Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Involvement of Metabolites and Non-coding RNAs in Diseases

Author(s): Kubra A. Coskun, Bercem Yeman Kıyak, Kezban Ucar Cifci, Elif Kadioglu, Nazlican Yurekli and Yusuf Tutar*

Volume 24, Issue 7, 2023

Published on: 10 November, 2022

Page: [889 - 912] Pages: 24

DOI: 10.2174/1389201023666220921091240

Price: $65

Abstract

Non-coding RNAs have a role in gene regulation and cellular metabolism control. Metabolism produces metabolites which are small molecules formed during the metabolic process. So far, a direct relationship between metabolites and genes is not fully established; however, pseudogenes and their progenitor genes regulate health and disease states. Other non-coding RNAs also contribute to this regulation at different cellular processes. Accumulation and depletion of metabolites accompany the dynamic equilibrium of health and disease state. In this study, metabolites, their roles in the cell, and the link between metabolites and non-coding RNAs are discussed.

Keywords: Metabolism, metabolites, metabolite analysis, non-coding, RNAs, disease.

[1]
Secondary metabolites- sources and applications. London: IntechOpen; Thirumurugan, D.; Vijayakumar, R.; Raja, S.S., Eds.; , 2018, p. 148.
[http://dx.doi.org/10.5772/intechopen.79766]
[2]
PKU and ECNU. The LncRNA and disease database version 2.0. 2018. Available from: http://www.rnanut.net/lncrnadisease/ (Accessed on: May 23, 2022).
[3]
David, S. Wishart; Dan, T.; Craig, K.; Roman, E.; An, C.G.; Nelson, Y.; Dean, C.; Kevin, J.; David, A.; Summit, S.; Chris, F.; Lisa, N.; Mike, L.; Marie-Aude, C.; Ian, F.; Peter, T.; Savita, S.; Kevin, J.; Paul, S.; Godwin, A.; David, B.; David, D.H.; James, W.; Jessica, M.; Melisa, C; Mulu, G.; Natalie, G.; Ying, Z.; Gavin, E.D.; Glen, D.M.; Alim, M.W.; Reza, D.; Fiona, B.; Derrick, C.; Russ, G.; Liang, L.; Tom, M.; Brian, D.S.; Hans, J.V.; Lori, Q. HMDB: the human metabolome database. Nucleic Acids Res., 2007, 35(Database issue), D521-D526.
[4]
The Human microRNA Disease Database version 3.2. 2019. Available from: http://www.cuilab.cn/hmdd/ (Accessed on: June 10, 2022).
[5]
Aali, M.; Mesgarzadeh, A.H.; Najjary, S.; Abdolahi, H.M.; Kojabad, A.B.; Baradaran, B. Evaluating the role of microRNAs alterations in oral squamous cell carcinoma. Gene, 2020, 757 ,144936.
[http://dx.doi.org/10.1016/j.gene.2020.144936] [PMID: 32640301]
[6]
Aghiorghiesei, O.; Zanoaga, O.; Nutu, A.; Braicu, C.; Campian, R.S.; Lucaciu, O.; Neagoe, I.B. The world of oral cancer and its risk factors viewed from the aspect of microRNA expression patterns. Genes, 2022, 13(4), 594.
[http://dx.doi.org/10.3390/genes13040594] [PMID: 35456400]
[7]
Qattan, A. Novel miRNA targets and therapies in the triple-negative breast cancer microenvironment: An emerging hope for a challenging disease. Int. J. Mol. Sci., 2020, 21(23), 8905.
[http://dx.doi.org/10.3390/ijms21238905] [PMID: 33255471]
[8]
Cai, H.; Liu, W.; Liu, X.; Li, Z.; Feng, T.; Xue, Y.; Liu, Y. Advances and prospects of vasculogenic mimicry in glioma: A potential new therapeutic target? OncoTargets Ther., 2020, 13, 4473-4483.
[http://dx.doi.org/10.2147/OTT.S247855] [PMID: 32547078]
[9]
Chi, J.; Zheng, X.; Gao, M.; Zhao, J.; Li, D.; Li, J.; Dong, L.; Ruan, X. Integrated microRNA mRNA analyses of distinct expression profiles in follicular thyroid tumors. Oncol. Lett., 2017, 14(6), 7153-7160.
[http://dx.doi.org/10.3892/ol.2017.7146] [PMID: 29344146]
[10]
Fischer, J.A.; Rossetti, S.; Datta, A.; Eng, K.H.; Beghini, A.; Sacchi, N. miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia. Mol. Cancer, 2015, 14(1), 7.
[http://dx.doi.org/10.1186/s12943-014-0283-z] [PMID: 25612891]
[11]
Ghaemmaghami, A.B.; Mahjoubin-Tehran, M.; Movahedpour, A.; Morshedi, K.; Sheida, A.; Taghavi, S.P.; Mirzaei, H.; Hamblin, M.R. Role of exosomes in malignant glioma: MicroRNAs and proteins in pathogenesis and diagnosis. Cell Commun. Signal., 2020, 18(1), 120.
[http://dx.doi.org/10.1186/s12964-020-00623-9] [PMID: 32746854]
[12]
Gocze, K.; Gombos, K.; Kovacs, K.; Juhasz, K.; Gocze, P.; Kiss, I. MicroRNA expressions in HPV-induced cervical dysplasia and cancer. Anticancer Res., 2015, 35(1), 523-530.
[PMID: 25550598]
[13]
Ibuki, Y.; Nishiyama, Y.; Tsutani, Y.; Emi, M.; Hamai, Y.; Okada, M.; Tahara, H. Circulating microRNA/isomiRs as novel biomarkers of esophageal squamous cell carcinoma. PLoS One, 2020, 15(4) ,e0231116.
[http://dx.doi.org/10.1371/journal.pone.0231116] [PMID: 32251457]
[14]
Ishiguro, H.; Kimura, M.; Takeyama, H. Role of microRNAs in gastric cancer. World J. Gastroenterol., 2014, 20(19), 5694-5699.
[http://dx.doi.org/10.3748/wjg.v20.i19.5694] [PMID: 24914330]
[15]
Ishii, H.; Kaneko, S.; Yanai, K.; Aomatsu, A.; Hirai, K.; Ookawara, S.; Ishibashi, K.; Morishita, Y. MicroRNAs in podocyte injury in diabetic nephropathy. Front. Genet., 2020, 11, 993.
[http://dx.doi.org/10.3389/fgene.2020.00993] [PMID: 33193581]
[16]
Kaneko, H.; Terasaki, H. Biological involvement of MicroRNAs in proliferative vitreoretinopathy. Transl. Vis. Sci. Technol., 2017, 6(4), 5.
[http://dx.doi.org/10.1167/tvst.6.4.5] [PMID: 28706757]
[17]
Kim, J.; Yao, F.; Xiao, Z.; Sun, Y.; Ma, L. MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev., 2018, 37(1), 5-15.
[http://dx.doi.org/10.1007/s10555-017-9712-y] [PMID: 29234933]
[18]
Kong, Y.; Li, S.; Cheng, X.; Ren, H.; Zhang, B.; Ma, H.; Li, M.; Zhang, X.A. Brain ischemia significantly alters MicroRNA expression in human peripheral blood natural killer cells. Front. Immunol., 2020, 11(759), 759.
[http://dx.doi.org/10.3389/fimmu.2020.00759] [PMID: 32477329]
[19]
Liang, P.; Lv, C.; Jiang, B.; Long, X.; Zhang, P.; Zhang, M.; Xie, T.; Huang, X. MicroRNA profiling in denatured dermis of deep burn patients. Burns, 2012, 38(4), 534-540.
[http://dx.doi.org/10.1016/j.burns.2011.10.014] [PMID: 22360957]
[20]
López-Sánchez, G.N.; Dóminguez-Pérez, M.; Uribe, M.; Chávez-Tapia, N.C.; Nuño-Lámbarri, N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann. Hepatol., 2021, 21 ,100212.
[http://dx.doi.org/10.1016/j.aohep.2020.04.012] [PMID: 32533953]
[21]
Ludwig, N.; Nourkami-Tutdibi, N.; Backes, C.; Lenhof, H.P.; Graf, N.; Keller, A.; Meese, E. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr. Blood Cancer, 2015, 62(8), 1360-1367.
[http://dx.doi.org/10.1002/pbc.25481] [PMID: 25787821]
[22]
McKenna, L.B.; Schug, J.; Vourekas, A.; McKenna, J.B.; Bramswig, N.C.; Friedman, J.R.; Kaestner, K.H. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology, 2010, 139(5), 1654-1664.
[http://dx.doi.org/10.1053/j.gastro.2010.07.040] [PMID: 20659473]
[23]
Mei, L.L.; Qiu, Y.T.; Zhang, B.; Shi, Z.Z. MicroRNAs in esophageal squamous cell carcinoma: Potential biomarkers and therapeutic targets. Cancer Biomark., 2017, 19(1), 1-9.
[http://dx.doi.org/10.3233/CBM-160240] [PMID: 28269750]
[24]
Nguyen, V.H.L.; Yue, C.; Du, K.Y.; Salem, M.; O’Brien, J.; Peng, C. The role of microRNAs in epithelial ovarian cancer metastasis. Int. J. Mol. Sci., 2020, 21(19), 7093.
[http://dx.doi.org/10.3390/ijms21197093] [PMID: 32993038]
[25]
Riching, A.S.; Song, K. Cardiac regeneration: New insights into the frontier of ischemic heart failure therapy. Front. Bioeng. Biotechnol., 2021, 8 ,637538.
[http://dx.doi.org/10.3389/fbioe.2020.637538] [PMID: 33585427]
[26]
Sui, C.; Zhang, L.; Hu, Y. MicroRNA let 7a inhibition inhibits LPS induced inflammatory injury of chondrocytes by targeting IL6R. Mol. Med. Rep., 2019, 20(3), 2633-2640.
[http://dx.doi.org/10.3892/mmr.2019.10493] [PMID: 31322277]
[27]
Szczepanek, J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: A comprehensive review. World J. Clin. Oncol., 2020, 11(6), 348-369.
[http://dx.doi.org/10.5306/wjco.v11.i6.348] [PMID: 32855905]
[28]
Tormo, E.; Ballester, S.; Adam-Artigues, A.; Burgués, O.; Alonso, E.; Bermejo, B.; Menéndez, S.; Zazo, S.; Madoz-Gúrpide, J.; Rovira, A.; Albanell, J.; Rojo, F.; Lluch, A.; Eroles, P. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci. Rep., 2019, 9(1), 5316.
[http://dx.doi.org/10.1038/s41598-019-41472-y] [PMID: 30926829]
[29]
Zarrilli, G.; Galuppini, F.; Angerilli, V.; Munari, G.; Sabbadin, M.; Lazzarin, V.; Nicolè, L.; Biancotti, R.; Fassan, M. miRNAs involved in esophageal carcinogenesis and miRNA-related therapeutic perspectives in esophageal carcinoma. Int. J. Mol. Sci., 2021, 22(7), 3640.
[http://dx.doi.org/10.3390/ijms22073640] [PMID: 33807389]
[30]
Yang, G.; Zhang, L.; Li, R.; Wang, L. The role of microRNAs in gallbladder cancer. Mol. Clin. Oncol., 2016, 5(1), 7-13.
[http://dx.doi.org/10.3892/mco.2016.905] [PMID: 27330755]
[31]
Zhu, J.; Xu, Y.; Liu, S.; Qiao, L.; Sun, J.; Zhao, Q. MicroRNAs associated with colon cancer: New potential prognostic markers and targets for therapy. Front. Bioeng. Biotechnol., 2020, 8, 176.
[http://dx.doi.org/10.3389/fbioe.2020.00176]
[32]
Chen, X.; Wan, L.; Wang, W.; Xi, W.J.; Yang, A.G.; Wang, T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics, 2020, 10(4), 1479-1499.
[http://dx.doi.org/10.7150/thno.40659] [PMID: 32042317]
[33]
Pasumarthi, D.; Dalal, A. Pseudogenes: Implications in disease and diagnostics. Gene. Clinics, 2019, 12(3), 14-17.
[34]
Armitage, E.G.; Ciborowski, M. Applications of metabolomics in cancer studies. Adv. Exp. Med. Biol., 2017, 965, 209-234.
[http://dx.doi.org/10.1007/978-3-319-47656-8_9] [PMID: 28132182]
[35]
Miyamoto, S.; Taylor, S.; Barupal, D.; Taguchi, A.; Wohlgemuth, G.; Wikoff, W.; Yoneda, K.; Gandara, D.; Hanash, S.; Kim, K.; Fiehn, O. Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry. Metabolites, 2015, 5(2), 192-210.
[http://dx.doi.org/10.3390/metabo5020192] [PMID: 25859693]
[36]
Wuolikainen, A.; Jonsson, P.; Ahnlund, M.; Antti, H.; Marklund, S.L.; Moritz, T.; Forsgren, L.; Andersen, P.M.; Trupp, M. Multi-platform mass spectrometry analysis of the CSF and plasma metabolomes of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Mol. Biosyst., 2016, 12(4), 1287-1298.
[http://dx.doi.org/10.1039/C5MB00711A] [PMID: 26883206]
[37]
Nakamizo, S.; Sasayama, T.; Shinohara, M.; Irino, Y.; Nishiumi, S.; Nishihara, M.; Tanaka, H.; Tanaka, K.; Mizukawa, K.; Itoh, T.; Taniguchi, M.; Hosoda, K.; Yoshida, M.; Kohmura, E. GC/MS-based metabolomic analysis of Cerebro Spinal Fluid (CSF) from glioma patients. J. Neurooncol., 2013, 113(1), 65-74.
[http://dx.doi.org/10.1007/s11060-013-1090-x] [PMID: 23456655]
[38]
Tutar, L.; Özgür, A.; Tutar, Y. Involvement of miRNAs and pseudogenes in cancer. Methods Mol. Biol., 2018, 1699, 45-66.
[http://dx.doi.org/10.1007/978-1-4939-7435-1_3] [PMID: 29086367]
[39]
Tutar, E.; Tutar, Y. Non-coding RNAs in lung cancer. J. Thorac. Dis., 2019, 11(S3), S245-S248.
[http://dx.doi.org/10.21037/jtd.2019.01.106] [PMID: 30997188]
[40]
Tutar, Y.; Özgür, A.; Tutar, E.; Tutar, L.; Pulliero, A.; Izzotti, A. Regulation of oncogenic genes by MicroRNAs and pseudogenes in human lung cancer. Biomed. Pharmacother., 2016, 83, 1182-1190.
[http://dx.doi.org/10.1016/j.biopha.2016.08.043] [PMID: 27551766]
[41]
Tutar, L.; Tutar, E.; Özgür, A.; Tutar, Y. Therapeutic targeting of microRNAs in cancer: Future perspectives. Drug Dev. Res., 2015, 76(7), 382-388.
[http://dx.doi.org/10.1002/ddr.21273] [PMID: 26435382]
[42]
Ozgur, A.; Tutar, L.; Tutar, Y. Regulation of heat shock proteins by MiRNAs in human breast cancer. MicroRNA, 2015, 3(2), 118-135.
[http://dx.doi.org/10.2174/2211536604666141216214140] [PMID: 25541910]
[43]
Tutar, Y. miRNA and cancer; computational and experimental approaches. Curr. Pharm. Biotechnol., 2014, 15(5), 429.
[http://dx.doi.org/10.2174/138920101505140828161335] [PMID: 25189575]
[44]
Tutar, L.; Tutar, E.; Tutar, Y. MicroRNAs and cancer; an overview. Curr. Pharm. Biotechnol., 2014, 15(5), 430-437.
[http://dx.doi.org/10.2174/1389201015666140519095304] [PMID: 24846068]
[45]
Tutar, Y. Pseudogenes. Comp. Funct. Genomics, 2012, 2012, 1-4.
[http://dx.doi.org/10.1155/2012/424526] [PMID: 22611337]
[46]
Ghanbarian, H. Yıldız, M.T.; Tutar, Y. MicroRNA targeting. Methods Mol. Biol., 2022, 2257, 105-130.
[http://dx.doi.org/10.1007/978-1-0716-1170-8_6] [PMID: 34432276]
[47]
Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 263-269.
[http://dx.doi.org/10.1038/nrm3314] [PMID: 22436749]
[48]
Witting, M.; Böcker, S. Current status of retention time prediction in metabolite identification. J. Sep. Sci., 2020, 43(9-10), 1746-1754.
[http://dx.doi.org/10.1002/jssc.202000060] [PMID: 32144942]
[49]
Wishart, D.S.; Lewis, M.J.; Morrissey, J.A.; Flegel, M.D.; Jeroncic, K.; Xiong, Y.; Cheng, D.; Eisner, R.; Gautam, B.; Tzur, D.; Sawhney, S.; Bamforth, F.; Greiner, R.; Li, L. The human cerebrospinal fluid metabolome. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 871(2), 164-173.
[http://dx.doi.org/10.1016/j.jchromb.2008.05.001] [PMID: 18502700]
[50]
Werf, M.J.; Overkamp, K.M.; Muilwijk, B.; Coulier, L.; Hankemeier, T. Microbial metabolomics: Toward a platform with full metabolome coverage. Anal. Biochem., 2007, 370(1), 17-25.
[http://dx.doi.org/10.1016/j.ab.2007.07.022] [PMID: 17765195]
[51]
Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem., 2012, 32, 1-14.
[http://dx.doi.org/10.1016/j.trac.2011.08.009] [PMID: 22345829]
[52]
Ellis, D.I.; Dunn, W.B.; Griffin, J.L.; Allwood, J.W.; Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 2007, 8(9), 1243-1266.
[http://dx.doi.org/10.2217/14622416.8.9.1243] [PMID: 17924839]
[53]
Fiehn, O.; Kopka, J.; Dörmann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol., 2000, 18(11), 1157-1161.
[http://dx.doi.org/10.1038/81137] [PMID: 11062433]
[54]
Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed., 2010, 49(32), 5426-5445.
[http://dx.doi.org/10.1002/anie.200905579] [PMID: 20629054]
[55]
Turner, H.H. A syndrome of infantilism, congenital webbed neck, and cubitus valgus Studies in classic pages in obstetrics and gynecology. Endocrinology, 1938, 23, 566-574.
[http://dx.doi.org/10.1210/endo-23-5-566]
[56]
Lee, M.S.; Kerns, E.H. LC/MS applications in drug development. Mass Spectrom. Rev., 1999, 18(3-4), 187-279.
[http://dx.doi.org/10.1002/(SICI)1098-2787(1999)18:3/4<187:AID-MAS2>3.0.CO;2-K] [PMID: 10568041]
[57]
Bingol, K.; Brüschweiler, R. Multidimensional approaches to NMR-based metabolomics. Anal. Chem., 2014, 86(1), 47-57.
[http://dx.doi.org/10.1021/ac403520j] [PMID: 24195689]
[58]
Bingol, K.; Zhang, F.; Bruschweiler-Li, L.; Brüschweiler, R. Quantitative analysis of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR spectroscopy. Anal. Chem., 2013, 85(13), 6414-6420.
[http://dx.doi.org/10.1021/ac400913m] [PMID: 23773204]
[59]
Bingol, K.; Brüschweiler-Li, L.; Li, D.; Zhang, B.; Xie, M.; Brüschweiler, R. Emerging new strategies for successful metabolite identification in metabolomics. Bioanalysis, 2016, 8(6), 557-573.
[http://dx.doi.org/10.4155/bio-2015-0004] [PMID: 26915807]
[60]
Bingol, K.; Zhang, F.; Bruschweiler-Li, L.; Brüschweiler, R. Carbon backbone topology of the metabolome of a cell. J. Am. Chem. Soc., 2012, 134(21), 9006-9011.
[http://dx.doi.org/10.1021/ja3033058] [PMID: 22540339]
[61]
Metlin Scripps. 2003. Available from: https://metlin.scripps.edu/index.php (Accessed on: June 10, 2022).
[62]
Bingol, K.; Bruschweiler-Li, L.; Yu, C.; Somogyi, A.; Zhang, F.; Brüschweiler, R. Metabolomics beyond spectroscopic databases: A combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal. Chem., 2015, 87(7), 3864-3870.
[http://dx.doi.org/10.1021/ac504633z] [PMID: 25674812]
[63]
Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev., 2007, 26(1), 51-78.
[http://dx.doi.org/10.1002/mas.20108] [PMID: 16921475]
[64]
Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal., 2015, 113, 108-120.
[http://dx.doi.org/10.1016/j.jpba.2014.12.017] [PMID: 25577715]
[65]
Kumar, A.; Misra, B.B. Challenges and opportunities in cancer metabolomics. Proteomics, 2019, 19(21-22) ,1900042.
[http://dx.doi.org/10.1002/pmic.201900042] [PMID: 30950571]
[66]
Duncan, M.W.; Nedelkov, D.; Walsh, R.; Hattan, S.J. Applications of MALDI mass spectrometry in clinical chemistry. Clin. Chem., 2016, 62(1), 134-143.
[http://dx.doi.org/10.1373/clinchem.2015.239491] [PMID: 26585930]
[67]
Kubo, A.; Ohmura, M.; Wakui, M.; Harada, T.; Kajihara, S.; Ogawa, K.; Suemizu, H.; Nakamura, M.; Setou, M.; Suematsu, M. Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice. Anal. Bioanal. Chem., 2011, 400(7), 1895-1904.
[http://dx.doi.org/10.1007/s00216-011-4895-5] [PMID: 21479793]
[68]
David, B.; Wolfender, J.L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev., 2015, 14(2), 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[69]
Corlett, R.T. Safeguarding our future by protecting biodiversity. Plant Divers., 2020, 42(4), 221-228.
[http://dx.doi.org/10.1016/j.pld.2020.04.002] [PMID: 32837768]
[70]
Wang, D.; Liu, W.; Shen, Z.; Jiang, L.; Wang, J.; Li, S.; Li, H. Deep learning based drug metabolites prediction. Front. Pharmacol., 15862020, , 10.
[http://dx.doi.org/10.3389/fphar.2019.01586] [PMID: 32082146]
[71]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[72]
Lamottke, K.; Ripoll, C.; Walczak, R. The roots of innovation. Eur. Biopharm. Rev, 2011, 15, 54-56.
[73]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[74]
Naoghare, P.K.; Song, J.M. Chip-based high-throughput screening of herbal medicines. Comb. Chem. High Throughput Screen., 2010, 13(10), 923-931.
[http://dx.doi.org/10.2174/138620710793360338] [PMID: 20883193]
[75]
Lindsay, S.M. WHO congress passes Beijing declaration on traditional medicine. Am. Bot. Council, 2008, (83), 24-25.
[76]
Ngo, L.T.; Okogun, J.I.; Folk, W.R. 21st Century natural product research and drug development and traditional medicines. Nat. Prod. Rep., 2013, 30(4), 584-592.
[http://dx.doi.org/10.1039/c3np20120a] [PMID: 23450245]
[77]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[78]
Saeidnia, S.; Gohari, A.R.; Manayi, A. Reverse pharmacognosy and reverse pharmacology; two closely related approaches for drug discovery development. Curr. Pharm. Biotechnol., 2016, 17(11), 1016-1022.
[http://dx.doi.org/10.2174/1389201017666160709200208] [PMID: 27396403]
[79]
Do, Q.T.; Bernard, P. Reverse pharmacognosy: A new concept for accelerating natural drug discovery. Adv. in Phytomed., 2006, 2, 1-20.
[http://dx.doi.org/10.1016/S1572-557X(05)02001-5]
[80]
Rollinger, J.M.; Sabine, H.; Hermann, S.; Thierry, L. Combining ethnopharmacology and virtual screening for lead structure discovery: COX-inhibitors as application example. J. Chem. Inf. Comput. Sci., 2004, 44(2), 480-488.
[81]
Chen, S.L.; Jiang, J.G. Application of gene differential expression technology in the mechanism studies of nature product-derived drugs. Expert Opin. Biol. Ther., 2012, 12(7), 823-839.
[http://dx.doi.org/10.1517/14712598.2012.683858] [PMID: 22564187]
[82]
Verpoorte, R.; Crommelin, D.; Danhof, M.; Gilissen, L.J.W.J.; Schuitmaker, H.; van der Greef, J.; Witkamp, R.F. Commentary: “A systems view on the future of medicine: Inspiration from Chinese medicine?”. J. Ethnopharmacol., 2009, 121(3), 479-481.
[http://dx.doi.org/10.1016/j.jep.2008.11.005] [PMID: 19059329]
[83]
Lauro, G.; Masullo, M.; Piacente, S.; Riccio, R.; Bifulco, G. Inverse virtual screening allows the discovery of the biological activity of natural compounds. Bioorg. Med. Chem., 2012, 20(11), 3596-3602.
[http://dx.doi.org/10.1016/j.bmc.2012.03.072] [PMID: 22537682]
[84]
Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol., 2019, 52, 1-8.
[http://dx.doi.org/10.1016/j.cbpa.2018.12.007] [PMID: 30682725]
[85]
Lachance, H.; Wetzel, S.; Kumar, K.; Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem., 2012, 55(13), 5989-6001.
[http://dx.doi.org/10.1021/jm300288g] [PMID: 22537178]
[86]
Gerry, C.J.; Schreiber, S.L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discov., 2018, 17(5), 333-352.
[http://dx.doi.org/10.1038/nrd.2018.53] [PMID: 29651105]
[87]
Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem., 2009, 52(21), 6752-6756.
[http://dx.doi.org/10.1021/jm901241e] [PMID: 19827778]
[88]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[89]
Firn, R. Nature’s Chemicals: The Natural Products that shaped our world, 1st ed; Oxford University Press, 2010, p. 264.
[90]
Nicolaou, K.C.; Rigol, S. The role of organic synthesis in the emergence and development of antibody–drug conjugates as targeted cancer therapies. Angew. Chem. Int. Ed., 2019, 58(33), 11206-11241.
[http://dx.doi.org/10.1002/anie.201903498] [PMID: 31012193]
[91]
Xiao, J.; Gao, M.; Diao, Q.; Gao, F. Chalcone derivatives and their activities against drug-resistant cancers: An overview. Curr. Top. Med. Chem., 2021, 21(5), 348-362.
[http://dx.doi.org/10.2174/1568026620666201022143236] [PMID: 33092509]
[92]
Chen, J.; Wu, Q.; Hawas, U.W.; Wang, H. Genetic regulation and manipulation for natural product discovery. Appl. Microbiol. Biotechnol., 2016, 100(7), 2953-2965.
[http://dx.doi.org/10.1007/s00253-016-7357-3] [PMID: 26860941]
[93]
Stephanopoulos, G. Synthetic biology and metabolic engineering. ACS Synth. Biol., 2012, 1(11), 514-525.
[http://dx.doi.org/10.1021/sb300094q] [PMID: 23656228]
[94]
Rokem, J.S.; Lantz, A.E.; Nielsen, J. Systems biology of antibiotic production by microorganisms. Nat. Prod. Rep., 2007, 24(6), 1262-1287.
[http://dx.doi.org/10.1039/b617765b] [PMID: 18033579]
[95]
Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol., 2015, 13(8), 509-523.
[http://dx.doi.org/10.1038/nrmicro3496] [PMID: 26119570]
[96]
Otero, J.M.; Vongsangnak, W.; Asadollahi, M.A.; Olivares-Hernandes, R.; Maury, J.; Farinelli, L.; Barlocher, L.; Østerås, M.; Schalk, M.; Clark, A.; Nielsen, J. Whole genome sequencing of Saccharomyces cerevisiae: From genotype to phenotype for improved metabolic engineering applications. BMC Genomics, 2010, 11(1), 723.
[http://dx.doi.org/10.1186/1471-2164-11-723] [PMID: 21176163]
[97]
Pickens, L.B.; Tang, Y.; Chooi, Y.H. Metabolic engineering for the production of natural products. Annu. Rev. Chem. Biomol. Eng., 2011, 2(1), 211-236.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114209] [PMID: 22432617]
[98]
Mendes, M.V.; Recio, E.; Fouces, R.; Luiten, R.; Martín, J.F.; Aparicio, J.F. Engineered biosynthesis of novel polyenes: A pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem. Biol., 2001, 8(7), 635-644.
[http://dx.doi.org/10.1016/S1074-5521(01)00033-3] [PMID: 11451665]
[99]
Zhou, Z.; Xu, Q.; Bu, Q.; Guo, Y.; Liu, S.; Liu, Y.; Du, Y.; Li, Y. Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis. ChemBioChem, 2015, 16(3), 496-502.
[http://dx.doi.org/10.1002/cbic.201402577] [PMID: 25511454]
[100]
David, F.; Davis, A.M.; Gossing, M.; Hayes, M.A.; Romero, E.; Scott, L.H.; Wigglesworth, M.J. A perspective on synthetic biology in drug discovery and development-current impact and future opportunities. SLAS Discov., 2021, 26(5), 581-603.
[http://dx.doi.org/10.1177/24725552211000669] [PMID: 33834873]
[101]
Urlacher, V.B.; Girhard, M. Cytochrome P450 monooxygenases: An update on perspectives for synthetic application. Trends Biotechnol., 2012, 30(1), 26-36.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.012] [PMID: 21782265]
[102]
Zhang, K.; Nelson, K.M.; Bhuripanyo, K.; Grimes, K.D.; Zhao, B.; Aldrich, C.C.; Yin, J. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem. Biol., 2013, 20(1), 92-101.
[http://dx.doi.org/10.1016/j.chembiol.2012.10.020] [PMID: 23352143]
[103]
Huang, X.; Liu, X.; Luo, Q.; Liu, J.; Shen, J. Artificial selenoenzymes: Designed and redesigned. Chem. Soc. Rev., 2011, 40(3), 1171-1184.
[http://dx.doi.org/10.1039/C0CS00046A] [PMID: 21125082]
[104]
Guz, M.; Jeleniewicz, W.; Malm, A.; Korona-Glowniak, I. A crosstalk between diet, microbiome and microRNA in epigenetic regulation of colorectal cancer. Nutrients, 2021, 13(7), 2428.
[http://dx.doi.org/10.3390/nu13072428] [PMID: 34371938]
[105]
Qin, Y.; Wade, P.A. Crosstalk between the microbiome and epigenome: Messages from bugs. J. Biochem., 2018, 163(2), 105-112.
[http://dx.doi.org/10.1093/jb/mvx080] [PMID: 29161429]
[106]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet., 2018, 14(6) ,e1007362.
[http://dx.doi.org/10.1371/journal.pgen.1007362] [PMID: 29879107]
[107]
Doll, R.; Peto, R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst., 1981, 66(6), 1192-1308.
[http://dx.doi.org/10.1093/jnci/66.6.1192] [PMID: 7017215]
[108]
Matsui, M.; Corey, D.R. Non-coding RNAs as drug targets. Nat. Rev. Drug Discov., 2017, 16(3), 167-179.
[http://dx.doi.org/10.1038/nrd.2016.117] [PMID: 27444227]
[109]
Huang, J.; Wu, S.; Wang, P.; Wang, G. Non-coding RNA regulated cross-talk between mitochondria and other cellular compartments. Front. Cell Dev. Biol., 2021, 9 ,688523.
[http://dx.doi.org/10.3389/fcell.2021.688523] [PMID: 34414182]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy