Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Small-Molecule Drugs in Immunotherapy

Author(s): Xuanrun Hao, Zhongliang Chen, Haining Li, Minqin Wei, Zhili Zuo and Qing Su*

Volume 23, Issue 13, 2023

Published on: 25 October, 2022

Page: [1341 - 1359] Pages: 19

DOI: 10.2174/1389557522666220930154527

Open Access Journals Promotions 2
Abstract

Immunotherapy has been increasingly used in the treatment of cancer. Compared with chemotherapy, immunotherapy relies on the autoimmune system with fewer side effects. Small molecule immune-oncological medicines usually have good bioavailability, higher tissue and tumor permeability, and a reasonable half-life. In this work, we summarize the current advances in the field of small molecule approaches in tumor immunology, including small molecules in clinical trials and preclinical studies, containing PD1/PD-L1 small molecule inhibitors, IDO inhibitor, STING activators, RORγt agonists, TGF-β inhibitors, etc. PD-1/DP-L1 is the most attractive target at present. Some small molecule drugs are being in clinical trial studies. Among them, CA-170 has attracted much attention as an oral small molecule drug. IDO is another popular target after PD-1/PDL1. The dual IDO and PD-1 inhibitor can improve the low response of PD-1 and has a good synergistic effect. STING is a protein that occurs naturally in the human body and can enhance the body's immunity. RORγt is mainly expressed in cells of the immune system. It promotes the differentiation of Th17 cells and produces the key factor IL-17, which plays a key role in the development of autoimmune diseases. TGFβ signaling exhibits potent immunosuppressive activity on the coordinate innate and adaptive immunity, impairing the antitumor potential of innate immune cells in the tumor microenvironment. It is worth mentioning that immunotherapy drugs can often achieve better effects when used in combination, which will help defeat cancer.

Keywords: Cancer immunotherapy, inhibitors, Pd-1/Pd-L1 inhibitor, IDO inhibitor, STING agonists, RORγt agonists, TGF- β inhibitors.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Finn, O.J. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann. Oncol., 2012, 23(Suppl 8), viii6-9.
[http://dx.doi.org/10.1093/annonc/mds256]
[3]
Dhanak, D.; Edwards, J.P.; Nguyen, A.; Tummino, P.J. Small molecule targets in immuno-oncology. Cell Chem. Biol., 2017, 24(9), 1148-1160.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.019] [PMID: 28938090]
[4]
Sondak, V.K.; Smalley, K.S.M.; Kudchadkar, R.; Grippon, S.; Kirkpatrick, P. Ipilimumab. Nat. Rev. Drug Discov., 2011, 10(6), 411-412.
[http://dx.doi.org/10.1038/nrd3463] [PMID: 21629286]
[5]
Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; Carcereny, E.; Ahn, M.J.; Felip, E.; Lee, J.S.; Hellmann, M.D.; Hamid, O.; Goldman, J.W.; Soria, J.C.; Dolled-Filhart, M.; Rutledge, R.Z.; Zhang, J.; Lunceford, J.K.; Rangwala, R.; Lubiniecki, G.M.; Roach, C.; Emancipator, K.; Gandhi, L.; Investigators, K. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med., 2015, 372(21), 2018-2028.
[http://dx.doi.org/10.1056/NEJMoa1501824] [PMID: 25891174]
[6]
Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; Larkin, J.; Lorigan, P.; Neyns, B.; Blank, C.U.; Hamid, O.; Mateus, C.; Shapira-Frommer, R.; Kosh, M.; Zhou, H.; Ibrahim, N.; Ebbinghaus, S.; Ribas, A. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532.
[http://dx.doi.org/10.1056/NEJMoa1503093] [PMID: 25891173]
[7]
Cheng, B.; Yuan, W.E.; Su, J.; Liu, Y.; Chen, J. Recent advances in small molecule based cancer immunotherapy. Eur. J. Med. Chem., 2018, 157, 582-598.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.028] [PMID: 30125720]
[8]
Smith, A.J. New horizons in therapeutic antibody discovery: Opportunities and challenges versus small molecule therapeutics. SLAS Discov., 2015, 20(4), 437-453.
[http://dx.doi.org/10.1177/1087057114562544] [PMID: 25512329]
[9]
Sheng, J.; Srivastava, S.; Sanghavi, K.; Lu, Z.; Schmidt, B.J.; Bello, A.; Gupta, M. Clinical pharmacology considerations for the development of immune checkpoint inhibitors. J. Clin. Pharmacol., 2017, 57(Suppl. 10), S26-S42.
[http://dx.doi.org/10.1002/jcph.990] [PMID: 28921644]
[10]
Weinmann, H. Cancer immunotherapy: Selected targets and small-molecule modulators. ChemMedChem, 2016, 11(5), 450-466.
[http://dx.doi.org/10.1002/cmdc.201500566] [PMID: 26836578]
[11]
Chang, M.R.; Dharmarajan, V.; Doebelin, C.; Garcia-Ordonez, R.D.; Novick, S.J.; Kuruvilla, D.S.; Kamenecka, T.M.; Griffin, P.R. Synthetic RORγt agonists enhance protective immunity. ACS Chem. Biol., 2016, 11(4), 1012-1018.
[http://dx.doi.org/10.1021/acschembio.5b00899] [PMID: 26785144]
[12]
Razmkhah, M.; Arabpour, F.; Taghipour, M.; Mehrafshan, A.; Chenari, N.; Ghaderi, A. Expression of chemokines and chemokine receptors in brain tumor tissue derived cells. Asian Pac. J. Cancer Prev., 2014, 15(17), 7201-7205.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7201] [PMID: 25227814]
[13]
Corrales, L.; Gajewski, T.F. Molecular Pathways: Targeting the stimulator of interferon genes (STING) in the immunotherapy of cancer. Clin. Cancer Res., 2015, 21(21), 4774-4779.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1362] [PMID: 26373573]
[14]
Husseinzadeh, N.; Davenport, S.M. Role of Toll-like receptors in cervical, endometrial and ovarian cancers: A review. Gynecol. Oncol., 2014, 135(2), 359-363.
[http://dx.doi.org/10.1016/j.ygyno.2014.08.013] [PMID: 25135000]
[15]
Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol., 2018, 18(3), 153-167.
[http://dx.doi.org/10.1038/nri.2017.108] [PMID: 28990585]
[16]
Bai, H.; Wang, Z.; Li, M.; Sun, P.; Wei, S.; Wang, W.; Wang, Z.; Xing, Y.; Li, J.; Dardik, A. Inhibition of programmed death‐1 decreases neointimal hyperplasia after patch angioplasty. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(2), 269-278.
[http://dx.doi.org/10.1002/jbm.b.34698] [PMID: 32770622]
[17]
Zhao, Y.; Jia, Y.; Shi, T.; Wang, W.; Shao, D.; Zheng, X.; Sun, M.; He, K.; Chen, L. Depression promotes hepatocellular carcinoma progression through a glucocorticoid-mediated upregulation of PD-1 expression in tumor infiltrating NK cells. Carcinogenesis, 2019.
[http://dx.doi.org/10.1093/carcin/bgz017] [PMID: 30715244]
[18]
Niedziałkowski, P.; Bojko, M.; Ryl, J.; Wcisło, A.; Spodzieja, M.; Magiera-Mularz, K.; Guzik, K.; Dubin, G.; Holak, T.A.; Ossowski, T.; Rodziewicz-Motowidło, S. Ultrasensitive electrochemical determination of the cancer biomarker protein sPD-L1 based on a BMS-8-modified gold electrode. Bioelectrochemistry, 2021, 139107742
[http://dx.doi.org/10.1016/j.bioelechem.2021.107742] [PMID: 33517203]
[19]
Zhang, R.; Zhu, Z.; Lv, H.; Li, F.; Sun, S.; Li, J.; Lee, C.S. Immune checkpoint blockade mediated by a small‐molecule nanoinhibitor targeting the PD‐1/PD‐L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small, 2019, 15(49), 1903881.
[http://dx.doi.org/10.1002/smll.201903881] [PMID: 31702880]
[20]
Skalniak, L.; Zak, K.M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M.; Krzanik, S.; Pyrc, K.; Dömling, A.; Dubin, G.; Holak, T.A. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8(42), 72167-72181.
[http://dx.doi.org/10.18632/oncotarget.20050] [PMID: 29069777]
[21]
Guzik, K.; Zak, K.M.; Grudnik, P.; Magiera, K.; Musielak, B.; Törner, R.; Skalniak, L.; Dömling, A.; Dubin, G.; Holak, T.A. Small molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem., 2017, 60(13), 5857-5867.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00293] [PMID: 28613862]
[22]
Musielak, B.; Kocik, J.; Skalniak, L.; Magiera-Mularz, K.; Sala, D.; Czub, M.; Stec, M.; Siedlar, M.; Holak, T.A.; Plewka, J. CA-170–a potent small-molecule PD-L1 inhibitor or not? Molecules, 2019, 24(15), 2804.
[http://dx.doi.org/10.3390/molecules24152804] [PMID: 31374878]
[23]
Sasikumar, P.G.; Sudarshan, N.S.; Adurthi, S.; Ramachandra, R.K.; Samiulla, D.S.; Lakshminarasimhan, A.; Ramanathan, A.; Chandrasekhar, T.; Dhudashiya, A.A.; Talapati, S.R.; Gowda, N.; Palakolanu, S.; Mani, J.; Srinivasrao, B.; Joseph, D.; Kumar, N.; Nair, R.; Atreya, H.S.; Gowda, N.; Ramachandra, M. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti tumor efficacy. Commun. Biol., 2021, 4(1), 699.
[http://dx.doi.org/10.1038/s42003-021-02191-1] [PMID: 34103659]
[24]
Zhai, L.; Bell, A.; Ladomersky, E.; Lauing, K.L.; Bollu, L.; Sosman, J.A.; Zhang, B.; Wu, J.D.; Miller, S.D.; Meeks, J.J.; Lukas, R.V.; Wyatt, E.; Doglio, L.; Schiltz, G.E.; McCusker, R.H.; Wainwright, D.A. Immunosuppressive IDO in cancer: Mechanisms of action, animal models, and targeting strategies. Front. Immunol., 2020, 11, 1185.
[http://dx.doi.org/10.3389/fimmu.2020.01185] [PMID: 32612606]
[25]
Munn, D.H.; Mellor, A.L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends Immunol., 2016, 37(3), 193-207.
[http://dx.doi.org/10.1016/j.it.2016.01.002] [PMID: 26839260]
[26]
Fox, E.; Oliver, T.; Rowe, M.; Thomas, S.; Zakharia, Y.; Gilman, P.B.; Muller, A.J.; Prendergast, G.C. Indoximod: An immunometabolic adjuvant that empowers T Cell activity in cancer. Front. Oncol., 2018, 8, 370.
[http://dx.doi.org/10.3389/fonc.2018.00370] [PMID: 30254983]
[27]
Hou, D.Y.; Muller, A.J.; Sharma, M.D.; DuHadaway, J.; Banerjee, T.; Johnson, M.; Mellor, A.L.; Prendergast, G.C.; Munn, D.H. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res., 2007, 67(2), 792-801.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2925] [PMID: 17234791]
[28]
Komiya, T.; Huang, C.H. Updates in the clinical development of epacadostat and other indoleamine 2,3-Dioxygenase 1 Inhibitors (IDO1) for human cancers. Front. Oncol., 2018, 8, 423.
[http://dx.doi.org/10.3389/fonc.2018.00423] [PMID: 30338242]
[29]
Le Naour, J.; Galluzzi, L.; Zitvogel, L.; Kroemer, G.; Vacchelli, E. Trial watch: IDO inhibitors in cancer therapy. OncoImmunology, 2020, 9(1), 1777625.
[http://dx.doi.org/10.1080/2162402X.2020.1777625] [PMID: 32934882]
[30]
Liu, X.; Shin, N.; Koblish, H.K.; Yang, G.; Wang, Q.; Wang, K.; Leffet, L.; Hansbury, M.J.; Thomas, B.; Rupar, M.; Waeltz, P.; Bowman, K.J.; Polam, P.; Sparks, R.B.; Yue, E.W.; Li, Y.; Wynn, R.; Fridman, J.S.; Burn, T.C.; Combs, A.P.; Newton, R.C.; Scherle, P.A. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood, 2010, 115(17), 3520-3530.
[http://dx.doi.org/10.1182/blood-2009-09-246124] [PMID: 20197554]
[31]
Jung, K.H.; LoRusso, P.; Burris, H.; Gordon, M.; Bang, Y.J.; Hellmann, M.D.; Cervantes, A.; Ochoa de Olza, M.; Marabelle, A.; Hodi, F.S.; Ahn, M.J.; Emens, L.A.; Barlesi, F.; Hamid, O.; Calvo, E.; McDermott, D.; Soliman, H.; Rhee, I.; Lin, R.; Pourmohamad, T.; Suchomel, J.; Tsuhako, A.; Morrissey, K.; Mahrus, S.; Morley, R.; Pirzkall, A.; Davis, S.L.; Phase, I. Phase I study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (Atezolizumab) in advanced solid tumors. Clin. Cancer Res., 2019, 25(11), 3220-3228.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2740] [PMID: 30770348]
[32]
Chen, Y.; Xia, R.; Huang, Y.; Zhao, W.; Li, J.; Zhang, X.; Wang, P.; Venkataramanan, R.; Fan, J.; Xie, W.; Ma, X.; Lu, B.; Li, S. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun., 2016, 7(1), 13443.
[http://dx.doi.org/10.1038/ncomms13443] [PMID: 27819653]
[33]
Kesarwani, P.; Prabhu, A.; Kant, S.; Kumar, P.; Graham, S.F.; Buelow, K.L.; Wilson, G.D.; Miller, C.R.; Chinnaiyan, P. Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin. Cancer Res., 2018, 24(15), 3632-3643.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0041] [PMID: 29691296]
[34]
Balog, A.; Lin, T.; Maley, D.; Gullo-Brown, J.; Kandoussi, E.H.; Zeng, J.; Hunt, J.T. Preclinical characterization of linrodostat mesylate, a novel, potent, and selective oral indoleamine 2,3-Dioxygenase 1 inhibitor. Mol. Cancer Ther., 2021, 20(3), 467-476.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0251] [PMID: 33298590]
[35]
Richards, T.; Brin, E. Cell based functional assays for IDO1 inhibitor screening and characterization. Oncotarget, 2018, 9(56), 30814-30820.
[http://dx.doi.org/10.18632/oncotarget.25720] [PMID: 30112109]
[36]
Cherney, E.C.; Zhang, L.; Nara, S.; Zhu, X.; Gullo-Brown, J.; Maley, D.; Lin, T.A.; Hunt, J.T.; Huang, C.; Yang, Z.; Darienzo, C.; Discenza, L.; Ranasinghe, A.; Grubb, M.; Ziemba, T.; Traeger, S.C.; Li, X.; Johnston, K.; Kopcho, L.; Fereshteh, M.; Foster, K.; Stefanski, K.; Fargnoli, J.; Swanson, J.; Brown, J.; Delpy, D.; Seitz, S.P.; Borzilleri, R.; Vite, G.; Balog, A. Discovery and preclinical evaluation of BMS-986242, a potent, selective inhibitor of indoleamine-2,3-dioxygenase 1. ACS Med. Chem. Lett., 2021, 12(2), 288-294.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00668] [PMID: 33603977]
[37]
Crosignani, S.; Bingham, P.; Bottemanne, P.; Cannelle, H.; Cauwenberghs, S.; Cordonnier, M.; Dalvie, D.; Deroose, F.; Feng, J.L.; Gomes, B.; Greasley, S.; Kaiser, S.E.; Kraus, M.; Négrerie, M.; Maegley, K.; Miller, N.; Murray, B.W.; Schneider, M.; Soloweij, J.; Stewart, A.E.; Tumang, J.; Torti, V.R.; Van Den Eynde, B.; Wythes, M. Discovery of a Novel and Selective Indoleamine 2,3-Dioxygenase (IDO-1) Inhibitor 3-(5-Fluoro-1 H -indol-3-yl)pyrrolidine-2,5-dione (EOS200271/PF-06840003) and its characterization as a potential clinical candidate. J. Med. Chem., 2017, 60(23), 9617-9629.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00974] [PMID: 29111717]
[38]
Gomes, B.; Driessens, G.; Bartlett, D.; Cai, D.; Cauwenberghs, S.; Crosignani, S.; Dalvie, D.; Denies, S.; Dillon, C.P.; Fantin, V.R.; Guo, J.; Letellier, M.C.; Li, W.; Maegley, K.; Marillier, R.; Miller, N.; Pirson, R.; Rabolli, V.; Ray, C.; Streiner, N.; Torti, V.R.; Tsaparikos, K.; Van den Eynde, B.J.; Wythes, M.; Yao, L.C.; Zheng, X.; Tumang, J.; Kraus, M. Characterization of the selective Indoleamine 2,3-Dioxygenase-1 (IDO1) Catalytic Inhibitor EOS200271/PF-06840003 Supports IDO1 as a critical resistance mechanism to PD-(L)1 blockade therapy. Mol. Cancer Ther., 2018, 17(12), 2530-2542.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1104] [PMID: 30232146]
[39]
Kwon, M.; Ko, S.K.; Jang, M.; Kim, G.H.; Ryoo, I.J.; Son, S.; Ryu, H.W.; Oh, S.R.; Lee, W.K.; Kim, B.Y.; Jang, J.H.; Ahn, J.S. Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2,3-dioxygenase 1 activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1481-1488.
[http://dx.doi.org/10.1080/14756366.2019.1640218] [PMID: 31423846]
[40]
Pereira, A.; Vottero, E.; Roberge, M.; Mauk, A.G.; Andersen, R.J. Indoleamine 2,3-dioxygenase inhibitors from the northeastern pacific marine hydroid Garveia annulata. J. Nat. Prod., 2006, 69(10), 1496-1499.
[http://dx.doi.org/10.1021/np060111x] [PMID: 17067170]
[41]
Wang, Y.; Luo, J.; Alu, A.; Han, X.; Wei, Y.; Wei, X. cGAS-STING pathway in cancer biotherapy. Mol. Cancer, 2020, 19(1), 136.
[http://dx.doi.org/10.1186/s12943-020-01247-w] [PMID: 32887628]
[42]
Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81.
[http://dx.doi.org/10.1186/s13045-020-00916-z] [PMID: 32571374]
[43]
Buchanan, C.M.; Shih, J.H.; Astin, J.W.; Rewcastle, G.W.; Flanagan, J.U.; Crosier, P.S.; Shepherd, P.R. DMXAA (Vadimezan, ASA404) is a multi-kinase inhibitor targeting VEGFR2 in particular. Clin. Sci. (Lond.), 2012, 122(10), 449-465.
[http://dx.doi.org/10.1042/CS20110412] [PMID: 22142330]
[44]
Shirey, K.A.; Nhu, Q.M.; Yim, K.C.; Roberts, Z.J.; Teijaro, J.R.; Farber, D.L.; Blanco, J.C.; Vogel, S.N. The anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces IFN-β-mediated antiviral activity in vitro and in vivo. J. Leukoc. Biol., 2011, 89(3), 351-357.
[http://dx.doi.org/10.1189/jlb.0410216] [PMID: 21084628]
[45]
Daei Farshchi Adli, A.; Jahanban-Esfahlan, R.; Seidi, K.; Farajzadeh, D.; Behzadi, R.; Zarghami, N. Co-Administration of Vadimezan and recombinant coagulase-NGR inhibits growth of melanoma tumor in mice. Adv. Pharm. Bull., 2021, 11(2), 385-392.
[PMID: 33880362]
[46]
Pan, B.S.; Perera, S.A.; Piesvaux, J.A.; Presland, J.P.; Schroeder, G.K.; Cumming, J.N.; Trotter, B.W.; Altman, M.D.; Buevich, A.V.; Cash, B.; Cemerski, S.; Chang, W.; Chen, Y.; Dandliker, P.J.; Feng, G.; Haidle, A.; Henderson, T.; Jewell, J.; Kariv, I.; Knemeyer, I.; Kopinja, J.; Lacey, B.M.; Laskey, J.; Lesburg, C.A.; Liang, R.; Long, B.J.; Lu, M.; Ma, Y.; Minnihan, E.C.; O’Donnell, G.; Otte, R.; Price, L.; Rakhilina, L.; Sauvagnat, B.; Sharma, S.; Tyagarajan, S.; Woo, H.; Wyss, D.F.; Xu, S.; Bennett, D.J.; Addona, G.H. An orally available non-nucleotide STING agonist with antitumor activity. Science, 2020, 369(6506), eaba6098.
[http://dx.doi.org/10.1126/science.aba6098] [PMID: 32820094]
[47]
Kim, D.S.; Endo, A.; Fang, F.G.; Huang, K.C.; Bao, X.; Choi, H.; Majumder, U.; Shen, Y.Y.; Mathieu, S.; Zhu, X.; Sanders, K.; Noland, T.; Hao, M.H.; Chen, Y.; Wang, J.Y.; Yasui, S.; TenDyke, K.; Wu, J.; Ingersoll, C.; Loiacono, K.A.; Hutz, J.E.; Sarwar, N. E7766, a macrocycle‐bridged stimulator of interferon genes (STING) agonist with potent pan‐genotypic activity. ChemMedChem, 2021, 16(11), 1741-1744.
[http://dx.doi.org/10.1002/cmdc.202100068] [PMID: 33522135]
[48]
Chin, E.N.; Yu, C.; Vartabedian, V.F.; Jia, Y.; Kumar, M.; Gamo, A.M.; Vernier, W.; Ali, S.H.; Kissai, M.; Lazar, D.C.; Nguyen, N.; Pereira, L.E.; Benish, B.; Woods, A.K.; Joseph, S.B.; Chu, A.; Johnson, K.A.; Sander, P.N.; Martínez-Peña, F.; Hampton, E.N.; Young, T.S.; Wolan, D.W.; Chatterjee, A.K.; Schultz, P.G.; Petrassi, H.M.; Teijaro, J.R.; Lairson, L.L. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science, 2020, 369(6506), 993-999.
[http://dx.doi.org/10.1126/science.abb4255] [PMID: 32820126]
[49]
Chang, M.R.; Rosen, H.; Griffin, P.R. RORs in autoimmune disease. Curr. Top. Microbiol. Immunol., 2014, 378, 171-182.
[http://dx.doi.org/10.1007/978-3-319-05879-5_8] [PMID: 24728598]
[50]
Cheng, H.L.; Hsieh, M.J.; Yang, J.S.; Lin, C.W.; Lue, K.H.; Lu, K.H.; Yang, S.F. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression. Oncotarget, 2016, 7(23), 35208-35223.
[http://dx.doi.org/10.18632/oncotarget.9106] [PMID: 27144433]
[51]
Wang, Y.; Kumar, N.; Nuhant, P.; Cameron, M.D.; Istrate, M.A.; Roush, W.R.; Griffin, P.R.; Burris, T.P. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ. ACS Chem. Biol., 2010, 5(11), 1029-1034.
[http://dx.doi.org/10.1021/cb100223d] [PMID: 20735016]
[52]
Toporova, L.; Grimaldi, M.; Boulahtouf, A.; Balaguer, P. Assessing the selectivity of FXR, LXRs, CAR, and RORγ pharmaceutical ligands with reporter cell lines. Front. Pharmacol., 2020, 11, 1122.
[http://dx.doi.org/10.3389/fphar.2020.01122] [PMID: 32792956]
[53]
Aicher, T.D.; Van Huis, C.A.; Hurd, A.R.; Skalitzky, D.J.; Taylor, C.B.; Beleh, O.M.; Glick, G.; Toogood, P.L.; Yang, B.; Zheng, T.; Huo, C.; Gao, J.; Qiao, C.; Tian, X.; Zhang, J.; Demock, K.; Hao, L.Y.; Lesch, C.A.; Morgan, R.W.; Moisan, J.; Wang, Y.; Scatina, J.; Paulos, C.M.; Zou, W.; Carter, L.L.; Hu, X. Discovery of LYC-55716: A Potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor-γ (RORγ) agonist for use in treating cancer. J. Med. Chem., 2021, 64(18), 13410-13428.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00731] [PMID: 34499493]
[54]
Mahalingam, D.; Wang, J.S.; Hamilton, E.P.; Sarantopoulos, J.; Nemunaitis, J.; Weems, G.; Carter, L.; Hu, X.; Schreeder, M.; Wilkins, H.J. Phase 1 open-label, multicenter study of first-in-class RORγ agonist LYC-55716 (Cintirorgon): Safety, tolerability, and preliminary evidence of antitumor activity. Clin. Cancer Res., 2019, 25(12), 3508-3516.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3185] [PMID: 30819679]
[55]
Helleboid, S.; Haug, C.; Lamottke, K.; Zhou, Y.; Wei, J.; Daix, S.; Cambula, L.; Rigou, G.; Hum, D.W.; Walczak, R. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). SLAS Discov., 2014, 19(3), 399-406.
[http://dx.doi.org/10.1177/1087057113497095] [PMID: 23896689]
[56]
Hata, A.; Chen, Y.G. TGF-β signaling from receptors to Smads. Cold Spring Harb. Perspect. Biol., 2016, 8(9), a022061.
[http://dx.doi.org/10.1101/cshperspect.a022061] [PMID: 27449815]
[57]
Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71.
[http://dx.doi.org/10.1016/j.trecan.2016.11.008] [PMID: 28718426]
[58]
Serova, M.; Tijeras-Raballand, A.; Santos, C.D.; Albuquerque, M.; Paradis, V.; Neuzillet, C.; Benhadji, K.A.; Raymond, E.; Faivre, S.; de Gramont, A. Effects of TGF-beta signalling inhibition with galunisertib (LY2157299) in hepatocellular carcinoma models and in ex vivo whole tumor tissue samples from patients. Oncotarget, 2015, 6(25), 21614-21627.
[http://dx.doi.org/10.18632/oncotarget.4308] [PMID: 26057634]
[59]
Laping, N.J.; Grygielko, E.; Mathur, A.; Butter, S.; Bomberger, J.; Tweed, C.; Martin, W.; Fornwald, J.; Lehr, R.; Harling, J.; Gaster, L.; Callahan, J.F.; Olson, B.A. Inhibition of Transforming Growth Factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol. Pharmacol., 2002, 62(1), 58-64.
[http://dx.doi.org/10.1124/mol.62.1.58] [PMID: 12065755]
[60]
Tanaka, H.; Shinto, O.; Yashiro, M.; Yamazoe, S.; Iwauchi, T.; Muguruma, K.; Kubo, N.; Ohira, M.; Hirakawa, K. Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol. Rep., 2010, 24(6), 1637-1643.
[http://dx.doi.org/10.3892/or_00001028] [PMID: 21042762]
[61]
Yamamura, S.; Matsumura, N.; Mandai, M.; Huang, Z.; Oura, T.; Baba, T.; Hamanishi, J.; Yamaguchi, K.; Kang, H.S.; Okamoto, T.; Abiko, K.; Mori, S.; Murphy, S.K.; Konishi, I. The activated transforming growth factor-beta signaling pathway in peritoneal metastases is a potential therapeutic target in ovarian cancer. Int. J. Cancer, 2012, 130(1), 20-28.
[http://dx.doi.org/10.1002/ijc.25961] [PMID: 21503873]
[62]
He, D.; Gao, J.; Zheng, L.; Liu, S.; Ye, L.; Lai, H.; Pan, B.; Pan, W.; Lou, C.; Chen, Z.; Fan, S. TGF β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int. J. Oncol., 2021, 59(5), 84.
[http://dx.doi.org/10.3892/ijo.2021.5264] [PMID: 34533199]
[63]
Jung, S.Y.; Yug, J.S.; Clarke, J.M.; Bauer, T.M.; Keedy, V.L.; Hwang, S.; Kim, S.J.; Chung, E.K.; Lee, J.I. Population pharmacokinetics of vactosertib, a new TGF-β receptor type I inhibitor, in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2020, 85(1), 173-183.
[http://dx.doi.org/10.1007/s00280-019-03979-z] [PMID: 31673825]
[64]
Naka, K.; Ishihara, K.; Jomen, Y.; Jin, C.H.; Kim, D.H.; Gu, Y.K.; Jeong, E.S.; Li, S.; Krause, D.S.; Kim, D.W.; Bae, E.; Takihara, Y.; Hi-rao, A.; Oshima, H.; Oshima, M.; Ooshima, A.; Sheen, Y.Y.; Kim, S.J.; Kim, D.K. Novel oral transforming growth factor‐β signaling inhibitor EW ‐7197 eradicates CML ‐initiating cells. Cancer Sci., 2016, 107(2), 140-148.
[http://dx.doi.org/10.1111/cas.12849] [PMID: 26583567]

© 2024 Bentham Science Publishers | Privacy Policy