26044706]
[100]
Zhang, B.C.; Luo, B.Y.; Zou, J.J.; Wu, P.Y.; Jiang, J.L.; Le, J.Q.; Zhao, R.R.; Chen, L.; Shao, J.W. Co-delivery of sorafenib and CRISPR/Cas9 based on targeted core–shell hollow mesoporous organosilica nanoparticles for synergistic HCC therapy. ACS Appl. Mater. Interfaces, 2020, 12(51), 57362-57372.
[http://dx.doi.org/10.1021/acsami.0c17660] [PMID: 33301289]
[101]
Liu, Y.; Zhao, G.; Xu, C.F.; Luo, Y.L.; Lu, Z.D.; Wang, J. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater. Sci., 2018, 6(6), 1592-1603.
[http://dx.doi.org/10.1039/C8BM00263K] [PMID: 29725684]
[102]
Ho, T.C.; Kim, H.S.; Chen, Y.; Li, Y.; LaMere, M.W.; Chen, C.; Wang, H.; Gong, J.; Palumbo, C.D.; Ashton, J.M.; Kim, H.W.; Xu, Q.; Becker, M.W.; Leong, K.W. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Sci. Adv., 2021, 7(21), eabg3217.
[103]
Liang, C.; Li, F.; Wang, L.; Zhang, Z.K.; Wang, C.; He, B.; Li, J.; Chen, Z.; Shaikh, A.B.; Liu, J.; Wu, X.; Peng, S.; Dang, L.; Guo, B.; He, X.; Au, D.W.T.; Lu, C.; Zhu, H.; Zhang, B.T.; Lu, A.; Zhang, G. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials, 2017, 147, 68-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.015] [PMID: 28938163]
[104]
Li, M.; Xie, H.; Liu, Y.; Xia, C.; Cun, X.; Long, Y.; Chen, X.; Deng, M.; Guo, R.; Zhang, Z.; He, Q. Knockdown of hypoxia-inducible factor-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer. J. Control. Release, 2019, 304, 204-215.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.019] [PMID: 31100311]
[105]
He, Z.Y.; Zhang, Y.G.; Yang, Y.H.; Ma, C.C.; Wang, P.; Du, W.; Li, L.; Xiang, R.; Song, X.R.; Zhao, X.; Yao, S.H.; Wei, Y.Q. In vivo ovarian cancer gene therapy using CRISPR-Cas9. Hum. Gene Ther., 2018, 29(2), 223-233.
[http://dx.doi.org/10.1089/hum.2017.209] [PMID: 29338433]
[106]
Chen, F.; Alphonse, M.; Liu, Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(3), e1609.
[http://dx.doi.org/10.1002/wnan.1609] [PMID: 31797562]
[107]
Barazesh, M.; Mohammadi, S.; Bahrami, Y.; Mokarram, P.; Morowvat, M.H.; Saidijam, M.; Karimipoor, M.; Kavousipour, S.; Vosoughi, A.R.; Khanaki, K. CRISPR/Cas9 technology as a modern genetic manipulation tool for recapitulating of neurodegenerative disorders in large animal models. Curr. Gene Ther., 2021, 21(2), 130-148.
[http://dx.doi.org/10.2174/1566523220666201214115024] [PMID: 33319680]
[108]
Young, C.S.; Pyle, A.D.; Spencer, M.J. CRISPR for neuromuscular disorders: Gene editing and beyond. Physiology (Bethesda), 2019, 34(5), 341-353.
[http://dx.doi.org/10.1152/physiol.00012.2019] [PMID: 31389773]
[109]
Zhang, L.; Wang, L.; Xie, Y.; Wang, P.; Deng, S.; Qin, A.; Zhang, J.; Yu, X.; Zheng, W.; Jiang, X. Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angew. Chem. Int. Ed., 2019, 58(36), 12404-12408.
[http://dx.doi.org/10.1002/anie.201903618] [PMID: 31318118]
[110]
Villiger, L.; Grisch-Chan, H.M.; Lindsay, H.; Ringnalda, F.; Pogliano, C.B.; Allegri, G.; Fingerhut, R.; Häberle, J.; Matos, J.; Robinson, M.D.; Thöny, B.; Schwank, G. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med., 2018, 24(10), 1519-1525.
[http://dx.doi.org/10.1038/s41591-018-0209-1] [PMID: 30297904]
[111]
Herrera-Carrillo, E.; Gao, Z.; Berkhout, B. CRISPR therapy towards an HIV cure. Brief. Funct. Genomics, 2020, 19(3), 201-208.
[http://dx.doi.org/10.1093/bfgp/elz021] [PMID: 31711197]
[112]
Safari, F.; Afarid, M.; Rastegari, B.; Borhani-Haghighi, A.; Barekati-Mowahed, M.; Behzad-Behbahani, A. CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res., 2021, 294, 198282.
[http://dx.doi.org/10.1016/j.virusres.2020.198282] [PMID: 33428981]
[113]
Suzuki, Y.; Onuma, H.; Sato, R.; Sato, Y.; Hashiba, A.; Maeki, M.; Tokeshi, M.; Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K.; Harashima, H. Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. J. Control. Release, 2021, 330, 61-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.013] [PMID: 33333121]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy