Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Chimeric Antigen Receptor (CAR) T-cell Therapy: A New Genetically Engineered Method of Immunotherapy for Cancer

Author(s): Arun Kumar Singh, Rishabha Malviya*, Amrita Singh, Sonali Sundram and Sudhanshu Mishra

Volume 23, Issue 3, 2023

Published on: 13 October, 2022

Page: [199 - 210] Pages: 12

DOI: 10.2174/1568009622666220928141727

Price: $65

Abstract

Chimeric antigen receptor (CAR T) cell treatment for solid tumours faces significant challenges. CAR T cells are unable to pass the vascular barrier in tumours due to a lack of endothelial leukocyte adhesion molecules. The invasion, activity, and durability of CAR T cells may be hampered by additional immunosuppressive mechanisms present in the solid tumour environment. The use of CAR T cells to attack cancer vascular endothelial metabolic targets from within the blood may simplify the fight against cancer. These are the principles that govern our examination of CAR T cell treatment for tumor cells, with a specific eye toward tumour venous delivery. CAR T cells may also be designed such that they can be readily, safely, and successfully transferred.

Keywords: Solid tumor, angiogenesis, targeted therapy, CAR T cells, blood diffusion, tumour.

Graphical Abstract
[1]
Rosenberg, S.A.; Packard, B.S.; Aebersold, P.M.; Solomon, D.; Topalian, S.L.; Toy, S.T.; Simon, P.; Lotze, M.T.; Yang, J.C.; Seipp, C.A.; Simpson, C.; Carter, C.; Bock, S.; Schwartzentruber, D.; Wei, J.P.; White, D.E. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med., 1988, 319(25), 1676-1680.
[http://dx.doi.org/10.1056/NEJM198812223192527] [PMID: 3264384]
[2]
Dudley, M.E.; Wunderlich, J.R.; Robbins, P.F.; Yang, J.C.; Hwu, P.; Schwartzentruber, D.J.; Topalian, S.L.; Sherry, R.; Restifo, N.P.; Hubicki, A.M.; Robinson, M.R.; Raffeld, M.; Duray, P.; Seipp, C.A.; Rogers-Freezer, L.; Morton, K.E.; Mavroukakis, S.A.; White, D.E.; Rosenberg, S.A. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science, 2002, 298(5594), 850-854.
[http://dx.doi.org/10.1126/science.1076514] [PMID: 12242449]
[3]
Morgan, R.A.; Dudley, M.E.; Wunderlich, J.R.; Hughes, M.S.; Yang, J.C.; Sherry, R.M.; Royal, R.E.; Topalían, S.L.; Kammula, U.S.; Restifo, N.P.; Zheng, Z.; Nahvi, A.; de Vries, C.R.; Rogers-Freezer, L.J.; Mavroukakis, S.A.; Rosenberg, S.A. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 2006, 314(5796), 126-129.
[http://dx.doi.org/10.1126/science.1129003] [PMID: 16946036]
[4]
Strehl, B.; Seifert, U.; Krüger, E.; Heink, S.; Kuckelkorn, U.; Kloetzel, P.M. Interferon-γ the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol. Rev., 2005, 207(1), 19-30.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00308.x] [PMID: 16181324]
[5]
Kass, I.; Buckle, A.M.; Borg, N.A. Understanding the structural dynamics of TCR-pMHC interactions. Trends Immunol., 2014, 35(12), 604-612.
[http://dx.doi.org/10.1016/j.it.2014.10.005] [PMID: 25466310]
[6]
Rodríguez, J.A. HLA-mediated tumor escape mechanisms that may impair immunotherapy clinical outcomes via T-cell activation. Oncol. Lett., 2017, 14(4), 4415-4427.
[http://dx.doi.org/10.3892/ol.2017.6784] [PMID: 29085437]
[7]
Schrier, P.I.; Bernards, R.; Vaessen, R.T.M.J.; Houweling, A.; van der Eb, A.J. Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature, 1983, 305(5937), 771-775.
[http://dx.doi.org/10.1038/305771a0] [PMID: 6355856]
[8]
Sadelain, M.; Brentjens, R.; Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov., 2013, 3(4), 388-398.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0548] [PMID: 23550147]
[9]
Eshhar, Z.; Waks, T.; Gross, G.; Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA, 1993, 90(2), 720-724.
[http://dx.doi.org/10.1073/pnas.90.2.720] [PMID: 8421711]
[10]
Chmielewski, M.; Hombach, A.A.; Abken, H. Antigen-specific T-cell activation independently of the MHC: Chimeric antigen receptor-redirected T cells. Front. Immunol., 2013, 4, 371.
[http://dx.doi.org/10.3389/fimmu.2013.00371] [PMID: 24273543]
[11]
Rossig, C.; Kailayangiri, S.; Jamitzky, S.; Altvater, B. Carbohydrate targets for CAR T cells in solid childhood cancers. Front. Oncol., 2018, 8, 513.
[http://dx.doi.org/10.3389/fonc.2018.00513] [PMID: 30483473]
[12]
Rossig, C.; Bollard, C.M.; Nuchtern, J.G.; Merchant, D.A.; Brenner, M.K. Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer, 2001, 94(2), 228-236.
[http://dx.doi.org/10.1002/ijc.1457] [PMID: 11668503]
[13]
Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; Roshal, M.; Maslak, P.; Davila, M.; Brentjens, R.J.; Sadelain, M. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 449-459.
[http://dx.doi.org/10.1056/NEJMoa1709919] [PMID: 29385376]
[14]
Brocker, T.; Karjalainen, K. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med., 1995, 181(5), 1653-1659.
[http://dx.doi.org/10.1084/jem.181.5.1653] [PMID: 7722445]
[15]
Krause, A.; Guo, H.F.; Latouche, J.B.; Tan, C.; Cheung, N.K.V.; Sadelain, M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med., 1998, 188(4), 619-626.
[http://dx.doi.org/10.1084/jem.188.4.619] [PMID: 9705944]
[16]
Wang, J.; Jensen, M.; Lin, Y.; Sui, X.; Chen, E.; Lindgren, C.G.; Till, B.; Raubitschek, A.; Forman, S.J.; Qian, X.; James, S.; Greenberg, P.; Riddell, S.; Press, O.W. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther., 2007, 18(8), 712-725.
[http://dx.doi.org/10.1089/hum.2007.028] [PMID: 17685852]
[17]
Chmielewski, M.; Hombach, A.A.; Abken, H. Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol. Rev., 2014, 257(1), 83-90.
[http://dx.doi.org/10.1111/imr.12125] [PMID: 24329791]
[18]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[19]
Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; Steinberg, S.M.; Stroncek, D.; Tschernia, N.; Yuan, C.; Zhang, H.; Zhang, L.; Rosenberg, S.A.; Wayne, A.S.; Mackall, C.L. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet, 2015, 385(9967), 517-528.
[http://dx.doi.org/10.1016/S0140-6736(14)61403-3] [PMID: 25319501]
[20]
U.S. Food and Drug Administration (FDA). Approved Cellular and Gene Therapy Products 2022. Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (Accessed on: Aug 25, 2021).
[21]
Kirtane, K.; Elmariah, H.; Chung, C.H.; Abate-Daga, D. Adoptive cellular therapy in solid tumor malignancies: Review of the literature and challenges ahead. J. Immunother. Cancer, 2021, 9(7), e002723.
[http://dx.doi.org/10.1136/jitc-2021-002723] [PMID: 34301811]
[22]
Slaney, C.Y.; Kershaw, M.H.; Darcy, P.K. Trafficking of T cells into tumors. Cancer Res., 2014, 74(24), 7168-7174.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2458] [PMID: 25477332]
[23]
Griffioen, A.W.; Molema, G. Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol. Rev., 2000, 52(2), 237-268.
[PMID: 10835101]
[24]
Griffioen, A.W.; Damen, C.A.; Blijham, G.H.; Groenewegen, G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood, 1996, 88, 667-673.
[25]
Griffioen, A.W.; Damen, C.A.; Martinotti, S.; Blijham, G.H.; Groenewegen, G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: The role of angiogenic factors. Cancer Res., 1996, 56(5), 1111-1117.
[PMID: 8640769]
[26]
Kurt, R.A.; Baher, A.; Wisner, K.P.; Tackitt, S.; Urba, W.J. Chemokine receptor desensitization in tumor-bearing mice. Cell. Immunol., 2001, 207(2), 81-88.
[http://dx.doi.org/10.1006/cimm.2000.1754] [PMID: 11243697]
[27]
Kershaw, M.H.; Wang, G.; Westwood, J.A.; Pachynski, R.K.; Tiffany, H.L.; Marincola, F.M.; Wang, E.; Young, H.A.; Murphy, P.M.; Hwu, P. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther., 2002, 13(16), 1971-1980.
[http://dx.doi.org/10.1089/10430340260355374] [PMID: 12427307]
[28]
Anderson, K.G.; Stromnes, I.M.; Greenberg, P.D. Obstacles posed by the tumor microenvironment to T cell activity: A case for synergistic therapies. Cancer Cell, 2017, 31(3), 311-325.
[http://dx.doi.org/10.1016/j.ccell.2017.02.008] [PMID: 28292435]
[29]
Liu, G.; Rui, W.; Zhao, X.; Lin, X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell. Mol. Immunol., 2021, 18(5), 1085-1095.
[http://dx.doi.org/10.1038/s41423-021-00655-2] [PMID: 33785843]
[30]
Yang, J.; Yan, J.; Liu, B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front. Immunol., 2018, 9, 978.
[http://dx.doi.org/10.3389/fimmu.2018.00978] [PMID: 29774034]
[31]
Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol., 2021, 18(8), 527-540.
[http://dx.doi.org/10.1038/s41571-021-00496-y] [PMID: 33833434]
[32]
Hawinkels, L.J A C.; Paauwe, M.; Verspaget, H.W.; Wiercinska, E.; van der Zon, J.M.; van der Ploeg, K.; Koelink, P.J.; Lindeman, J.H.N.; Mesker, W.; ten Dijke, P.; Sier, C F M. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene, 2014, 33(1), 97-107.
[http://dx.doi.org/10.1038/onc.2012.536] [PMID: 23208491]
[33]
Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D.I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol., 2016, 37(3), 208-220.
[http://dx.doi.org/10.1016/j.it.2016.01.004] [PMID: 26858199]
[34]
Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol., 2010, 10(7), 490-500.
[http://dx.doi.org/10.1038/nri2785] [PMID: 20559327]
[35]
He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res., 2020, 30(8), 660-669.
[http://dx.doi.org/10.1038/s41422-020-0343-4] [PMID: 32467592]
[36]
Kes, M.M.G.; Van den Bossche, J.; Griffioen, A.W.; Huijbers, E.J.M. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188427.
[http://dx.doi.org/10.1016/j.bbcan.2020.188427] [PMID: 32961257]
[37]
Prendergast, G.C.; Smith, C.; Thomas, S.; Mandik-Nayak, L.; Laury-Kleintop, L.; Metz, R.; Muller, A.J. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother., 2014, 63(7), 721-735.
[http://dx.doi.org/10.1007/s00262-014-1549-4] [PMID: 24711084]
[38]
Holmgaard, R.B.; Zamarin, D.; Munn, D.H.; Wolchok, J.D.; Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med., 2013, 210(7), 1389-1402.
[http://dx.doi.org/10.1084/jem.20130066] [PMID: 23752227]
[39]
Ninomiya, S.; Narala, N.; Huye, L.; Yagyu, S.; Savoldo, B.; Dotti, G.; Heslop, H.E.; Brenner, M.K.; Rooney, C.M.; Ramos, C.A. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood, 2015, 125(25), 3905-3916.
[http://dx.doi.org/10.1182/blood-2015-01-621474] [PMID: 25940712]
[40]
Chen, N.; Li, X.; Chintala, N.K.; Tano, Z.E.; Adusumilli, P.S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr. Opin. Immunol., 2018, 51, 103-110.
[http://dx.doi.org/10.1016/j.coi.2018.03.002] [PMID: 29554494]
[41]
Marofi, F.; Motavalli, R.; Safonov, V.A.; Thangavelu, L.; Yumashev, A.V.; Alexander, M.; Shomali, N.; Chartrand, M.S.; Pathak, Y.; Jarahian, M.; Izadi, S.; Hassanzadeh, A.; Shirafkan, N.; Tahmasebi, S.; Khiavi, F.M. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res. Ther., 2021, 12(1), 81.
[http://dx.doi.org/10.1186/s13287-020-02128-1] [PMID: 33494834]
[42]
Supimon, K.; Sangsuwannukul, T.; Sujjitjoon, J.; Phanthaphol, N.; Chieochansin, T.; Poungvarin, N.; Wongkham, S.; Junking, M.; Yenchitsomanus, P. Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma. Sci. Rep., 2021, 11(1), 6276.
[http://dx.doi.org/10.1038/s41598-021-85747-9] [PMID: 33737613]
[43]
Cha, S.E.; Kujawski, M.J.; Yazaki, P.; Brown, C.; Shively, J.E. Tumor regression and immunity in combination therapy with anti-CEA chimeric antigen receptor T cells and anti-CEA-IL2 immunocytokine. OncoImmunology, 2021, 10(1), 1899469.
[http://dx.doi.org/10.1080/2162402X.2021.1899469] [PMID: 33796409]
[44]
O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Melenhorst, J.J.; Mansfield, K.; Morrissette, J.J.D.; Martinez-Lage, M.; Brem, S.; Maloney, E.; Shen, A.; Isaacs, R.; Mohan, S.; Plesa, G.; Lacey, S.F.; Navenot, J.M.; Zheng, Z.; Levine, B.L.; Okada, H.; June, C.H.; Brogdon, J.L.; Maus, M.V. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med., 2017, 9(399), eaaa0984.
[http://dx.doi.org/10.1126/scitranslmed.aaa0984] [PMID: 28724573]
[45]
Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The other side of CAR T-cell therapy: Cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book, 2019, 39(39), 433-444.
[http://dx.doi.org/10.1200/EDBK_238691] [PMID: 31099694]
[46]
Morgan, R.A.; Yang, J.C.; Kitano, M.; Dudley, M.E.; Laurencot, C.M.; Rosenberg, S.A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther., 2010, 18(4), 843-851.
[http://dx.doi.org/10.1038/mt.2010.24] [PMID: 20179677]
[47]
Richman, S.A.; Nunez-Cruz, S.; Moghimi, B.; Li, L.Z.; Gershenson, Z.T.; Mourelatos, Z.; Barrett, D.M.; Grupp, S.A.; Milone, M.C. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res., 2018, 6(1), 36-46.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0211] [PMID: 29180536]
[48]
Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol., 2022, 22(2), 85-96.
[http://dx.doi.org/10.1038/s41577-021-00547-6] [PMID: 34002066]
[49]
Borrega, G.J.; Gödel, P.; Rüger, M.A.; Onur, Ö.A.; Shimabukuro-Vornhagen, A.; Kochanek, M.; Böll, B. ¨ In the eye of the storm: Immune-mediated toxicities associated with car-t cell therapy. HemaSphere, 2019, 3(2), e191.
[http://dx.doi.org/10.1097/HS9.0000000000000191] [PMID: 31723828]
[50]
Chen, Y.; Li, R.; Shang, S.; Yang, X.; Li, L.; Wang, W.; Wang, Y. Therapeutic potential of TNFα and IL1β blockade for CRS/ICANS in CAR-T therapy via ameliorating endothelial activation. Front. Immunol., 2021, 12, 623610.
[http://dx.doi.org/10.3389/fimmu.2021.623610]
[51]
van Beijnum, J.R.; Griffioen, A.W. In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles. Biochim. Biophys. Acta Rev. Cancer, 2005, 1755, 121-134.
[52]
van Beijnum, J.R.; Dings, R.P.; van der Linden, E.; Zwaans, B.M.M.; Ramaekers, F.C.S.; Mayo, K.H.; Griffioen, A.W. Gene expression of tumor angiogenesis dissected: Specific targeting of colon cancer angiogenic vasculature. Blood, 2006, 108(7), 2339-2348.
[http://dx.doi.org/10.1182/blood-2006-02-004291] [PMID: 16794251]
[53]
Carson-Walter, E.B.; Watkins, D.N.; Nanda, A.; Vogelstein, B.; Kinzler, K.W.; St Croix, B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res., 2001, 61(18), 6649-6655.
[PMID: 11559528]
[54]
Goveia, J.; Rohlenova, K.; Taverna, F.; Treps, L.; Conradi, L.C.; Pircher, A.; Geldhof, V.; de Rooij, L.P.M.H.; Kalucka, J.; Sokol, L.; García-Caballero, M.; Zheng, Y.; Qian, J.; Teuwen, L.A.; Khan, S.; Boeckx, B.; Wauters, E.; Decaluwé, H.; De Leyn, P.; Vansteenkiste, J.; Weynand, B.; Sagaert, X.; Verbeken, E.; Wolthuis, A.; Topal, B.; Everaerts, W.; Bohnenberger, H.; Emmert, A.; Panovska, D.; De Smet, F.; Staal, F.J.T.; Mclaughlin, R.J.; Impens, F.; Lagani, V.; Vinckier, S.; Mazzone, M.; Schoonjans, L.; Dewerchin, M.; Eelen, G.; Karakach, T.K.; Yang, H.; Wang, J.; Bolund, L.; Lin, L.; Thienpont, B.; Li, X.; Lambrechts, D.; Luo, Y.; Carmeliet, P. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and Angiogenic candidates. Cancer Cell, 2020, 37(1), 21-36.e13.
[http://dx.doi.org/10.1016/j.ccell.2019.12.001] [PMID: 31935371]
[55]
Akbari, P.; Huijbers, E.J.M.; Themeli, M.; Griffioen, A.W.; van Beijnum, J.R. The tumor vasculature an attractive CAR T cell target in solid tumors. Angiogenesis, 2019, 22(4), 473-475.
[http://dx.doi.org/10.1007/s10456-019-09687-9] [PMID: 31628559]
[56]
Khan, K.A.; Kerbel, R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol., 2018, 15(5), 310-324.
[http://dx.doi.org/10.1038/nrclinonc.2018.9] [PMID: 29434333]
[57]
Chinnasamy, D.; Yu, Z.; Theoret, M.R.; Zhao, Y.; Shrimali, R.K.; Morgan, R.A.; Feldman, S.A.; Restifo, N.P.; Rosenberg, S.A. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest., 2010, 120(11), 3953-3968.
[http://dx.doi.org/10.1172/JCI43490] [PMID: 20978347]
[58]
Wang, W.; Ma, Y.; Li, J.; Shi, H-S.; Wang, L-Q.; Guo, F-C.; Zhang, J.; Li, D.; Mo, B-H.; Wen, F.; Liu, T.; Liu, Y-T.; Wang, Y-S.; Wei, Y-Q. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther., 2013, 20(10), 970-978.
[http://dx.doi.org/10.1038/gt.2013.19] [PMID: 23636245]
[59]
Hajari Taheri, F.; Hassani, M.; Sharifzadeh, Z.; Behdani, M.; Arashkia, A.; Abolhassani, M. T cell engineered with a novel nanobody‐based chimeric antigen receptor against VEGFR2 as a candidate for tumor immunotherapy. IUBMB Life, 2019, 71(9), 1259-1267.
[http://dx.doi.org/10.1002/iub.2019] [PMID: 30724452]
[60]
Xing, H.; Yang, X.; Xu, Y.; Tang, K.; Tian, Z.; Chen, Z.; Zhang, Y.; Xue, Z.; Rao, Q.; Wang, M. Anti-tumor effects of vascular endothelial growth factor/vascular endothelial growth factor receptor binding domain-modified chimeric antigen receptor T cells. Cytotherapy, 2021, 23, 810-819.
[61]
Chinnasamy, D.; Tran, E.; Yu, Z.; Morgan, R.A.; Restifo, N.P.; Rosenberg, S.A. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res., 2013, 73(11), 3371-3380.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3913] [PMID: 23633494]
[62]
Kershaw, M.H.; Westwood, J.A.; Zhu, Z.; Witte, L.; Libutti, S.K.; Hwu, P. Generation of gene-modified T cells reactive against the angiogenic kinase insert domain-containing receptor (KDR) found on tumor vasculature. Hum. Gene Ther., 2000, 11(18), 2445-2452.
[http://dx.doi.org/10.1089/10430340050207939] [PMID: 11119416]
[63]
CAR. T cell receptor immunotherapy targeting VEGFR2 for patients with metastatic cancer. 2022 Available from: https://clinicaltrials.gov/ct2/show/NCT01218867
[64]
van Beijnum, J.R.; Nowak-Sliwinska, P.; Huijbers, E.J.M.; Thijssen, V.L.; Griffioen, A.W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol. Rev., 2015, 67(2), 441-461.
[http://dx.doi.org/10.1124/pr.114.010215] [PMID: 25769965]
[65]
Huijbers, E.J.M.; van Beijnum, J.R.; Thijssen, V.L.; Sabrkhany, S.P. Nowak, Sliwinska; Griffioen, A.W. Role of the tumor stroma in resistance to antiangiogenic therapy. Drug Resist. Updat., 2016, 25, 26-37.
[http://dx.doi.org/10.1016/j.drup.2016.02.002] [PMID: 27155374]
[66]
Lanitis, E.; Kosti, P.; Ronet, C.; Cribioli, E.; Rota, G.; Spill, A.; Reichenbach, P.; Zoete, V.; Dangaj Laniti, D.; Coukos, G.; Irving, M. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J. Immunother. Cancer, 2021, 9(8), e002151.
[http://dx.doi.org/10.1136/jitc-2020-002151] [PMID: 34389616]
[67]
Slovin, S.F.; Wang, X.; Hullings, M.; Arauz, G.; Bartido, S.; Lewis, J.S.; Schöder, H.; Zanzonico, P.; Scher, H.I.; Sadelain, M.; Riviere, I. Chimeric antigen receptor (CAR +) modified T cells targeting prostate-specific membrane antigen (PSMA) in patients (pts) with castrate metastatic prostate cancer (CMPC). J. Clin. Oncol., 2013, 31(6)(Suppl.), 72.
[http://dx.doi.org/10.1200/jco.2013.31.6_suppl.72]
[68]
Santoro, S.P.; Kim, S.; Motz, G.T.; Alatzoglou, D.; Li, C.; Irving, M.; Powell, D.J., Jr; Coukos, G. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res., 2015, 3(1), 68-84.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0192] [PMID: 25358763]
[69]
Junghans, R.P.; Ma, Q.; Rathore, R.; Gomes, E.M.; Bais, A.J.; Lo, A.S.Y.; Abedi, M.; Davies, R.A.; Cabral, H.J.; Al-Homsi, A.S.; Cohen, S.I. Phase I trial of anti-PSMA designer CAR-T cells in prostate Cancer: Possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate, 2016, 76(14), 1257-1270.
[http://dx.doi.org/10.1002/pros.23214] [PMID: 27324746]
[70]
Croix, B.S.; Rago, C.; Velculescu, V.; Traverso, G.; Romans, K.E.; Montgomery, E.; Lal, A.; Riggins, G.J.; Lengauer, C.; Vogelstein, B.; Kinzler, K.W. Genes expressed in human tumor endothelium. Science, 2000, 289(5482), 1197-1202.
[http://dx.doi.org/10.1126/science.289.5482.1197] [PMID: 10947988]
[71]
Byrd, T.T.; Fousek, K.; Pignata, A.; Szot, C.; Samaha, H.; Seaman, S.; Dobrolecki, L.; Salsman, V.S.; Oo, H.Z.; Bielamowicz, K.; Landi, D.; Rainusso, N.; Hicks, J.; Powell, S.; Baker, M.L.; Wels, W.S.; Koch, J.; Sorensen, P.H.; Deneen, B.; Ellis, M.J.; Lewis, M.T.; Hegde, M.; Fletcher, B.S.; St Croix, B.; Ahmed, N. TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast Cancer. Cancer Res., 2018, 78(2), 489-500.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1911] [PMID: 29183891]
[72]
Petrovic, K.; Robinson, J.; Whitworth, K.; Jinks, E.; Shaaban, A.; Lee, S.P. TEM8/ANTXR1-specific CAR T cells mediate toxicity in vivo. PLoS One, 2019, 14(10), e0224015.
[http://dx.doi.org/10.1371/journal.pone.0224015] [PMID: 31622431]
[73]
Fierle, J.K.; Brioschi, M.; de Tiani, M.; Wetterwald, L.; Atsaves, V.; Abram-Saliba, J.; Petrova, T.V.; Coukos, G.; Dunn, S.M. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. Cell Rep. Med., 2021, 2(8), 100362.
[http://dx.doi.org/10.1016/j.xcrm.2021.100362] [PMID: 34467246]
[74]
Zhuang, X.; Maione, F.; Robinson, J.; Bentley, M.; Kaul, B.; Whitworth, K.; Jumbu, N.; Jinks, E.; Bystrom, J.; Gabriele, P.; Garibaldi, E.; Delmastro, E.; Nagy, Z.; Gilham, D.; Giraudo, E.; Bicknell, R.; Lee, S.P. CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight, 2020, 5(19), e138808.
[http://dx.doi.org/10.1172/jci.insight.138808] [PMID: 33004686]
[75]
Huijbers, E.J.M.; Ringvall, M.; Femel, J.; Kalamajski, S.; Lukinius, A.; Åbrink, M.; Hellman, L.; Olsson, A.K. Vaccination against the extra domain‐B of fibronectin as a novel tumor therapy. FASEB J., 2010, 24(11), 4535-4544.
[http://dx.doi.org/10.1096/fj.10-163022] [PMID: 20634349]
[76]
Xie, Y.J.; Dougan, M.; Jailkhani, N.; Ingram, J.; Fang, T.; Kummer, L.; Momin, N.; Pishesha, N.; Rickelt, S.; Hynes, R.O.; Ploegh, H. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7624-7631.
[http://dx.doi.org/10.1073/pnas.1817147116] [PMID: 30936321]
[77]
Wagner, J.; Wickman, E.; Shaw, T.I.; Anido, A.A.; Langfitt, D.; Zhang, J.; Porter, S.N.; Pruett-Miller, S.M.; Tillman, H.; Krenciute, G.; Gottschalk, S. Antitumor effects of CAR T cells redirected to the edb splice variant of fibronectin. Cancer Immunol. Res., 2021, 9(3), 279-290.
[http://dx.doi.org/10.1158/2326-6066.CIR-20-0280] [PMID: 33355188]
[78]
Zhang, E.; Gu, J.; Xue, J.; Lin, C.; Liu, C.; Li, M.; Hao, J.; Setrerrahmane, S.; Chi, X.; Qi, W.; Hu, J.; Xu, H. Accurate control of dual-receptor-engineered T cell activity through a bifunctional anti-angiogenic peptide. J. Hematol. Oncol., 2018, 11(1), 44.
[http://dx.doi.org/10.1186/s13045-018-0591-7] [PMID: 29558951]
[79]
Wallstabe, L.; Mades, A.; Frenz, S.; Einsele, H.; Rader, C.; Hudecek, M. CAR T cells targeting α v β 3 integrin are effective against advanced cancer in preclinical models. Adv. Cell Gene Ther., 2018, 1(2), e11.
[http://dx.doi.org/10.1002/acg2.11] [PMID: 30420973]
[80]
Fu, X.; Rivera, A.; Tao, L.; Zhang, X. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery. Int. J. Cancer, 2013, 133(10), 2483-2492.
[http://dx.doi.org/10.1002/ijc.28269] [PMID: 23661285]
[81]
Lanitis, E.; Irving, M.; Coukos, G. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol., 2015, 33, 55-63.
[http://dx.doi.org/10.1016/j.coi.2015.01.011] [PMID: 25665467]
[82]
Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; Powles, T.; Donskov, F.; Neiman, V.; Kollmannsberger, C.K.; Salman, P.; Gurney, H.; Hawkins, R.; Ravaud, A.; Grimm, M.O.; Bracarda, S.; Barrios, C.H.; Tomita, Y.; Castellano, D.; Rini, B.I.; Chen, A.C.; Mekan, S.; McHenry, M.B.; Wind-Rotolo, M.; Doan, J.; Sharma, P.; Hammers, H.J.; Escudier, B. Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med., 2018, 378(14), 1277-1290.
[http://dx.doi.org/10.1056/NEJMoa1712126] [PMID: 29562145]
[83]
Bocca, P.; Di Carlo, E.; Caruana, I.; Emionite, L.; Cilli, M.; De Angelis, B.; Quintarelli, C.; Pezzolo, A.; Raffaghello, L.; Morandi, F.; Locatelli, F.; Pistoia, V.; Prigione, I. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. OncoImmunology, 2018, 7(1), e1378843.
[http://dx.doi.org/10.1080/2162402X.2017.1378843] [PMID: 29296542]
[84]
Shrimali, R.K.; Yu, Z.; Theoret, M.R.; Chinnasamy, D.; Restifo, N.P.; Rosenberg, S.A. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res., 2010, 70(15), 6171-6180.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0153] [PMID: 20631075]
[85]
Deng, C.; Zhao, J.; Zhou, S.; Dong, J.; Cao, J.; Gao, J.; Bai, Y.; Deng, H. The vascular disrupting agent CA4P improves the antitumor efficacy of CAR-T cells in preclinical models of solid human tumors. Mol. Ther., 2020, 28(1), 75-88.
[http://dx.doi.org/10.1016/j.ymthe.2019.10.010] [PMID: 31672285]
[86]
Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate Cancer eradication. Mol. Ther., 2018, 26, 1855-1866.
[87]
Wu, X.; Luo, H.; Shi, B.; Di, S.; Sun, R.; Su, J.; Liu, Y.; Li, H.; Jiang, H.; Li, Z. Combined antitumor effects of Sorafenib and GPC3-CAR T cells in mouse models of hepatocellular carcinoma. Mol. Ther., 2019, 27(8), 1483-1494.
[http://dx.doi.org/10.1016/j.ymthe.2019.04.020] [PMID: 31078430]
[88]
Li, H.; Ding, J.; Lu, M.; Liu, H.; Miao, Y.; Li, L.; Wang, G.; Zheng, J.; Pei, D.; Zhang, Q. CAIX-specific CAR-T cells and Sunitinib show synergistic effects against metastatic renal Cancer models. J. Immunother., 2020, 43(1), 16-28.
[http://dx.doi.org/10.1097/CJI.0000000000000301] [PMID: 31574023]
[89]
Griffioen, A.W.; Mans, L.A.; de Graaf, A.M.A.; Nowak-Sliwinska, P.; de Hoog, C.L.M.M.; de Jong, T.A.M.; Vyth-Dreese, F.A.; van Beijnum, J.R.; Bex, A.; Jonasch, E. Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin. Cancer Res., 2012, 18(14), 3961-3971.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0002] [PMID: 22573349]
[90]
van Beijnum, J.R.; Weiss, A.; Berndsen, R.H.; Wong, T.J.; Reckman, L.C.; Piersma, S.R.; Zoetemelk, M.; de Haas, R.; Dormond, O.; Bex, A.; Henneman, A.A.; Jimenez, C.R.; Griffioen, A.W.; Nowak-Sliwinska, P. Integrating phenotypic search and phosphoproteomic profiling of active kinases for optimization of drug mixtures for rcc treatment. Cancers, 2020, 12(9), 2697.
[http://dx.doi.org/10.3390/cancers12092697] [PMID: 32967224]
[91]
Grada, Z.; Hegde, M.; Byrd, T.; Shaffer, D.R.; Ghazi, A.; Brawley, V.S.; Corder, A.; Schönfeld, K.; Koch, J.; Dotti, G.; Heslop, H.E.; Gottschalk, S.; Wels, W.S.; Baker, M.L.; Ahmed, N. TanCAR: A novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol. Ther. Nucleic Acids, 2013, 2, e105.
[http://dx.doi.org/10.1038/mtna.2013.32] [PMID: 23839099]
[92]
Hegde, M.; Corder, A.; Chow, K.K.H.; Mukherjee, M.; Ashoori, A.; Kew, Y.; Zhang, Y.J.; Baskin, D.S.; Merchant, F.A.; Brawley, V.S.; Byrd, T.T.; Krebs, S.; Wu, M.F.; Liu, H.; Heslop, H.E.; Gottachalk, S.; Yvon, E.; Ahmed, N. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol. Ther., 2013, 21(11), 2087-2101.
[http://dx.doi.org/10.1038/mt.2013.185] [PMID: 23939024]
[93]
Kakarla, S.; Chow, K.K.H.; Mata, M.; Shaffer, D.R.; Song, X.T.; Wu, M.F.; Liu, H.; Wang, L.L.; Rowley, D.R.; Pfizenmaier, K.; Gottschalk, S. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther., 2013, 21(8), 1611-1620.
[http://dx.doi.org/10.1038/mt.2013.110] [PMID: 23732988]
[94]
Chmielewski, M.; Hombach, A.; Heuser, C.; Adams, G.P.; Abken, H. T cell activation by antibody-like immunoreceptors: Increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J. Immunol., 2004, 173(12), 7647-7653.
[http://dx.doi.org/10.4049/jimmunol.173.12.7647] [PMID: 15585893]
[95]
Hudecek, M.; Lupo-Stanghellini, M.T.; Kosasih, P.L.; Sommermeyer, D.; Jensen, M.C.; Rader, C.; Riddell, S.R. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin. Cancer Res., 2013, 19(12), 3153-3164.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0330] [PMID: 23620405]
[96]
Caruso, H.G.; Hurton, L.V.; Najjar, A.; Rushworth, D.; Ang, S.; Olivares, S.; Mi, T.; Switzer, K.; Singh, H.; Huls, H.; Lee, D.A.; Heimberger, A.B.; Champlin, R.E.; Cooper, L.J.N. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res., 2015, 75(17), 3505-3518.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0139] [PMID: 26330164]
[97]
Song, D.G.; Ye, Q.; Poussin, M.; Liu, L.; Figini, M.; Powell, D.J. Jr A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity. Oncotarget, 2015, 6(25), 21533-21546.
[http://dx.doi.org/10.18632/oncotarget.4071] [PMID: 26101914]
[98]
Drent, E.; Poels, R.; Ruiter, R.; van de Donk, N.W.C.J.; Zweegman, S.; Yuan, H.; de Bruijn, J.; Sadelain, M.; Lokhorst, H.M.; Groen, R.W.J.; Mutis, T.; Themeli, M. Combined CD28 and 4- 1BB Costimulation potentiates affinity-tuned chimeric antigen receptor–engineered T cells. Clin. Cancer Res., 2019, 25(13), 4014-4025.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2559] [PMID: 30979735]
[99]
Long, A.H.; Haso, W.M.; Shern, J.F.; Wanhainen, K.M.; Murgai, M.; Ingaramo, M.; Smith, J.P.; Walker, A.J.; Kohler, M.E.; Venkateshwara, V.R.; Kaplan, R.N.; Patterson, G.H.; Fry, T.J.; Orentas, R.J.; Mackall, C.L. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med., 2015, 21(6), 581-590.
[http://dx.doi.org/10.1038/nm.3838] [PMID: 25939063]
[100]
Stoiber, S.; Cadilha, B.L.; Benmebarek, M.R.; Lesch, S.; Endres, S.; Kobold, S. Limitations in the design of chimeric antigen receptors for cancer therapy. Cells, 2019, 8(5), 472.
[http://dx.doi.org/10.3390/cells8050472] [PMID: 31108883]
[101]
Siegler, E.; Li, S.; Kim, Y.J.; Wang, P. Designed Ankyrin repeat proteins as Her2 targeting domains in chimeric antigen receptor-engineered T cells. Hum. Gene Ther., 2017, 28(9), 726-736.
[http://dx.doi.org/10.1089/hum.2017.021] [PMID: 28796529]
[102]
Kulemzin, S.V.; Gorchakov, A.A.; Chikaev, A.N.; Kuznetsova, V.V.; Volkova, O.Y.; Matvienko, D.A.; Petukhov, A.V.; Zaritskey, A.Y.; Taranin, A.V. VEGFR2-specific FnCAR effectively redirects the cytotoxic activity of T cells and YT NK cells. Oncotarget, 2018, 9(10), 9021-9029.
[http://dx.doi.org/10.18632/oncotarget.24078] [PMID: 29507671]
[103]
Zajc, C.U.; Salzer, B.; Taft, J.M.; Reddy, S.T.; Lehner, M.; Traxlmayr, M.W. Driving CARs with alternative navigation tools – the potential of engineered binding scaffolds. FEBS J., 2021, 288(7), 2103-2118.
[http://dx.doi.org/10.1111/febs.15523] [PMID: 32794303]
[104]
Wing, A.; Fajardo, C.A.; Posey, A.D., Jr; Shaw, C.; Da, T.; Young, R.M.; Alemany, R.; June, C.H.; Guedan, S. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol. Res., 2018, 6(5), 605-616.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0314] [PMID: 29588319]
[105]
Tamada, K.; Geng, D.; Sakoda, Y.; Bansal, N.; Srivastava, R.; Li, Z.; Davila, E. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clin. Cancer Res., 2012, 18(23), 6436-6445.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1449] [PMID: 23032741]
[106]
Lee, Y.G.; Marks, I.; Srinivasarao, M.; Kanduluru, A.K.; Mahalingam, S.M.; Liu, X.; Chu, H.; Low, P.S. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumors. Cancer Res., 2019, 79(2), 387-396.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1834] [PMID: 30482775]
[107]
Kloss, C.C.; Condomines, M.; Cartellieri, M.; Bachmann, M.; Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol., 2013, 31(1), 71-75.
[http://dx.doi.org/10.1038/nbt.2459] [PMID: 23242161]
[108]
Lanitis, E.; Poussin, M.; Klattenhoff, A.W.; Song, D.; Sandaltzopoulos, R.; June, C.H.; Powell, D.J. Jr Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol. Res., 2013, 1(1), 43-53.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0008] [PMID: 24409448]
[109]
Roybal, K.T.; Rupp, L.J.; Morsut, L.; Walker, W.J.; McNally, K.A.; Park, J.S.; Lim, W.A. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell, 2016, 164(4), 770-779.
[http://dx.doi.org/10.1016/j.cell.2016.01.011] [PMID: 26830879]
[110]
Wu, C.Y.; Roybal, K.T.; Puchner, E.M.; Onuffer, J.; Lim, W.A. Remote control of therapeutic T cells through a small molecule–gated chimeric receptor. Science, 2015, 350(6258), aab4077.
[http://dx.doi.org/10.1126/science.aab4077] [PMID: 26405231]
[111]
Jan, M.; Scarfò, I.; Larson, R.C.; Walker, A.; Schmidts, A.; Guirguis, A.A.; Gasser, J.A. Słabicki, M.; Bouffard, A.A.; Castano, A.P.; Kann, M.C.; Cabral, M.L.; Tepper, A.; Grinshpun, D.E.; Sperling, A.S.; Kyung, T.; Sievers, Q.L.; Birnbaum, M.E.; Maus, M.V.; Ebert, B.L. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci. Transl. Med., 2021, 13(575), eabb6295.
[http://dx.doi.org/10.1126/scitranslmed.abb6295] [PMID: 33408186]
[112]
Drent, E.; Poels, R.; Mulders, M.J.; van de Donk, N.W.C.J.; Themeli, M.; Lokhorst, H.M.; Mutis, T. Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design. PLoS One, 2018, 13(5), e0197349.
[http://dx.doi.org/10.1371/journal.pone.0197349] [PMID: 29847570]
[113]
Juillerat, A.; Tkach, D.; Busser, B.W.; Temburni, S.; Valton, J.; Duclert, A.; Poirot, L.; Depil, S.; Duchateau, P. Modulation of chimeric antigen receptor surface expression by a small molecule switch. BMC Biotechnol., 2019, 19(1), 44.
[http://dx.doi.org/10.1186/s12896-019-0537-3] [PMID: 31269942]
[114]
Zajc, C.U.; Dobersberger, M.; Schaffner, I.; Mlynek, G.; Pühringer, D.; Salzer, B. Djinović-Carugo, K.; Steinberger, P.; De Sousa Linhares, A.; Yang, N.J.; Obinger, C.; Holter, W.; Traxlmayr, M.W.; Lehner, M. A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 14926-14935.
[http://dx.doi.org/10.1073/pnas.1911154117] [PMID: 32554495]
[115]
Fedorov, V.D.; Themeli, M.; Sadelain, M. PD-1-and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunothery responses. Sci. Transl. Med., 2013, 5(215), 215ra172.
[http://dx.doi.org/10.1126/scitranslmed.3006597]
[116]
Koneru, M.; Purdon, T.J.; Spriggs, D.; Koneru, S.; Brentjens, R.J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. OncoImmunology, 2015, 4(3), e994446.
[http://dx.doi.org/10.4161/2162402X.2014.994446] [PMID: 25949921]
[117]
Craddock, J.A.; Lu, A.; Bear, A.; Pule, M.; Brenner, M.K.; Rooney, C.M.; Foster, A.E. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother., 2010, 33(8), 780-788.
[http://dx.doi.org/10.1097/CJI.0b013e3181ee6675] [PMID: 20842059]
[118]
Moon, E.K.; Carpenito, C.; Sun, J.; Wang, L.C.S.; Kapoor, V.; Predina, J.; Powell, D.J., Jr; Riley, J.L.; June, C.H.; Albelda, S.M. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res., 2011, 17(14), 4719-4730.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0351] [PMID: 21610146]
[119]
Lesch, S.; Blumenberg, V.; Stoiber, S.; Gottschlich, A.; Ogonek, J.; Cadilha, B.L.; Dantes, Z.; Rataj, F.; Dorman, K.; Lutz, J.; Karches, C.H.; Heise, C.; Kurzay, M.; Larimer, B.M.; Grassmann, S.; Rapp, M.; Nottebrock, A.; Kruger, S.; Tokarew, N.; Metzger, P.; Hoerth, C.; Benmebarek, M.R.; Dhoqina, D.; Grünmeier, R.; Seifert, M.; Oener, A.; Umut, Ö.; Joaquina, S.; Vimeux, L.; Tran, T.; Hank, T.; Baba, T.; Huynh, D.; Megens, R.T.A.; Janssen, K.P.; Jastroch, M.; Lamp, D.; Ruehland, S.; Di Pilato, M.; Pruessmann, J.N.; Thomas, M.; Marr, C.; Ormanns, S.; Reischer, A.; Hristov, M.; Tartour, E.; Donnadieu, E.; Rothenfusser, S.; Duewell, P.; König, L.M.; Schnurr, M.; Subklewe, M.; Liss, A.S.; Halama, N.; Reichert, M.; Mempel, T.R.; Endres, S.; Kobold, S. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat. Biomed. Eng., 2021, 5(11), 1246-1260.
[http://dx.doi.org/10.1038/s41551-021-00737-6] [PMID: 34083764]
[120]
Whilding, L.; Halim, L.; Draper, B.; Parente-Pereira, A.; Zabinski, T.; Davies, D.; Maher, J. CAR T-cells targeting the integrin αvβ6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers, 2019, 11(5), 674.
[http://dx.doi.org/10.3390/cancers11050674] [PMID: 31091832]
[121]
Cherkassky, L.; Morello, A.; Villena-Vargas, J.; Feng, Y.; Dimitrov, D.S.; Jones, D.R.; Sadelain, M.; Adusumilli, P.S.; Human, C.A.R. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest., 2016, 126(8), 3130-3144.
[http://dx.doi.org/10.1172/JCI83092] [PMID: 27454297]
[122]
Yin, Y.; Boesteanu, A.C.; Binder, Z.A.; Xu, C.; Reid, R.A.; Rodriguez, J.L.; Cook, D.R.; Thokala, R.; Blouch, K.; McGettigan-Croce, B. Checkpoint blockade reverses Anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol. Ther. Oncol., 2018, 11, 20-38.
[123]
Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol., 2022.
[http://dx.doi.org/10.1038/s41571-019-0297-y] [PMID: 31848460]
[124]
Johnston, S.C.; Dustin, M.L.; Hibbs, M.L.; Springer, T.A. On the species specificity of the interaction of LFA-1 with intercellular adhesion molecules. J. Immunol., 1990, 145(4), 1181-1187.
[PMID: 2199576]
[125]
Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human immunology. J. Immunol., 2004, 172(5), 2731-2738.
[http://dx.doi.org/10.4049/jimmunol.172.5.2731] [PMID: 14978070]
[126]
Bedoya, M.D.; Dutoit, V.; Migliorini, D.; Allogeneic, C.A.R. T cells: An alternative to overcome challenges of CAR T cell therapy in glioblastoma. Front. Immunol., 2021, 12, 640082.
[http://dx.doi.org/10.3389/fimmu.2021.640082] [PMID: 33746981]
[127]
Jin, C.H.; Xia, J.; Rafiq, S.; Huang, X.; Hu, Z.; Zhou, X.; Brentjens, R.J.; Yang, Y.G. Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia. EBioMedicine, 2019, 39, 173-181.
[http://dx.doi.org/10.1016/j.ebiom.2018.12.013] [PMID: 30579863]
[128]
Schnalzger, T.E.; Groot, M.H.P.; Zhang, C.; Mosa, M.H.; Michels, B.E.; Röder, J.; Darvishi, T.; Wels, W.S.; Farin, H.F. 3D model for CAR ‐mediated cytotoxicity using patient‐derived colorectal cancer organoids. EMBO J., 2019, 38(12), e100928.
[http://dx.doi.org/10.15252/embj.2018100928] [PMID: 31036555]
[129]
Englisch, A.; Altvater, B.; Kailayangiri, S.; Hartmann, W.; Rossig, C. VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma. Pediatr. Blood Cancer, 2020, 67(10), e28313.
[http://dx.doi.org/10.1002/pbc.28313] [PMID: 32729251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy