Review Article

聚乙二醇化在纳米输送系统中的成就与瓶颈

卷 30, 期 12, 2023

发表于: 14 November, 2022

页: [1386 - 1405] 页: 20

弟呕挨: 10.2174/0929867329666220929152644

价格: $65

摘要

聚乙二醇(PEG)作为黄金标准已广泛应用于生物医学领域。PEG与蛋白质,肽,寡核苷酸(DNA,小干扰RNA(siRNA),microRNA(miRNA))和纳米颗粒的偶联,也称为聚乙二醇化,是提高体内药物递送效率和药代动力学的常用方法。聚乙二醇化对各种制剂体内命运的影响已经并将继续被广泛研究,基于蛋白质的成功聚乙二醇化以改善体内循环时间并降低免疫原性。PEG外壳保护颗粒免受聚集,免疫识别和吞噬作用,从而延长体内循环时间。本文主要介绍聚乙二醇化在药物递送领域的发展背景、优势和应用、其缺陷或开发瓶颈以及可能的替代方案。

关键词: 聚乙二醇化,药物递送,生物偶联,纳米医学,抗PEG抗体,PEG免疫原性

[1]
Harris, J.M.; Martin, N.E.; Modi, M. Pegylation. Clin. Pharmacokinet., 2001, 40(7), 539-551.
[http://dx.doi.org/10.2165/00003088-200140070-00005] [PMID: 11510630]
[2]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[3]
Yadav, D.; Dewangan, H.K. PEGYLATION: an important approach for novel drug delivery system. J. Biomater. Sci. Polym. Ed., 2021, 32(2), 266-280.
[http://dx.doi.org/10.1080/09205063.2020.1825304] [PMID: 32942961]
[4]
Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today, 2005, 10(21), 1451-1458.
[http://dx.doi.org/10.1016/S1359-6446(05)03575-0] [PMID: 16243265]
[5]
Bré, L.P.; Zheng, Y.; Pêgo, A.P.; Wang, W. Taking tissue adhesives to the future: from traditional synthetic to new biomimetic approaches. Biomater. Sci., 2013, 1(3), 239-253.
[http://dx.doi.org/10.1039/C2BM00121G] [PMID: 32481849]
[6]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[7]
Alconcel, S.N.S.; Baas, A.S.; Maynard, H.D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem., 2011, 2(7), 1442-1448.
[http://dx.doi.org/10.1039/c1py00034a]
[8]
Sebak, A.A.; Gomaa, I.E.O.; ElMeshad, A.N.; Farag, M.H.; Breitinger, U.; Breitinger, H.G.; AbdelKader, M.H. Distinct proteins in protein corona of nanoparticles represent a promising venue for endogenous targeting – Part I: In vitro release and intracellular uptake perspective. Int. J. Nanomedicine, 2020, 15, 8845-8862.
[http://dx.doi.org/10.2147/IJN.S273713] [PMID: 33204091]
[9]
Davis, F.F. The origin of pegnology. Adv. Drug Deliv. Rev., 2002, 54(4), 457-458.
[http://dx.doi.org/10.1016/S0169-409X(02)00021-2] [PMID: 12052708]
[10]
Abuchowski, A.; McCoy, J.R.; Palczuk, N.C.; van Es, T.; Davis, F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem., 1977, 252(11), 3582-3586.
[http://dx.doi.org/10.1016/S0021-9258(17)40292-4] [PMID: 16907]
[11]
Veronese, F.M.; Harris, J.M. Introduction and overview of peptide and protein pegylation. Adv. Drug Deliv. Rev., 2002, 54(4), 453-456.
[http://dx.doi.org/10.1016/S0169-409X(02)00020-0] [PMID: 12052707]
[12]
Delgado, C.; Francis, G.E.; Fisher, D. The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst., 1992, 9(3-4), 249-304.
[PMID: 1458545]
[13]
Hershfield, M.S.; Buckley, R.H.; Greenberg, M.L.; Melton, A.L.; Schiff, R.; Hatem, C.; Kurtzberg, J.; Markert, M.L.; Kobayashi, R.H.; Kobayashi, A.L.; Abuchowski, A. Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med., 1987, 316(10), 589-596.
[http://dx.doi.org/10.1056/NEJM198703053161005] [PMID: 3807953]
[14]
Sehon, A.H. Carl Prausnitz Memorial Lecture. Suppression of antibody responses by chemically modified antigens. Int. Arch. Allergy Immunol., 1991, 94(1-4), 11-20.
[http://dx.doi.org/10.1159/000235318] [PMID: 1937863]
[15]
Okahata, Y.; Mori, T. Lipid-coated enzymes as efficient catalysts in organic media. Trends Biotechnol., 1997, 15(2), 50-54.
[http://dx.doi.org/10.1016/S0167-7799(97)84203-5]
[16]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[17]
Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci., 2016, 105(2), 460-475.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[18]
Mejía-Manzano, L.A.; Vázquez-Villegas, P.; González-Valdez, J. Perspectives, tendencies, and guidelines in affinity-based strategies for the recovery and purification of PEGylated proteins. Adv. Polym. Technol., 2020, 2020(2), 1-12.
[http://dx.doi.org/10.1155/2020/6163904]
[19]
Hoffman, A.S.; Lai, J.J. Three significant highlights of controlled drug delivery over the past 55 years: PEGylation, ADCs, and EPR. Adv. Drug Deliv. Rev., 2020, 158, 2-3.
[http://dx.doi.org/10.1016/j.addr.2020.05.013] [PMID: 32512028]
[20]
Peters, B.G.; Goeckner, B.J.; Ponzillo, J.J.; Velasquez, W.S.; Wilson, A.L. Pegaspargase versus asparaginase in adult ALL: a pharmacoeconomic assessment. Formulary, 1995, 30(7), 388-393.
[PMID: 10151730]
[21]
Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294.
[http://dx.doi.org/10.1038/s41573-018-0005-0] [PMID: 30542076]
[22]
Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev., 2002, 54(4), 459-476.
[http://dx.doi.org/10.1016/S0169-409X(02)00022-4] [PMID: 12052709]
[23]
Ramírez-García, P.D.; Retamal, J.S.; Shenoy, P.; Imlach, W.; Sykes, M.; Truong, N.; Constandil, L.; Pelissier, T.; Nowell, C.J.; Khor, S.Y.; Layani, L.M.; Lumb, C.; Poole, D.P.; Lieu, T.; Stewart, G.D.; Mai, Q.N.; Jensen, D.D.; Latorre, R.; Scheff, N.N.; Schmidt, B.L.; Quinn, J.F.; Whittaker, M.R.; Veldhuis, N.A.; Davis, T.P.; Bunnett, N.W. A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain. Nat. Nanotechnol., 2019, 14(12), 1150-1159.
[http://dx.doi.org/10.1038/s41565-019-0568-x] [PMID: 31686009]
[24]
Truong, N.P.; Gu, W.; Prasadam, I.; Jia, Z.; Crawford, R.; Xiao, Y.; Monteiro, M.J. An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun., 2013, 4(1), 1902.
[http://dx.doi.org/10.1038/ncomms2905] [PMID: 23695696]
[25]
Truong, N.P.; Whittaker, M.R.; Anastasaki, A.; Haddleton, D.M.; Quinn, J.F.; Davis, T.P. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polym. Chem., 2016, 7(2), 430-440.
[http://dx.doi.org/10.1039/C5PY01467K]
[26]
Khor, S.Y.; Vu, M.N.; Pilkington, E.H.; Johnston, A.P.R.; Whittaker, M.R.; Quinn, J.F.; Truong, N.P.; Davis, T.P. Elucidating the influences of size, surface chemistry, and dynamic flow on cellular association of nanoparticles made by polymerization-induced self-assembly. Small, 2018, 14(34), 1801702.
[http://dx.doi.org/10.1002/smll.201801702] [PMID: 30043521]
[27]
Ta, H.T.; Truong, N.P.; Whittaker, A.K.; Davis, T.P.; Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opin. Drug Deliv., 2018, 15(1), 33-45.
[http://dx.doi.org/10.1080/17425247.2017.1316262] [PMID: 28388248]
[28]
Khor, S.Y.; Quinn, J.F.; Whittaker, M.R.; Truong, N.P.; Davis, T.P. Controlling nanomaterial size and shape for biomedical applications via polymerization-induced self-assembly. Macromol. Rapid Commun., 2019, 40(2), 1800438.
[http://dx.doi.org/10.1002/marc.201800438] [PMID: 30091816]
[29]
Truong, N.P.; Zhang, C.; Nguyen, T.A.H.; Anastasaki, A.; Schulze, M.W.; Quinn, J.F.; Whittaker, A.K.; Hawker, C.J.; Whittaker, M.R.; Davis, T.P. Overcoming surfactant-induced morphology instability of noncrosslinked diblock copolymer nano-objects obtained by RAFT emulsion polymerization. ACS Macro Lett., 2018, 7(2), 159-165.
[http://dx.doi.org/10.1021/acsmacrolett.7b00978] [PMID: 35610912]
[30]
Jain, A.; Ranjan, S.; Dasgupta, N.; Ramalingam, C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr., 2018, 58(2), 297-317.
[http://dx.doi.org/10.1080/10408398.2016.1160363] [PMID: 27052385]
[31]
Zamboni, W.C.; Torchilin, V.; Patri, A.K.; Hrkach, J.; Stern, S.; Lee, R.; Nel, A.; Panaro, N.J.; Grodzinski, P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin. Cancer Res., 2012, 18(12), 3229-3241.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2938] [PMID: 22669131]
[32]
Farooq, M.A.; Aquib, M.; Farooq, A.; Haleem Khan, D.; Joelle Maviah, M.B.; Sied Filli, M.; Kesse, S.; Boakye-Yiadom, K.O.; Mavlyanova, R.; Parveen, A.; Wang, B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1674-1692.
[http://dx.doi.org/10.1080/21691401.2019.1604535] [PMID: 31066300]
[33]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[34]
Laginha, K.M.; Verwoert, S.; Charrois, G.J.R.; Allen, T.M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer Res., 2005, 11(19), 6944-6949.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0343] [PMID: 16203786]
[35]
Torchilin, V.P. Polymer-coated long-circulating microparticulate pharmaceuticals. J. Microencapsul., 1998, 15(1), 1-19.
[http://dx.doi.org/10.3109/02652049809006831] [PMID: 9463803]
[36]
Baker, D.P.; Lin, E.Y.; Lin, K.; Pellegrini, M.; Petter, R.C.; Chen, L.L.; Arduini, R.M.; Brickelmaier, M.; Wen, D.; Hess, D.M.; Chen, L.; Grant, D.; Whitty, A.; Gill, A.; Lindner, D.J.; Pepinsky, R.B. N-terminally PEGylated human interferon-beta-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem., 2006, 17(1), 179-188.
[http://dx.doi.org/10.1021/bc050237q] [PMID: 16417267]
[37]
Zhang, P.; Sun, F.; Liu, S.; Jiang, S. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control Release, 2016, 244(Pt B), 184-193.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.040]
[38]
Kaga, S.; Truong, N.P.; Esser, L.; Senyschyn, D.; Sanyal, A.; Sanyal, R.; Quinn, J.F.; Davis, T.P.; Kaminskas, L.M.; Whittaker, M.R. Influence of size and shape on the biodistribution of nanoparticles prepared by polymerization-induced self-assembly. Biomacromolecules, 2017, 18(12), 3963-3970.
[http://dx.doi.org/10.1021/acs.biomac.7b00995] [PMID: 28880542]
[39]
Huckaby, J.T.; Lai, S.K. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev., 2018, 124, 125-139.
[http://dx.doi.org/10.1016/j.addr.2017.08.010] [PMID: 28882703]
[40]
Khutoryanskiy, V.V. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv. Drug Deliv. Rev., 2018, 124, 140-149.
[http://dx.doi.org/10.1016/j.addr.2017.07.015] [PMID: 28736302]
[41]
Rattan, R.; Bhattacharjee, S.; Zong, H.; Swain, C.; Siddiqui, M.A.; Visovatti, S.H.; Kanthi, Y.; Desai, S.; Pinsky, D.J.; Goonewardena, S.N. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorg. Med. Chem., 2017, 25(16), 4487-4496.
[http://dx.doi.org/10.1016/j.bmc.2017.06.040] [PMID: 28705434]
[42]
Ramos-de-la-Peña, A.M.; Aguilar, O. Progress and challenges in PEGylated proteins downstream processing: A review of the last 8 years. Int. J. Pept. Res. Ther., 2020, 26(1), 333-348.
[http://dx.doi.org/10.1007/s10989-019-09840-4]
[43]
Swierczewska, M.; Lee, K.C.; Lee, S. What is the future of PEGylated therapies? Expert Opin. Emerg. Drugs, 2015, 20(4), 531-536.
[http://dx.doi.org/10.1517/14728214.2015.1113254] [PMID: 26583759]
[44]
Shi, L.; Zhang, J.; Zhao, M.; Tang, S.; Cheng, X.; Zhang, W.; Li, W.; Liu, X.; Peng, H.; Wang, Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale, 2021, 13(24), 10748-10764.
[http://dx.doi.org/10.1039/D1NR02065J] [PMID: 34132312]
[45]
Freire Haddad, H.; Burke, J.A.; Scott, E.A.; Ameer, G.A. Clinical relevance of pre-existing and treatment-induced Anti-poly(ethylene glycol) antibodies. Regen. Eng. Transl. Med., 2022, 8(1), 32-42.
[http://dx.doi.org/10.1007/s40883-021-00198-y] [PMID: 33786367]
[46]
Raccosta, S.; Librizzi, F.; Jagger, A.M.; Noto, R.; Martorana, V.; Lomas, D.A.; Irving, J.A.; Manno, M. Scaling concepts in serpin polymer physics. Materials (Basel), 2021, 14(10), 2577.
[http://dx.doi.org/10.3390/ma14102577] [PMID: 34063488]
[47]
Alexander, S. Adsorption of chain molecules with a polar head a scaling description. J. Phys. (Paris), 1977, 38(8), 983-987.
[http://dx.doi.org/10.1051/jphys:01977003808098300]
[48]
Mahendra, A.; James, H.P.; Jadhav, S. PEG-grafted phospholipids in vesicles: Effect of PEG chain length and concentration on mechanical properties. Chem. Phys. Lipids, 2019, 218, 47-56.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.12.001] [PMID: 30521788]
[49]
Chu, M.; Li, H.; Wu, Q.; Wo, F.; Shi, D. Pluronic-encapsulated natural chlorophyll nanocomposites for in vivo cancer imaging and photothermal/photodynamic therapies. Biomaterials, 2014, 35(29), 8357-8373.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.049] [PMID: 25002262]
[50]
Hossain, M.D.; Reid, J.C.; Lu, D.; Jia, Z.; Searles, D.J.; Monteiro, M.J. Influence of constraints within a cyclic polymer on solution properties. Biomacromolecules, 2018, 19(2), 616-625.
[http://dx.doi.org/10.1021/acs.biomac.7b01690] [PMID: 29283562]
[51]
Maruyama, K.; Yuda, T.; Okamoto, A.; Kojima, S.; Suginaka, A.; Iwatsuru, M. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim. Biophys. Acta Lipids Lipid Metab., 1992, 1128(1), 44-49.
[http://dx.doi.org/10.1016/0005-2760(92)90255-T] [PMID: 1390877]
[52]
Lin, J.; Zhang, H.; Morovati, V.; Dargazany, R. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature. J. Colloid Interface Sci., 2017, 504, 325-333.
[http://dx.doi.org/10.1016/j.jcis.2017.05.046] [PMID: 28554138]
[53]
Quach, Q.H.; Kong, R.L.X.; Kah, J.C.Y. Complement activation by PEGylated gold nanoparticles. Bioconjug. Chem., 2018, 29(4), 976-981.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00793] [PMID: 29431995]
[54]
Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc., 2012, 134(4), 2139-2147.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[55]
Zhou, H.; Fan, Z.; Li, P.Y.; Deng, J.; Arhontoulis, D.C.; Li, C.Y.; Bowne, W.B.; Cheng, H. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation. ACS Nano, 2018, 12(10), 10130-10141.
[http://dx.doi.org/10.1021/acsnano.8b04947] [PMID: 30117736]
[56]
Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420.
[http://dx.doi.org/10.1016/j.apsb.2018.09.001] [PMID: 30976492]
[57]
Zhao, M.; Wang, J.; Lei, Z.; Lu, L.; Wang, S.; Zhang, H.; Li, B.; Zhang, F. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew. Chem. Int. Ed., 2021, 60(10), 5091-5095.
[http://dx.doi.org/10.1002/anie.202012021] [PMID: 33300662]
[58]
Hashizaki, K.; Taguchi, H.; Itoh, C.; Sakai, H.; Abe, M.; Saito, Y.; Ogawa, N. Effects of poly(ethylene glycol) (PEG) concentration on the permeability of PEG-grafted liposomes. Chem. Pharm. Bull. (Tokyo), 2005, 53(1), 27-31.
[http://dx.doi.org/10.1248/cpb.53.27] [PMID: 15635224]
[59]
Sriwongsitanont, S.; Ueno, M. Physicochemical properties of PEG-grafted liposomes. Chem. Pharm. Bull. (Tokyo), 2002, 50(9), 1238-1244.
[http://dx.doi.org/10.1248/cpb.50.1238] [PMID: 12237543]
[60]
De Leo, V.; Ruscigno, S.; Trapani, A.; Di Gioia, S.; Milano, F.; Mandracchia, D.; Comparelli, R.; Castellani, S.; Agostiano, A.; Trapani, G.; Catucci, L.; Conese, M. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm., 2018, 545(1-2), 378-388.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.030] [PMID: 29678545]
[61]
De Leo, V.; Milano, F.; Agostiano, A.; Catucci, L. Recent advancements in polymer/liposome assembly for drug delivery: From surface modifications to hybrid vesicles. Polymers (Basel), 2021, 13(7), 1027.
[http://dx.doi.org/10.3390/polym13071027] [PMID: 33810273]
[62]
Lin, T.T.; Gao, D.Y.; Liu, Y.C.; Sung, Y.C.; Wan, D.; Liu, J.Y.; Chiang, T.; Wang, L.; Chen, Y. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J. Control. Release, 2016, 221, 62-70.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.003] [PMID: 26551344]
[63]
Peng, W.; Cheng, S.; Bao, Z.; Wang, Y.; Zhou, W.; Wang, J.; Yang, Q.; Chen, C.; Wang, W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed. Pharmacother., 2021, 137, 111342.
[http://dx.doi.org/10.1016/j.biopha.2021.111342] [PMID: 33581652]
[64]
Richter, M.; Vader, P.; Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv. Drug Deliv. Rev., 2021, 173, 416-426.
[http://dx.doi.org/10.1016/j.addr.2021.03.020] [PMID: 33831479]
[65]
Uster, P.S.; Allen, T.M.; Daniel, B.E.; Mendez, C.J.; Newman, M.S.; Zhu, G.Z. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett., 1996, 386(2-3), 243-246.
[http://dx.doi.org/10.1016/0014-5793(96)00452-8] [PMID: 8647291]
[66]
Pan, Z.; Fang, D.; Song, N.; Song, Y.; Ding, M.; Li, J.; Luo, F.; Tan, H.; Fu, Q. Surface distribution and biophysicochemical properties of polymeric micelles bearing gemini cationic and hydrophilic groups. ACS Appl. Mater. Interfaces, 2017, 9(3), 2138-2149.
[http://dx.doi.org/10.1021/acsami.6b14339] [PMID: 28029776]
[67]
Chandel, A.K.S.; Kumar, C.U.; Jewrajka, S.K. Effect of polyethylene glycol on properties and drug encapsulation–release performance of biodegradable/cytocompatible agarose–polyethylene glycol–polycaprolactone amphiphilic Co-Network gels. ACS Appl. Mater. Interfaces, 2016, 8(5), 3182-3192.
[http://dx.doi.org/10.1021/acsami.5b10675] [PMID: 26760672]
[68]
Miteva, M.; Kirkbride, K.C.; Kilchrist, K.V.; Werfel, T.A.; Li, H.; Nelson, C.E.; Gupta, M.K.; Giorgio, T.D.; Duvall, C.L. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials, 2015, 38, 97-107.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.036] [PMID: 25453977]
[69]
Lechanteur, A.; Furst, T.; Evrard, B.; Delvenne, P.; Hubert, P.; Piel, G. PEGylation of lipoplexes: The right balance between cytotoxicity and siRNA effectiveness. Eur. J. Pharm. Sci., 2016, 93, 493-503.
[http://dx.doi.org/10.1016/j.ejps.2016.08.058] [PMID: 27593989]
[70]
Zhu, G.; Xu, Z.; Yan, L.T. Entropy at bio-nano interfaces. Nano Lett., 2020, 20(8), 5616-5624.
[http://dx.doi.org/10.1021/acs.nanolett.0c02635] [PMID: 32697100]
[71]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[72]
Bazile, D.; Prud’homme, C.; Bassoullet, M.T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci., 1995, 84(4), 493-498.
[http://dx.doi.org/10.1002/jps.2600840420] [PMID: 7629743]
[73]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[74]
Deen, W.M.; Lazzara, M.J.; Myers, B.D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol., 2001, 281(4), F579-F596.
[http://dx.doi.org/10.1152/ajprenal.2001.281.4.F579] [PMID: 11553505]
[75]
Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem., 1977, 252(11), 3578-3581.
[http://dx.doi.org/10.1016/S0021-9258(17)40291-2] [PMID: 405385]
[76]
Yang, Y.; Tian, F.; Nie, D.; Liu, Y.; Qian, K.; Yu, M.; Wang, A.; Zhang, Y.; Shi, X.; Gan, Y. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci. Adv., 2020, 6(6), eaay9937.
[http://dx.doi.org/10.1126/sciadv.aay9937] [PMID: 32083187]
[77]
Parodi, A.; Buzaeva, P.; Nigovora, D.; Baldin, A.; Kostyushev, D.; Chulanov, V.; Savvateeva, L.V.; Zamyatnin, A.A., Jr. Nanomedicine for increasing the oral bioavailability of cancer treatments. J. Nanobiotechnology, 2021, 19(1), 354.
[http://dx.doi.org/10.1186/s12951-021-01100-2] [PMID: 34717658]
[78]
Zabaleta, V.; Ponchel, G.; Salman, H.; Agüeros, M.; Vauthier, C.; Irache, J.M. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: Permeability and pharmacokinetic study. Eur. J. Pharm. Biopharm., 2012, 81(3), 514-523.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.001] [PMID: 22516136]
[79]
Schrama, D.; Reisfeld, R.A.; Becker, J.C. Antibody targeted drugs as cancer therapeutics. Nat. Rev. Drug Discov., 2006, 5(2), 147-159.
[http://dx.doi.org/10.1038/nrd1957] [PMID: 16424916]
[80]
Wang, W.; Yan, X.; Li, Q.; Chen, Z.; Wang, Z.; Hu, H. Adapted nano-carriers for gastrointestinal defense components: surface strategies and challenges. Nanomedicine, 2020, 29, 102277.
[http://dx.doi.org/10.1016/j.nano.2020.102277] [PMID: 32730981]
[81]
Li, J.; Qiang, H.; Yang, W.; Xu, Y.; Feng, T.; Cai, H.; Wang, S.; Liu, Z.; Zhang, Z.; Zhang, J. Oral insulin delivery by epithelium microenvironment-adaptive nanoparticles. J. Control. Release, 2022, 341, 31-43.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.020] [PMID: 34793919]
[82]
Xie, P.; Liu, P. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Carbohydr. Polym., 2022, 275, 118760.
[http://dx.doi.org/10.1016/j.carbpol.2021.118760] [PMID: 34742449]
[83]
Zhang, X.; Wang, H.; Ma, Z.; Wu, B. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert Opin. Drug Metab. Toxicol., 2014, 10(12), 1691-1702.
[http://dx.doi.org/10.1517/17425255.2014.967679] [PMID: 25270687]
[84]
Filipczak, N.; Joshi, U.; Attia, S.A.; Berger Fridman, I.; Cohen, S.; Konry, T.; Torchilin, V. Hypoxia-sensitive drug delivery to tumors. J. Control. Release, 2022, 341, 431-442.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.034] [PMID: 34838607]
[85]
Zhang, M.; Jia, C.; Zhuang, J.; Hou, Y.Y.; He, X.W.; Li, W.Y.; Bai, G.; Zhang, Y.K. GSH-responsive drug delivery system for active therapy and reducing the side effects of bleomycin. ACS Appl. Mater. Interfaces, 2022, 14(1), 417-427.
[http://dx.doi.org/10.1021/acsami.1c21828] [PMID: 34978427]
[86]
Hu, S.; Yang, Z.; Wang, S.; Wang, L.; He, Q.; Tang, H.; Ji, P.; Chen, T. Zwitterionic polydopamine modified nanoparticles as an efficient nanoplatform to overcome both the mucus and epithelial barriers. Chem. Eng. J., 2022, 428, 132107.
[http://dx.doi.org/10.1016/j.cej.2021.132107]
[87]
Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev., 2022, 180, 114079.
[http://dx.doi.org/10.1016/j.addr.2021.114079] [PMID: 34902516]
[88]
Xia, X.; Shi, J.; Deng, Q.; Xu, N.; Huang, F.; Xiang, X. Biodegradable and self-fluorescent ditelluride-bridged mesoporous organosilica/polyethylene glycol-curcumin nanocomposite for dual-responsive drug delivery and enhanced therapy efficiency. Mater. Today Chem., 2022, 23, 100660.
[http://dx.doi.org/10.1016/j.mtchem.2021.100660]
[89]
Reboredo, C.; González-Navarro, C.J.; Martínez-López, A.L.; Martínez-Ohárriz, C.; Sarmento, B.; Irache, J.M. Zein-based nanoparticles as oral carriers for insulin delivery. Pharmaceutics, 2021, 14(1), 39.
[http://dx.doi.org/10.3390/pharmaceutics14010039] [PMID: 35056935]
[90]
Shah, N.; Hussain, M.; Rehan, T.; Khan, A.; Khan, Z.U. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr. Pharm. Des., 2022, 28(5), 352-367.
[http://dx.doi.org/10.2174/1381612827666210910104333] [PMID: 34514984]
[91]
Fu, Z.; Williams, G.R.; Niu, S.; Wu, J.; Gao, F.; Zhang, X.; Yang, Y.; Li, Y.; Zhu, L.M. Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy. Nanoscale, 2020, 12(27), 14739-14750.
[http://dx.doi.org/10.1039/D0NR02291H] [PMID: 32626854]
[92]
Ye, Y.; Bremner, D.H.; Zhang, H.; Chen, X.; Lou, J.; Zhu, L.M. Functionalized layered double hydroxide nanoparticles as an intelligent nanoplatform for synergistic photothermal therapy and chemotherapy of tumors. Colloids Surf. B Biointerfaces, 2022, 210, 112261.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112261] [PMID: 34902711]
[93]
Mundel, R.; Thakur, T.; Chatterjee, M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech, 2022, 12(2), 41.
[http://dx.doi.org/10.1007/s13205-021-03105-y]
[94]
Dadashpour, M.; Ganjibakhsh, M.; Mousazadeh, H.; Nejati, K. Increased pro-apoptotic and anti-proliferative activities of simvastatin encapsulated PCL-PEG nanoparticles on human breast cancer adenocarcinoma cells. J. Clust. Sci., 2022, 2022, 1-12.
[http://dx.doi.org/10.1007/s10876-021-02217-y]
[95]
Simón-Vázquez, R.; Tsapis, N.; Lorscheider, M.; Rodríguez, A.; Calleja, P.; Mousnier, L.; de Miguel Villegas, E.; González-Fernández, Á.; Fattal, E. Improving dexamethasone drug loading and efficacy in treating arthritis through a lipophilic prodrug entrapped into PLGA-PEG nanoparticles. Drug Deliv. Transl. Res., 2022, 12(5), 1270-1284.
[http://dx.doi.org/10.1007/s13346-021-01112-3] [PMID: 34993924]
[96]
Guido, C.; Baldari, C.; Maiorano, G.; Mastronuzzi, A.; Carai, A.; Quintarelli, C.; De Angelis, B.; Cortese, B.; Gigli, G.; Palamà, I.E. Nanoparticles for diagnosis and target therapy in pediatric brain cancers. Diagnostics (Basel), 2022, 12(1), 173.
[http://dx.doi.org/10.3390/diagnostics12010173] [PMID: 35054340]
[97]
Dardeer, H.M.; Toghan, A.; Zaki, M.E.A.; Elamary, R.B. Design, synthesis and evaluation of novel antimicrobial polymers based on the inclusion of polyethylene Glycol/TiO2 nanocomposites in cyclodextrin as drug carriers for sulfaguanidine. Polymers (Basel), 2022, 14(2), 227.
[http://dx.doi.org/10.3390/polym14020227] [PMID: 35054634]
[98]
Abstiens, K.; Gregoritza, M.; Goepferich, A.M. Ligand density and linker length are critical factors for multivalent nanoparticle–receptor interactions. ACS Appl. Mater. Interfaces, 2019, 11(1), 1311-1320.
[http://dx.doi.org/10.1021/acsami.8b18843] [PMID: 30521749]
[99]
Jia, T.; Ciccione, J.; Jacquet, T.; Maurel, M.; Montheil, T.; Mehdi, A.; Martinez, J.; Eymin, B.; Subra, G.; Coll, J.L. The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. Int. J. Pharm., 2019, 568, 118507.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118507] [PMID: 31299336]
[100]
Wang, S.; Dormidontova, E.E. Nanoparticle design optimization for enhanced targeting: Monte Carlo simulations. Biomacromolecules, 2010, 11(7), 1785-1795.
[http://dx.doi.org/10.1021/bm100248e] [PMID: 20536119]
[101]
Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano, 2013, 7(4), 2935-2947.
[http://dx.doi.org/10.1021/nn305663e] [PMID: 23421406]
[102]
Yong, K.W.; Yuen, D.; Chen, M.Z.; Johnston, A.P.R. Engineering the orientation, density, and flexibility of single-domain antibodies on nanoparticles to improve cell targeting. ACS Appl. Mater. Interfaces, 2020, 12(5), 5593-5600.
[http://dx.doi.org/10.1021/acsami.9b20993] [PMID: 31917547]
[103]
Maslanka Figueroa, S.; Fleischmann, D.; Beck, S.; Goepferich, A. The effect of ligand mobility on the cellular interaction of multivalent nanoparticles. Macromol. Biosci., 2020, 20(4), 1900427.
[http://dx.doi.org/10.1002/mabi.201900427] [PMID: 32077622]
[104]
Petersen, H.; Fechner, P.M.; Fischer, D.; Kissel, T. Synthesis, characterization, and biocompatibility of polyethylenimine- g raft -poly(ethylene glycol) block copolymers. Macromolecules, 2002, 35(18), 6867-6874.
[http://dx.doi.org/10.1021/ma012060a]
[105]
Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab., 2012, 13(1), 105-119.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[106]
Kloos, R.; Sluis, I.M.; Mastrobattista, E.; Hennink, W.; Pieters, R.; Verhoef, J.J. Acute lymphoblastic leukaemia patients treated with PEGasparaginase develop antibodies to PEG and the succinate linker. Br. J. Haematol., 2020, 189(3), 442-451.
[http://dx.doi.org/10.1111/bjh.16254] [PMID: 31883112]
[107]
Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev., 2020, 154-155, 163-175.
[http://dx.doi.org/10.1016/j.addr.2020.07.024] [PMID: 32745496]
[108]
Mima, Y.; Hashimoto, Y.; Shimizu, T.; Kiwada, H.; Ishida, T. Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol. Pharm., 2015, 12(7), 2429-2435.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00144] [PMID: 26070445]
[109]
Verhoef, J.J.F.; Carpenter, J.F.; Anchordoquy, T.J.; Schellekens, H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today, 2014, 19(12), 1945-1952.
[http://dx.doi.org/10.1016/j.drudis.2014.08.015] [PMID: 25205349]
[110]
Garay, R.P.; El-Gewely, R.; Armstrong, J.K.; Garratty, G.; Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv., 2012, 9(11), 1319-1323.
[http://dx.doi.org/10.1517/17425247.2012.720969] [PMID: 22931049]
[111]
Moreno, A.; Pitoc, G.A.; Ganson, N.J.; Layzer, J.M.; Hershfield, M.S.; Tarantal, A.F.; Sullenger, B.A. Anti-PEG antibodies inhibit the anticoagulant activity of PEGylated aptamers. Cell Chem. Biol., 2019, 26(5), 634-644.e3.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.001] [PMID: 30827937]
[112]
Pasut, G.; Veronese, F.M. Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci., 2007, 32(8-9), 933-961.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.008]
[113]
Yang, Q.; Lai, S.K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 655-677.
[http://dx.doi.org/10.1002/wnan.1339] [PMID: 25707913]
[114]
Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer, 2007, 110(1), 103-111.
[http://dx.doi.org/10.1002/cncr.22739] [PMID: 17516438]
[115]
Neun, B.; Barenholz, Y.; Szebeni, J.; Dobrovolskaia, M. Understanding the Role of Anti-PEG Antibodies in the complement activation by Doxil in vitro. Molecules, 2018, 23(7), 1700.
[http://dx.doi.org/10.3390/molecules23071700] [PMID: 30002298]
[116]
Ganson, N.J.; Povsic, T.J.; Sullenger, B.A.; Alexander, J.H.; Zelenkofske, S.L.; Sailstad, J.M.; Rusconi, C.P.; Hershfield, M.S. Pre-existing anti–polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J. Allergy Clin. Immunol., 2016, 137(5), 1610-1613.e7.
[http://dx.doi.org/10.1016/j.jaci.2015.10.034] [PMID: 26688515]
[117]
Huckaby, J.T.; Jacobs, T.M.; Li, Z.; Perna, R.J.; Wang, A.; Nicely, N.I.; Lai, S.K. Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers. Commun. Chem., 2020, 3(1), 124.
[http://dx.doi.org/10.1038/s42004-020-00369-y]
[118]
Abu Lila, A.S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Control. Release, 2013, 172(1), 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.026] [PMID: 23933235]
[119]
Wang, F.; Ye, X.; Wu, Y.; Wang, H.; Sheng, C.; Peng, D.; Chen, W. Time interval of two injections and first-dose dependent of accelerated blood clearance phenomenon induced by PEGylated liposomal gambogenic acid: The contribution of PEG-Specific IgM. J. Pharm. Sci., 2019, 108(1), 641-651.
[http://dx.doi.org/10.1016/j.xphs.2018.10.027] [PMID: 30595169]
[120]
Qi, F.; Qi, J.; Hu, C.; Shen, L.; Yu, W.; Hu, T. Conjugation of staphylokinase with the arabinogalactan-PEG conjugate: Study on the immunogenicity, in vitro bioactivity and pharmacokinetics. Int. J. Biol. Macromol., 2019, 131, 896-904.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.046] [PMID: 30914374]
[121]
Hussain, Z.; Khan, S.; Imran, M.; Sohail, M.; Shah, S.W.A.; de Matas, M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res., 2019, 9(3), 721-734.
[http://dx.doi.org/10.1007/s13346-019-00631-4] [PMID: 30895453]
[122]
Hoang Thi, T.T.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel), 2020, 12(2), 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[123]
Zhang, P.; Jain, P.; Tsao, C.; Wu, K.; Jiang, S. Proactively reducing anti-drug antibodies via immunomodulatory bioconjugation. Angew. Chem. Int. Ed., 2019, 58(8), 2433-2436.
[http://dx.doi.org/10.1002/anie.201814275] [PMID: 30632270]
[124]
Joh, D.Y.; Zimmers, Z.; Avlani, M.; Heggestad, J.T.; Aydin, H.B.; Ganson, N.; Kumar, S.; Fontes, C.M.; Achar, R.K.; Hershfield, M.S.; Hucknall, A.M.; Chilkoti, A. Architectural modification of conformal PEG-bottlebrush coatings minimizes anti-PEG antigenicity while preserving stealth properties. Adv. Healthc. Mater., 2019, 8(8), 1801177.
[http://dx.doi.org/10.1002/adhm.201801177] [PMID: 30908902]
[125]
Qi, Y.; Simakova, A.; Ganson, N.J.; Li, X.; Luginbuhl, K.M.; Özer, I.; Liu, W.; Hershfield, M.S.; Matyjaszewski, K.; Chilkoti, A. A brush-polymer conjugate of exendin-4 reduces blood glucose for up to five days and eliminates poly(ethylene glycol) antigenicity. Nat. Biomed. Eng., 2016, (1), 0002.
[http://dx.doi.org/10.1038/s41551-016-0002]
[126]
Li, B.; Yuan, Z.; McMullen, P.; Xie, J.; Jain, P.; Hung, H.C.; Xu, S.; Zhang, P.; Lin, X.; Wu, K.; Jiang, S. A chromatin-mimetic nanomedicine for therapeutic tolerance induction. ACS Nano, 2018, 12(12), 12004-12014.
[http://dx.doi.org/10.1021/acsnano.8b04314] [PMID: 30412375]
[127]
Kontos, S.; Kourtis, I.C.; Dane, K.Y.; Hubbell, J.A. Engineering antigens for in situ erythrocyte binding induces T- cell deletion. Proc. Natl. Acad. Sci. USA, 2013, 110(1), E60-E68.
[http://dx.doi.org/10.1073/pnas.1216353110] [PMID: 23248266]
[128]
McSweeney, M.D.; Shen, L.; DeWalle, A.C.; Joiner, J.B.; Ciociola, E.C.; Raghuwanshi, D.; Macauley, M.S.; Lai, S.K. Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. J. Control. Release, 2021, 329, 774-781.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.011] [PMID: 33038448]
[129]
Dams, E.T.; Laverman, P.; Oyen, W.J.; Storm, G.; Scherphof, G.L.; van Der Meer, J.W.; Corstens, F.H.; Boerman, O.C. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther., 2000, 292(3), 1071-1079.
[PMID: 10688625]
[130]
Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm., 2008, 354(1-2), 56-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.005] [PMID: 18083313]
[131]
Estapé Senti, M.; de Jongh, C.A.; Dijkxhoorn, K.; Verhoef, J.J.F.; Szebeni, J.; Storm, G.; Hack, C.E.; Schiffelers, R.M.; Fens, M.H.; Boross, P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Release, 2022, 341, 475-486.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.042] [PMID: 34890719]
[132]
Romberg, B.; Metselaar, J.; Baranyi, L.; Snel, C.; Bünger, R.; Hennink, W.; Szebeni, J.; Storm, G. Poly(amino acid)s: Promising enzymatically degradable stealth coatings for liposomes. Int. J. Pharm., 2007, 331(2), 186-189.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.018] [PMID: 17145145]
[133]
Porter, R.S.; Casale, A. Recent studies of polymer reactions caused by stress. Polym. Eng. Sci., 1985, 25(3), 129-156.
[http://dx.doi.org/10.1002/pen.760250302]
[134]
Lee, J.S.; Go, D.H.; Bae, J.W.; Lee, S.J.; Park, K.D. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. J. Control. Release, 2007, 117(2), 204-209.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.004] [PMID: 17196698]
[135]
Larsen, N.E.; Balazs, E.A. Drug delivery systems using hyaluronan and its derivatives. Adv. Drug Deliv. Rev., 1991, 7(2), 279-293.
[http://dx.doi.org/10.1016/0169-409X(91)90007-Y]
[136]
Janes, K.A.; Calvo, P.; Alonso, M.J. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev., 2001, 47(1), 83-97.
[http://dx.doi.org/10.1016/S0169-409X(00)00123-X] [PMID: 11251247]
[137]
Yang, W.; Zhang, L.; Wang, S.; White, A.D.; Jiang, S. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials, 2009, 30(29), 5617-5621.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.036] [PMID: 19595457]
[138]
Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater., 2010, 22(9), 920-932.
[http://dx.doi.org/10.1002/adma.200901407] [PMID: 20217815]
[139]
Chiu, C.Y.; Chang, Y.; Liu, T.H.; Chou, Y.N.; Yen, T.J. Convergent charge interval spacing of zwitterionic 4-vinylpyridine carboxybetaine structures for superior blood-inert regulation in amphiphilic phases. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(40), 8437-8450.
[http://dx.doi.org/10.1039/D1TB01374B] [PMID: 34542146]
[140]
Ahmed, S.T.; Leckband, D.E. Forces between mica and end-grafted statistical copolymers of sulfobetaine and oligoethylene glycol in aqueous electrolyte solutions. J. Colloid Interface Sci., 2022, 608(Pt 2), 1857-1867.
[http://dx.doi.org/10.1016/j.jcis.2021.09.175] [PMID: 34752975]
[141]
Song, Y.; Elsabahy, M.; Collins, C.A.; Khan, S.; Li, R.; Hreha, T.N.; Shen, Y.; Lin, Y.N.; Letteri, R.A.; Su, L.; Dong, M.; Zhang, F.; Hunstad, D.A.; Wooley, K.L. Morphologic design of silver-bearing sugar-based polymer nanoparticles for uroepithelial cell binding and antimicrobial delivery. Nano Lett., 2021, 21(12), 4990-4998.
[http://dx.doi.org/10.1021/acs.nanolett.1c00776] [PMID: 34115938]
[142]
Zhao, B.; Yan, Y.; Zhang, J.; Chen, E.; Wang, K.; Zhao, C.; Zhong, Y.; Huang, D.; Cui, Z.; Deng, D.; Gu, C.; Chen, W. Synthesis of zwitterionic chimeric polymersomes for efficient protein loading and intracellular delivery. Polym. Chem., 2021, 12(35), 5085-5092.
[http://dx.doi.org/10.1039/D1PY00815C]
[143]
Oh, J.K. Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter, 2011, 7(11), 5096-5108.
[http://dx.doi.org/10.1039/c0sm01539c]
[144]
Cho, H.; Gao, J.; Kwon, G.S. PEG- b -PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. J. Control. Release, 2016, 240, 191-201.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.015] [PMID: 26699425]
[145]
Smith, A.A.A.; Gale, E.C.; Roth, G.A.; Maikawa, C.L.; Correa, S.; Yu, A.C.; Appel, E.A. Nanoparticles presenting potent TLR7/8 agonists enhance anti-PD-L1 immunotherapy in cancer treatment. Biomacromolecules, 2020, 21(9), 3704-3712.
[http://dx.doi.org/10.1021/acs.biomac.0c00812] [PMID: 32816460]
[146]
Fam, S.Y.; Chee, C.F.; Yong, C.Y.; Ho, K.L.; Mariatulqabtiah, A.R.; Tan, W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials (Basel), 2020, 10(4), 787.
[http://dx.doi.org/10.3390/nano10040787] [PMID: 32325941]
[147]
Conte, C.; Dal Poggetto, G.; J Swartzwelter, B.; Esposito, D.; Ungaro, F.; Laurienzo, P.; Boraschi, D.; Quaglia, F. Surface exposure of PEG and Amines on biodegradable nanoparticles as a strategy to tune their interaction with protein-rich biological media. Nanomaterials (Basel), 2019, 9(10), 1354.
[http://dx.doi.org/10.3390/nano9101354] [PMID: 31547212]
[148]
Allen, T.M.; Hansen, C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta Biomembr., 1991, 1068(2), 133-141.
[http://dx.doi.org/10.1016/0005-2736(91)90201-I] [PMID: 1911826]
[149]
Allen, T.M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim. Biophys. Acta Biomembr., 1991, 1066(1), 29-36.
[http://dx.doi.org/10.1016/0005-2736(91)90246-5] [PMID: 2065067]
[150]
Maruyama, K.; Yuda, T.; Okamoto, A.; Ishikura, C.; Kojima, S.; Iwatsuru, M. Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1620-1622.
[http://dx.doi.org/10.1248/cpb.39.1620] [PMID: 1934187]
[151]
Duncan, R. Polymer conjugates as anticancer nano- medicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[152]
Lee, H. Molecular simulations of PEGylated biomolecules, liposomes, and nanoparticles for drug delivery applications. Pharmaceutics, 2020, 12(6), 533.
[http://dx.doi.org/10.3390/pharmaceutics12060533] [PMID: 32531886]
[153]
Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; Cui, H.; Ma, Y.; Cai, L. Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano, 2016, 10(11), 10049-10057.
[http://dx.doi.org/10.1021/acsnano.6b04695] [PMID: 27934074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy