Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Metabolic Pathways Regulating Colorectal Cancer: A Potential Therapeutic Approach

Author(s): Nima Zafari, Mahla Velayati, Sedigheh Damavandi, Ghazaleh Pourali, Majid Ghayour Mobarhan, Mohammadreza Nassiri, Seyed Mahdi Hassanian, Majid Khazaei*, Gordon A. Ferns and Amir Avan*

Volume 28, Issue 36, 2022

Published on: 06 October, 2022

Page: [2995 - 3009] Pages: 15

DOI: 10.2174/1381612828666220922111342

Price: $65

Abstract

Colorectal cancer (CRC) is one of the most prevalent cancers globally. Despite recent progress in identifying etiologies and molecular genetics as well as new therapeutic approaches, the clinical outcome of current CRC therapies remains poor. This fact highlights the importance of further understanding underlying mechanisms involved in colorectal tumor initiation and progression. Abnormal metabolic alterations offer an evolutional advantage for CRC tumor cells and enhance their aggressive phenotype. Therefore, dysregulation of cellular metabolism is intricately associated with colorectal tumorigenesis. This review summarizes recent findings regarding the CRC-related changes in cellular metabolic pathways such as glycolysis, tricarboxylic acid cycle, fatty acid oxidation, and mitochondrial metabolism. We describe the oncogenic signaling pathways associated with metabolic dysregulation during malignant transformation and tumor progression. Given the crucial role of metabolic pathway alterations in the pathogenesis of CRC, we provide an overview of novel pharmacological strategies for the treatment of CRC by targeting metabolic and signaling pathways.

Keywords: Colorectal cancer, metabolic pathways, signaling pathways, targeted therapies, metabolic reprogramming, glucose metabolism, warburg effect.

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin 2021; 71(1): 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70(3): 145-64.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[3]
Joachim C, Macni J, Drame M, et al. Overall survival of colorectal cancer by stage at diagnosis. Medicine (Baltimore) 2019; 98(35): e16941.
[http://dx.doi.org/10.1097/MD.0000000000016941] [PMID: 31464932]
[4]
La Vecchia S, Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell Dev Biol 2020; 98: 63-70.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.018] [PMID: 31129171]
[5]
Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic reprogramming of colorectal cancer cells and the microenvironment: Implication for therapy. Int J Mol Sci 2021; 22(12): 6262.
[http://dx.doi.org/10.3390/ijms22126262] [PMID: 34200820]
[6]
Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell 2017; 168(4): 657-69.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[7]
Sun L, Suo C, Li S, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870(1): 51-66.
[http://dx.doi.org/10.1016/j.bbcan.2018.06.005] [PMID: 29959989]
[8]
Song Y, Zhang S, Guo X, et al. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 2013; 339(1): 70-81.
[http://dx.doi.org/10.1016/j.canlet.2013.07.021] [PMID: 23879969]
[9]
Rodríguez-Colman MJ, Schewe M, Meerlo M, et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 2017; 543(7645): 424-7.
[http://dx.doi.org/10.1038/nature21673] [PMID: 28273069]
[10]
Schell JC, Olson KA, Jiang L, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 2014; 56(3): 400-13.
[http://dx.doi.org/10.1016/j.molcel.2014.09.026] [PMID: 25458841]
[11]
Schell JC, Wisidagama DR, Bensard C, et al. Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 2017; 19(9): 1027-36.
[http://dx.doi.org/10.1038/ncb3593] [PMID: 28812582]
[12]
Shao Q, Wang L, Yuan M, Jin X, Chen Z, Wu C. TIGIT induces (CD3+) T cell dysfunction in colorectal cancer by inhibiting glucose metabolism. Front Immunol 2021; 12: 688961.
[http://dx.doi.org/10.3389/fimmu.2021.688961] [PMID: 34659197]
[13]
Zhang D, Wang Y, Shi Z, et al. Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep 2015; 10(8): 1335-48.
[http://dx.doi.org/10.1016/j.celrep.2015.02.006] [PMID: 25732824]
[14]
Zafari N, Velayati M, Nassiri M, et al. Pharmacological targeting of epithelial-to-mesenchymal transition in colorectal cancer. Curr Pharm Des 2022; 28(28): 2298-311.
[http://dx.doi.org/10.2174/1381612828666220728152350] [PMID: 35909286]
[15]
Gong J, Lin Y, Zhang H, et al. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis 2020; 11(4): 267.
[http://dx.doi.org/10.1038/s41419-020-2434-z] [PMID: 32327627]
[16]
Scheurlen KM, Billeter AT, O’Brien SJ, Galandiuk S. Metabolic dysfunction and early‐onset colorectal cancer-How macrophages build the bridge. Cancer Med 2020; 9(18): 6679-93.
[http://dx.doi.org/10.1002/cam4.3315] [PMID: 33624450]
[17]
Qu D, Shen L, Liu S, et al. Chronic inflammation confers to the metabolic reprogramming associated with tumorigenesis of colorectal cancer. Cancer Biol Ther 2017; 18(4): 237-44.
[http://dx.doi.org/10.1080/15384047.2017.1294292] [PMID: 28278072]
[18]
Di Franco S, Bianca P, Sardina DS, et al. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nat Commun 2021; 12(1): 5006.
[http://dx.doi.org/10.1038/s41467-021-25333-9] [PMID: 34408135]
[19]
Wang B, Rong X, Palladino END, et al. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell 2018; 22(2): 206-220.e4.
[http://dx.doi.org/10.1016/j.stem.2017.12.017] [PMID: 29395055]
[20]
Beyaz S, Mana MD, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 2016; 531(7592): 53-8.
[http://dx.doi.org/10.1038/nature17173] [PMID: 26935695]
[21]
Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene 2022; 41(1): 46-56.
[PMID: 34671086]
[22]
Baba Y, Nosho K, Shima K, et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 2010; 176(5): 2292-301.
[http://dx.doi.org/10.2353/ajpath.2010.090972] [PMID: 20363910]
[23]
Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. J Biol Chem 2001; 276(12): 9519-25.
[http://dx.doi.org/10.1074/jbc.M010144200] [PMID: 11120745]
[24]
Mimura I, Nangaku M, Kanki Y, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 2012; 32(15): 3018-32.
[http://dx.doi.org/10.1128/MCB.06643-11] [PMID: 22645302]
[25]
Zhdanov AV, Okkelman IA, Collins FWJ, Melgar S, Papkovsky DB. A novel effect of DMOG on cell metabolism: Direct inhibition of mitochondrial function precedes HIF target gene expression. Biochim Biophys Acta Bioenerg 2015; 1847(10): 1254-66.
[http://dx.doi.org/10.1016/j.bbabio.2015.06.016] [PMID: 26143176]
[26]
Wei L, Zhou Y, Yao J, et al. Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. Oncotarget 2015; 6(18): 16198-214.
[http://dx.doi.org/10.18632/oncotarget.3838] [PMID: 25938544]
[27]
Andreucci E, Peppicelli S, Carta F, et al. Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. J Mol Med (Berl) 2017; 95(12): 1341-53.
[http://dx.doi.org/10.1007/s00109-017-1590-9] [PMID: 28929255]
[28]
Feron O. Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 2009; 92(3): 329-33.
[http://dx.doi.org/10.1016/j.radonc.2009.06.025] [PMID: 19604589]
[29]
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6(3): 148-61.
[http://dx.doi.org/10.4331/wjbc.v6.i3.148] [PMID: 26322173]
[30]
Fu Y, Liu S, Yin S, et al. The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 2017; 8(34): 57813-25.
[http://dx.doi.org/10.18632/oncotarget.18175] [PMID: 28915713]
[31]
Chekulayev V, Mado K, Shevchuk I, et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: Alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep 2015; 4: 111-25.
[http://dx.doi.org/10.1016/j.bbrep.2015.08.020] [PMID: 29124194]
[32]
Kaldma A, Klepinin A, Chekulayev V, et al. An in situ study of bioenergetic properties of human colorectal cancer: The regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome. Int J Biochem Cell Biol 2014; 55: 171-86.
[http://dx.doi.org/10.1016/j.biocel.2014.09.004] [PMID: 25218857]
[33]
Chiavarina B, Whitaker-Menezes D, Martinez-Outschoorn UE, et al. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol Ther 2011; 12(12): 1101-13.
[http://dx.doi.org/10.4161/cbt.12.12.18703] [PMID: 22236875]
[34]
Li F, Simon MC. Cancer cells don’t live alone: Metabolic communication within tumor microenvironments. Dev Cell 2020; 54(2): 183-95.
[http://dx.doi.org/10.1016/j.devcel.2020.06.018] [PMID: 32640203]
[35]
Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell 2016; 61(5): 667-76.
[http://dx.doi.org/10.1016/j.molcel.2016.02.011] [PMID: 26942671]
[36]
Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood) 2016; 241(12): 1281-95.
[http://dx.doi.org/10.1177/1535370216641787] [PMID: 27022139]
[37]
Xiang L, Mou J, Shao B, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis 2019; 10(2): 40.
[http://dx.doi.org/10.1038/s41419-018-1291-5] [PMID: 30674873]
[38]
Miyo M, Konno M, Nishida N, et al. Metabolic adaptation to nutritional stress in human colorectal cancer. Sci Rep 2016; 6(1): 38415.
[http://dx.doi.org/10.1038/srep38415] [PMID: 27924922]
[39]
Sun X, Zhan L, Chen Y, et al. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct Target Ther 2018; 3(1): 8.
[http://dx.doi.org/10.1038/s41392-018-0011-z] [PMID: 29610678]
[40]
Vellinga TT, Borovski T, de Boer VCJ, et al. SIRT1/PGC1α-dependent increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin Cancer Res 2015; 21(12): 2870-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2290] [PMID: 25779952]
[41]
Wang Y, Zeng Z, Lu J, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 2018; 37(46): 6025-40.
[http://dx.doi.org/10.1038/s41388-018-0384-z] [PMID: 29995871]
[42]
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020; 11(1): 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[43]
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 2002; 277(34): 30409-12.
[http://dx.doi.org/10.1074/jbc.R200006200] [PMID: 12087111]
[44]
Alberghina L, Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis 2014; 5(12): e1561.
[http://dx.doi.org/10.1038/cddis.2014.513] [PMID: 25476909]
[45]
Huang F, Zhang Q, Ma H, Lv Q, Zhang T. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int J Clin Exp Pathol 2014; 7(3): 1093-100.
[PMID: 24696726]
[46]
Liu G, Zhu J, Yu M, et al. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J Transl Med 2015; 13(1): 144.
[http://dx.doi.org/10.1186/s12967-015-0500-6] [PMID: 25947346]
[47]
Ciccarese F, Ciminale V. Escaping death: Mitochondrial redox homeostasis in cancer cells. Front Oncol 2017; 7: 117.
[http://dx.doi.org/10.3389/fonc.2017.00117] [PMID: 28649560]
[48]
DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104(49): 19345-50.
[http://dx.doi.org/10.1073/pnas.0709747104] [PMID: 18032601]
[49]
Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab 2016; 24(2): 311-23.
[http://dx.doi.org/10.1016/j.cmet.2016.07.003] [PMID: 27508876]
[50]
Holla VR, Wu H, Shi Q, Menter DG, DuBois RN. Nuclear orphan receptor NR4A2 modulates fatty acid oxidation pathways in colorectal cancer. J Biol Chem 2011; 286(34): 30003-9.
[http://dx.doi.org/10.1074/jbc.M110.184697] [PMID: 21757690]
[51]
Wen YA, Xing X, Harris JW, et al. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis 2017; 8(2): e2593.
[http://dx.doi.org/10.1038/cddis.2017.21] [PMID: 28151470]
[52]
Zaytseva YY, Harris JW, Mitov MI, et al. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget 2015; 6(22): 18891-904.
[http://dx.doi.org/10.18632/oncotarget.3783] [PMID: 25970773]
[53]
Santhanam S, Alvarado DM, Ciorba MA. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res 2016; 167(1): 67-79.
[http://dx.doi.org/10.1016/j.trsl.2015.07.003] [PMID: 26297050]
[54]
Bishnupuri KS, Alvarado DM, Khouri AN, et al. IDO1 and kynurenine pathway metabolites activate pi3k-akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res 2019; 79(6): 1138-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0668] [PMID: 30679179]
[55]
Mor A, Tankiewicz-Kwedlo A, Pawlak D. Kynurenines as a novel target for the treatment of malignancies. Pharmaceuticals (Basel) 2021; 14(7): 606.
[http://dx.doi.org/10.3390/ph14070606] [PMID: 34201791]
[56]
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell 2017; 170(4): 605-35.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[57]
Robey RB, Hay N. Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 2009; 19(1): 25-31.
[http://dx.doi.org/10.1016/j.semcancer.2008.11.010] [PMID: 19130886]
[58]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330-7.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[59]
Atreya CE, Sangale Z, Xu N, et al. PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med 2013; 2(4): 496-506.
[http://dx.doi.org/10.1002/cam4.97] [PMID: 24156022]
[60]
Roock WD, Vriendt VD, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: Implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 2011; 12(6): 594-603.
[http://dx.doi.org/10.1016/S1470-2045(10)70209-6] [PMID: 21163703]
[61]
Kato S, Iida S, Higuchi T, et al. PIK3CA mutation is predictive of poor survival in patients with colorectal cancer. Int J Cancer 2007; 121(8): 1771-8.
[http://dx.doi.org/10.1002/ijc.22890] [PMID: 17590872]
[62]
Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304(5670): 554.
[http://dx.doi.org/10.1126/science.1096502] [PMID: 15016963]
[63]
Ensan B, Bathaei P, Nassiri M, et al. The therapeutic potential of targeting key signaling pathways as a novel approach to ameliorating post-surgical adhesions. Curr Pharm Des 2022; 28(18): 1480-500.
[http://dx.doi.org/10.2174/1381612828666220422090238] [PMID: 35466868]
[64]
Hoxhaj G, Manning BD. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74-88.
[http://dx.doi.org/10.1038/s41568-019-0216-7] [PMID: 31686003]
[65]
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 2017; 168(6): 960-76.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[66]
Düvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39(2): 171-83.
[http://dx.doi.org/10.1016/j.molcel.2010.06.022] [PMID: 20670887]
[67]
Hao Y, Samuels Y, Li Q, et al. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun 2016; 7(1): 11971.
[http://dx.doi.org/10.1038/ncomms11971] [PMID: 27321283]
[68]
Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012; 52(1): 381-400.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134537] [PMID: 22017684]
[69]
Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 2009; 8(23): 3984-4001.
[http://dx.doi.org/10.4161/cc.8.23.10238] [PMID: 19923890]
[70]
Kaemmerer E, Jeon MK, Berndt A, Liedtke C, Gassler N. Targeting Wnt signaling via notch in intestinal carcinogenesis. Cancers (Basel) 2019; 11(4): 555.
[http://dx.doi.org/10.3390/cancers11040555] [PMID: 31003440]
[71]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[72]
Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 2013; 17(5): 745-55.
[http://dx.doi.org/10.1016/j.cmet.2013.03.017] [PMID: 23623748]
[73]
Pate KT, Stringari C, Sprowl-Tanio S, et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 2014; 33(13): 1454-73.
[http://dx.doi.org/10.15252/embj.201488598] [PMID: 24825347]
[74]
Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 2013; 3(8): a014217.
[http://dx.doi.org/10.1101/cshperspect.a014217] [PMID: 23906881]
[75]
Serna-Blasco R, Sanz-Álvarez M, Aguilera Ó, García-Foncillas J. Targeting the RAS-dependent chemoresistance: The Warburg connection. Semin Cancer Biol 2019; 54: 80-90.
[http://dx.doi.org/10.1016/j.semcancer.2018.01.016] [PMID: 29432815]
[76]
Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107(19): 8788-93.
[http://dx.doi.org/10.1073/pnas.1003428107] [PMID: 20421486]
[77]
Zhang C, Liu J, Liang Y, et al. Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 2013; 4(1): 2935.
[http://dx.doi.org/10.1038/ncomms3935] [PMID: 24343302]
[78]
Freed-Pastor WA, Mizuno H, Zhao X, et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148(1-2): 244-58.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[79]
Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3(3): 187-97.
[http://dx.doi.org/10.1016/j.cmet.2006.01.012] [PMID: 16517406]
[80]
Ellinghaus P, Heisler I, Unterschemmann K, et al. BAY 87‐2243, a highly potent and selective inhibitor of hypoxia‐induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2013; 2(5): 611-24.
[http://dx.doi.org/10.1002/cam4.112] [PMID: 24403227]
[81]
Koh MY, Spivak-Kroizman T, Venturini S, et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1α. Mol Cancer Ther 2008; 7(1): 90-100.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0463] [PMID: 18202012]
[82]
Yin S, Kaluz S, Devi NS, et al. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with cofactors p300/CBP. Clin Cancer Res 2012; 18(24): 6623-33.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0861] [PMID: 22923450]
[83]
Baker LCJ, Boult JKR, Walker-Samuel S, et al. The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer 2012; 106(10): 1638-47.
[http://dx.doi.org/10.1038/bjc.2012.131] [PMID: 22498643]
[84]
Ban HS, Kim BK, Lee H, et al. The novel hypoxia-inducible factor-1α inhibitor IDF-11774 regulates cancer metabolism, thereby suppressing tumor growth. Cell Death Dis 2017; 8(6): e2843.
[http://dx.doi.org/10.1038/cddis.2017.235] [PMID: 28569777]
[85]
Ban HS, Xu X, Jang K, et al. A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. PLoS One 2016; 11(9): e0162568.
[http://dx.doi.org/10.1371/journal.pone.0162568] [PMID: 27611801]
[86]
Park MK, Ji J, Haam K, et al. Licochalcone A inhibits hypoxia-inducible factor-1α accumulation by suppressing mitochondrial respiration in hypoxic cancer cells. Biomed Pharmacother 2021; 133: 111082.
[http://dx.doi.org/10.1016/j.biopha.2020.111082] [PMID: 33378978]
[87]
Lu Y, Wang B, Shi Q, Wang X, Wang D, Zhu L. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Sci Rep 2016; 6(1): 39123.
[http://dx.doi.org/10.1038/srep39123] [PMID: 27982118]
[88]
Ji L, Shen W, Zhang F, et al. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cell Mol Biol Lett 2021; 26(1): 19.
[http://dx.doi.org/10.1186/s11658-021-00263-y] [PMID: 34006215]
[89]
Peng M, Darko KO, Tao T, et al. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev 2017; 54: 24-33.
[http://dx.doi.org/10.1016/j.ctrv.2017.01.005] [PMID: 28161619]
[90]
Cenigaonandia-Campillo A, Serna-Blasco R, Gómez-Ocabo L, et al. Vitamin C activates pyruvate dehydrogenase (PDH) targeting the mitochondrial tricarboxylic acid (TCA) cycle in hypoxic KRAS mutant colon cancer. Theranostics 2021; 11(8): 3595-606.
[http://dx.doi.org/10.7150/thno.51265] [PMID: 33664850]
[91]
Aguilera O, Muñoz-Sagastibelza M, Torrejón B, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget 2016; 7(30): 47954-65.
[http://dx.doi.org/10.18632/oncotarget.10087] [PMID: 27323830]
[92]
Liu W, Fang Y, Wang XT, Liu J, Dan X, Sun LL. Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pac J Cancer Prev 2014; 15(17): 7037-41.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7037] [PMID: 25227787]
[93]
Huang CY, Weng YT, Li PC, et al. Calcitriol Suppresses warburg effect and cell growth in human colorectal cancer cells. Life (Basel) 2021; 11(9): 963.
[http://dx.doi.org/10.3390/life11090963] [PMID: 34575112]
[94]
Sieber-Frank J, Stark HJ, Kalteis S, et al. Treatment resistance analysis reveals GLUT‐1‐mediated glucose uptake as a major target of synthetic rocaglates in cancer cells. Cancer Med 2021; 10(19): 6807-22.
[http://dx.doi.org/10.1002/cam4.4212] [PMID: 34546000]
[95]
Li X, Sun J, Xu Q, et al. Oxymatrine inhibits colorectal cancer metastasis via attenuating pkm2-mediated aerobic glycolysis. Cancer Manag Res 2020; 12: 9503-13.
[http://dx.doi.org/10.2147/CMAR.S267686] [PMID: 33061637]
[96]
Wu H, Cui M, Li C, et al. Kaempferol reverses aerobic glycolysis via miR-339-5p-mediated PKM alternative splicing in colon cancer cells. J Agric Food Chem 2021; 69(10): 3060-8.
[http://dx.doi.org/10.1021/acs.jafc.0c07640] [PMID: 33663206]
[97]
Huang X, Hou Y, Weng X, et al. Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis 2021; 10(1): 4.
[http://dx.doi.org/10.1038/s41389-020-00295-7] [PMID: 33419984]
[98]
Tong J, Xie G, He J, Li J, Pan F, Liang H. Synergistic antitumor effect of dichloroacetate in combination with 5-fluorouracil in colorectal cancer. J Biomed Biotechnol 2011; 2011: 1-7.
[http://dx.doi.org/10.1155/2011/740564] [PMID: 21403907]
[99]
Liang Y, Hou L, Li L, et al. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2020; 39(2): 469-85.
[http://dx.doi.org/10.1038/s41388-019-1035-8] [PMID: 31597953]
[100]
Arnold C, Demuth P, Seiwert N, et al. The mitochondrial disruptor devimistat (CPI-613®) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Mol Cancer Ther 2021.
[PMID: 34750196]
[101]
Jin L, Kim EY, Chung TW, et al. Hemistepsin A suppresses colorectal cancer growth through inhibiting pyruvate dehydrogenase kinase activity. Sci Rep 2020; 10(1): 21940.
[http://dx.doi.org/10.1038/s41598-020-79019-1] [PMID: 33318678]
[102]
Puri S, Juvale K. Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem 2020; 199: 112393.
[http://dx.doi.org/10.1016/j.ejmech.2020.112393] [PMID: 32388280]
[103]
Yao Z, Xie F, Li M, et al. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 2017; 8(2): e2633.
[http://dx.doi.org/10.1038/cddis.2017.35] [PMID: 28230866]
[104]
Curtis NJ, Mooney L, Hopcroft L, et al. Pre-clinical pharmacology of AZD3965, a selective inhibitor of MCT1: DLBCL, NHL and Burkitt’s lymphoma anti-tumor activity. Oncotarget 2017; 8(41): 69219-36.
[http://dx.doi.org/10.18632/oncotarget.18215] [PMID: 29050199]
[105]
Benjamin D, Robay D, Hindupur SK, et al. Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep 2018; 25(11): 3047-3058.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.11.043] [PMID: 30540938]
[106]
Naviglio S, Sapio L, Spina A, Naviglio D, Calogero A, Naviglio S. Lactic dehydrogenase and cancer an overview. Front Biosci 2015; 20(8): 1234-49.
[http://dx.doi.org/10.2741/4368] [PMID: 25961554]
[107]
Zhao Z, Han F, Yang S, Wu J, Zhan W. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt–mTOR signaling pathway. Cancer Lett 2015; 358(1): 17-26.
[http://dx.doi.org/10.1016/j.canlet.2014.11.046] [PMID: 25524555]
[108]
Yang Y, Su D, Zhao L, et al. Different effects of LDH-A inhibition by oxamate in non-small cell lung cancer cells. Oncotarget 2014; 5(23): 11886-96.
[http://dx.doi.org/10.18632/oncotarget.2620] [PMID: 25361010]
[109]
Valvona C, Fillmore H. Oxamate, but not selective targeting of LDH-A, inhibits medulloblastoma cell glycolysis, growth and motility. Brain Sci 2018; 8(4): 56.
[http://dx.doi.org/10.3390/brainsci8040056] [PMID: 29601482]
[110]
Salgado-García R, Coronel-Hernández J, Delgado-Waldo I, et al. Negative regulation of ULK1 by microRNA-106a in autophagy induced by a triple drug combination in colorectal cancer cells in vitro. Genes (Basel) 2021; 12(2): 245.
[http://dx.doi.org/10.3390/genes12020245] [PMID: 33572255]
[111]
Chong D, Ma L, Liu F, et al. Synergistic antitumor effect of 3-bromopyruvate and 5-fluorouracil against human colorectal cancer through cell cycle arrest and induction of apoptosis. Anticancer Drugs 2017; 28(8): 831-40.
[http://dx.doi.org/10.1097/CAD.0000000000000517] [PMID: 28816773]
[112]
Ihrlund LS, Hernlund E, Khan O, Shoshan MC. 3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs. Mol Oncol 2008; 2(1): 94-101.
[http://dx.doi.org/10.1016/j.molonc.2008.01.003] [PMID: 19383331]
[113]
Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of hexokinases II-mediated glycolysis. Int J Biol Sci 2019; 15(11): 2497-508.
[http://dx.doi.org/10.7150/ijbs.37481] [PMID: 31595166]
[114]
Li W, Zheng M, Wu S, et al. Benserazide, a dopadecarboxylase inhibitor, suppresses tumor growth by targeting hexokinase 2. J Exp Clin Cancer Res 2017; 36(1): 58.
[http://dx.doi.org/10.1186/s13046-017-0530-4] [PMID: 28427443]
[115]
Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, et al. The combination of orlistat, lonidamine and 6-diazo-5-oxo-L norleucine induces a quiescent energetic phenotype and limits substrate flexibility in colon cancer cells. Oncol Lett 2020; 20(3): 3053-60.
[http://dx.doi.org/10.3892/ol.2020.11838] [PMID: 32782623]
[116]
Zhao J, Zhou R, Hui K, et al. Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget 2017; 8(12): 18832-47.
[http://dx.doi.org/10.18632/oncotarget.13600] [PMID: 27902968]
[117]
Cohen AS, Geng L, Zhao P, et al. Combined blockade of EGFR and glutamine metabolism in preclinical models of colorectal cancer. Transl Oncol 2020; 13(10): 100828.
[http://dx.doi.org/10.1016/j.tranon.2020.100828] [PMID: 32652471]
[118]
Zhao Y, Feng X, Chen Y, et al. 5-fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA -mutant colorectal cancers. Cancer Res 2020; 80(21): 4815-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-0600] [PMID: 32907836]
[119]
Ventura R, Mordec K, Waszczuk J, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2015; 2(8): 808-24.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.020] [PMID: 26425687]
[120]
Zaytseva YY, Rychahou PG, Le AT, et al. Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget 2018; 9(37): 24787-800.
[http://dx.doi.org/10.18632/oncotarget.25361] [PMID: 29872506]
[121]
Shiragami R, Murata S, Kosugi C, et al. Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol 2013; 43(2): 431-8.
[http://dx.doi.org/10.3892/ijo.2013.1978] [PMID: 23754252]
[122]
Lee KH, Lee MS, Cha EY, et al. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis. Mol Med Rep 2017; 15(4): 2163-73.
[http://dx.doi.org/10.3892/mmr.2017.6254] [PMID: 28260110]
[123]
Liu X, Zhou W, Zhang X, Ding Y, Du Q, Hu R. 1‐L‐MT, an IDO inhibitor, prevented colitis‐associated cancer by inducing CDC20 inhibition‐mediated mitotic death of colon cancer cells. Int J Cancer 2018; 143(6): 1516-29.
[http://dx.doi.org/10.1002/ijc.31417] [PMID: 29607498]
[124]
Shi J, Liu C, Luo S, et al. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol 2021; 366: 104384.
[http://dx.doi.org/10.1016/j.cellimm.2021.104384] [PMID: 34182334]
[125]
Qi Y, Wang R, Zhao L, et al. Celastrol suppresses tryptophan catabolism in human colon cancer cells as revealed by metabolic profiling and targeted metabolite analysis. Biol Pharm Bull 2018; 41(8): 1243-50.
[http://dx.doi.org/10.1248/bpb.b18-00171] [PMID: 30068874]
[126]
Miao X, Zhang Y, Li Z, et al. Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy. Mol Ther Methods Clin Dev 2021; 20: 442-50.
[http://dx.doi.org/10.1016/j.omtm.2020.12.013] [PMID: 33665222]
[127]
Shan Y, Gao Y, Jin W, et al. Targeting HIBCH to reprogram valine metabolism for the treatment of colorectal cancer. Cell Death Dis 2019; 10(8): 618.
[http://dx.doi.org/10.1038/s41419-019-1832-6] [PMID: 31409769]
[128]
Kim MS, Cho HI, Yoon HJ, et al. JIB-04, a small molecule histone demethylase inhibitor, selectively targets colorectal cancer stem cells by inhibiting the wnt/β-catenin signaling pathway. Sci Rep 2018; 8(1): 6611.
[http://dx.doi.org/10.1038/s41598-018-24903-0] [PMID: 29700375]
[129]
Jia Y, Ma Z, Liu X, et al. Metformin prevents DMH ‐induced colorectal cancer in diabetic rats by reversing the warburg effect. Cancer Med 2015; 4(11): 1730-41.
[http://dx.doi.org/10.1002/cam4.521] [PMID: 26376762]
[130]
Hosono K, Endo H, Takahashi H, et al. Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinog 2010; 49(7): 662-71.
[http://dx.doi.org/10.1002/mc.20637] [PMID: 20564343]
[131]
Alhourani AH, Tidwell TR, Bokil AA, et al. Metformin treatment response is dependent on glucose growth conditions and metabolic phenotype in colorectal cancer cells. Sci Rep 2021; 11(1): 10487.
[http://dx.doi.org/10.1038/s41598-021-89861-6] [PMID: 34006970]
[132]
Kang J, Lee D, Lee KJ, et al. Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers (Basel) 2022; 14(12): 2881.
[http://dx.doi.org/10.3390/cancers14122881] [PMID: 35740547]
[133]
Mayer MJ, Klotz LH, Venkateswaran V. Metformin and prostate cancer stem cells: A novel therapeutic target. Prostate Cancer Prostatic Dis 2015; 18(4): 303-9.
[http://dx.doi.org/10.1038/pcan.2015.35] [PMID: 26215782]
[134]
Geng HW, Yin FY, Zhang ZF, Gong X, Yang Y. Butyrate suppresses glucose metabolism of colorectal cancer cells via GPR109a-AKT signaling pathway and enhances chemotherapy. Front Mol Biosci 2021; 8: 634874.
[http://dx.doi.org/10.3389/fmolb.2021.634874] [PMID: 33855046]
[135]
Zafari N, Velayati M, Fahim M, et al. Role of gut bacterial and non-bacterial microbiota in alcohol-associated liver disease: Molecular mechanisms, biomarkers, and therapeutic prospective. Life Sci 2022; 305: 120760.
[http://dx.doi.org/10.1016/j.lfs.2022.120760] [PMID: 35787997]
[136]
Li X, Tian R, Liu L, et al. Andrographolide enhanced radiosensitivity by downregulating glycolysis via the inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 colorectal cancer cells. J Int Med Res 2020; 48(8)
[http://dx.doi.org/10.1177/0300060520946169] [PMID: 32787737]
[137]
Wang G, Yu Y, Wang YZ, Yin PH, Xu K, Zhang H. The effects and mechanisms of isoliquiritigenin loaded nanoliposomes regulated AMPK/mTOR mediated glycolysis in colorectal cancer. Artif Cells Nanomed Biotechnol 2020; 48(1): 1231-49.
[http://dx.doi.org/10.1080/21691401.2020.1825092] [PMID: 32985258]
[138]
Rodon J, Argilés G, Connolly RM, et al. Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer 2021; 125(1): 28-37.
[http://dx.doi.org/10.1038/s41416-021-01389-8] [PMID: 33941878]
[139]
Saunier E, Antonio S, Regazzetti A, et al. Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Sci Rep 2017; 7(1): 6945.
[http://dx.doi.org/10.1038/s41598-017-07006-0] [PMID: 28761044]
[140]
Howells LM, Berry DP, Elliott PJ, et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 2011; 4(9): 1419-25.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[141]
Yamauchi S, Matsuyama T, Tokunaga M, Kinugasa Y. Minimally invasive surgery for colorectal cancer. Japan Med Assoc J 2021; 4(1): 17-23.
[PMID: 33575499]
[142]
Stewart CL, Warner S, Ito K, et al. Cytoreduction for colorectal metastases: Liver, lung, peritoneum, lymph nodes, bone, brain. When does it palliate, prolong survival, and potentially cure? Curr Probl Surg 2018; 55(9): 330-79.
[http://dx.doi.org/10.1067/j.cpsurg.2018.08.004] [PMID: 30526930]
[143]
Chakedis J, Schmidt CR. Surgical treatment of metastatic colorectal cancer. Surg Oncol Clin N Am 2018; 27(2): 377-99.
[http://dx.doi.org/10.1016/j.soc.2017.11.010] [PMID: 29496096]
[144]
Ciombor KK, Bekaii-Saab T. A Comprehensive review of sequencing and combination strategies of targeted agents in metastatic colorectal cancer. Oncologist 2018; 23(1): 25-34.
[http://dx.doi.org/10.1634/theoncologist.2017-0203] [PMID: 29021377]
[145]
Koi M, Carethers JM. The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol 2017; 13(18): 1633-47.
[http://dx.doi.org/10.2217/fon-2017-0145] [PMID: 28829193]
[146]
Wei TT, Lin YT, Tang SP, et al. Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene 2020; 39(2): 414-27.
[http://dx.doi.org/10.1038/s41388-019-0999-8] [PMID: 31477841]
[147]
Zhang L, Qiao X, Chen M, et al. Ilexgenin A prevents early colonic carcinogenesis and reprogramed lipid metabolism through HIF1α/SREBP-1. Phytomedicine 2019; 63: 153011.
[http://dx.doi.org/10.1016/j.phymed.2019.153011] [PMID: 31301538]
[148]
Yun J, Mullarky E, Lu C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015; 350(6266): 1391-6.
[http://dx.doi.org/10.1126/science.aaa5004] [PMID: 26541605]
[149]
Chang CK, Chiu PF, Yang HY, et al. Targeting colorectal cancer with conjugates of a glucose transporter inhibitor and 5-fluorouracil. J Med Chem 2021; 64(8): 4450-61.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00897] [PMID: 33819035]
[150]
Li Q, Cao L, Tian Y, et al. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol Cell Proteomics 2018; 17(8): 1531-45.
[http://dx.doi.org/10.1074/mcp.RA118.000752] [PMID: 29739823]
[151]
Xi Y, Jing Z, Wei W, et al. Inhibitory effect of sodium butyrate on colorectal cancer cells and construction of the related molecular network. BMC Cancer 2021; 21(1): 127.
[http://dx.doi.org/10.1186/s12885-021-07845-1] [PMID: 33549042]
[152]
Wang G, Wang JJ, Yin PH, et al. New strategies for targeting glucose metabolism–mediated acidosis for colorectal cancer therapy. J Cell Physiol 2019; 234(1): 348-68.
[http://dx.doi.org/10.1002/jcp.26917] [PMID: 30069931]
[153]
Kwan HY, Yang Z, Fong WF, Hu YM, Yu ZL, Hsiao WLW. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol 2013; 48(2): 182-92.
[http://dx.doi.org/10.1007/s00535-012-0612-1] [PMID: 22722903]
[154]
Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M, Di Stefano G. Lactate dehydrogenase inhibitors can reverse inflammation induced changes in colon cancer cells. Eur J Pharm Sci 2017; 96: 37-44.
[http://dx.doi.org/10.1016/j.ejps.2016.09.014] [PMID: 27622920]
[155]
Carr RM, Qiao G, Qin J, Jayaraman S, Prabhakar BS, Maker AV. Targeting the metabolic pathway of human colon cancer overcomes resistance to TRAIL-induced apoptosis. Cell Death Discov 2016; 2(1): 16067.
[http://dx.doi.org/10.1038/cddiscovery.2016.67] [PMID: 27648301]
[156]
Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M, Lampidis TJ. Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy- d -glucose. Mol Cancer Ther 2007; 6(2): 732-41.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0407] [PMID: 17308069]
[157]
Lin H, Zeng J, Xie R, et al. Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med Chem Lett 2016; 7(3): 217-22.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00214] [PMID: 26985301]
[158]
Torrens-Mas M, Alorda-Clara M, Martínez-Vigara M, et al. Xanthohumol reduces inflammation and cell metabolism in HT29 primary colon cancer cells. Int J Food Sci Nutr 2021; 1-9.
[PMID: 34879764]
[159]
Drury J, Rychahou PG, He D, et al. Inhibition of fatty acid synthase upregulates expression of CD36 to sustain proliferation of colorectal cancer cells. Front Oncol 2020; 10: 1185.
[http://dx.doi.org/10.3389/fonc.2020.01185] [PMID: 32850342]
[160]
Luo KW, Xia J, Cheng BH, Gao HC, Fu LW, Luo XL. Tea polyphenol EGCG inhibited colorectal-cancer-cell proliferation and migration via downregulation of STAT3. Gastroenterol Rep (Oxf) 2021; 9(1): 59-70.
[http://dx.doi.org/10.1093/gastro/goaa072] [PMID: 33747527]
[161]
Wang X, Song KS, Guo QX, Tian WX. The galloyl moiety of green tea catechins is the critical structural feature to inhibit fatty-acid synthase. Biochem Pharmacol 2003; 66(10): 2039-47.
[http://dx.doi.org/10.1016/S0006-2952(03)00585-9] [PMID: 14599562]
[162]
Czumaj A, Zabielska J, Pakiet A, et al. In vivo effectiveness of orlistat in the suppression of human colorectal cancer cell proliferation. Anticancer Res 2019; 39(7): 3815-22.
[http://dx.doi.org/10.21873/anticanres.13531] [PMID: 31262909]
[163]
Chuang HY, Chang YF, Hwang JJ. Antitumor effect of orlistat, a fatty acid synthase inhibitor, is via activation of caspase-3 on human colorectal carcinoma-bearing animal. Biomed Pharmacother 2011; 65(4): 286-92.
[http://dx.doi.org/10.1016/j.biopha.2011.02.016] [PMID: 21723078]
[164]
Wang C, Xu C, Sun M, Luo D, Liao D, Cao D. Acetyl-CoA carboxylase-α inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun 2009; 385(3): 302-6.
[http://dx.doi.org/10.1016/j.bbrc.2009.05.045] [PMID: 19450551]
[165]
Hu J, Duan W, Liu Y. Ketamine inhibits aerobic glycolysis in colorectal cancer cells by blocking the NMDA receptor‐CaMK II‐c‐Myc pathway. Clin Exp Pharmacol Physiol 2020; 47(5): 848-56.
[http://dx.doi.org/10.1111/1440-1681.13248] [PMID: 31889340]
[166]
Takamatsu M, Hirata A, Ohtaki H, et al. Inhibition of indoleamine 2,3‐dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice. Cancer Sci 2015; 106(8): 1008-15.
[http://dx.doi.org/10.1111/cas.12705] [PMID: 26033215]
[167]
Chen J, Shao R, Li F, et al. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 2015; 42(12): 1317-26.
[http://dx.doi.org/10.1111/1440-1681.12493] [PMID: 26399781]
[168]
Chen J, Shao R, Li L, Xu ZP, Gu W. Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. Int J Nanomedicine 2014; 9: 3403-11.
[PMID: 25075187]
[169]
Toda K, Kawada K, Iwamoto M, et al. Metabolic alterations caused by KRAS mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia 2016; 18(11): 654-65.
[http://dx.doi.org/10.1016/j.neo.2016.09.004] [PMID: 27764698]
[170]
Hussain A, Qazi AK, Mupparapu N, et al. Modulation of glycolysis and lipogenesis by novel PI3K selective molecule represses tumor angiogenesis and decreases colorectal cancer growth. Cancer Lett 2016; 374(2): 250-60.
[http://dx.doi.org/10.1016/j.canlet.2016.02.030] [PMID: 26921131]
[171]
Yu H, Zhang H, Dong M, et al. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Int J Oncol 2017; 50(1): 161-72.
[http://dx.doi.org/10.3892/ijo.2016.3794] [PMID: 27922662]
[172]
Chen GQ, Tang CF, Shi XK, et al. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism. Oncotarget 2015; 6(27): 24148-62.
[http://dx.doi.org/10.18632/oncotarget.4376] [PMID: 26160839]
[173]
Wang Y, Guo D, He J, et al. Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: Anti-cancer therapeutical effects of natural cyclopeptide RA-XII. Biochem Biophys Res Commun 2019; 512(4): 819-24.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.088] [PMID: 30928092]
[174]
Tomimoto A, Endo H, Sugiyama M, et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 2008; 99(11): 2136-41.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00933.x] [PMID: 18803638]
[175]
Wang H, Zhao L, Zhu LT, et al. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog 2014; 53(S1) (Suppl. 1): E107-18.
[http://dx.doi.org/10.1002/mc.22052] [PMID: 23761018]
[176]
Li Y, Wang Y, Liu Z, Guo X, Miao Z, Ma S. Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Front Pharmacol 2020; 11: 273.
[http://dx.doi.org/10.3389/fphar.2020.00273] [PMID: 32273843]
[177]
Wei X, Mao T, Li S, et al. DT-13 inhibited the proliferation of colorectal cancer via glycolytic metabolism and AMPK/mTOR signaling pathway. Phytomedicine 2019; 54: 120-31.
[http://dx.doi.org/10.1016/j.phymed.2018.09.003] [PMID: 30668361]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy