Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Structural Modification Strategies for Lead Optimization of Tyrosine Kinase Inhibitors to Explore Novel Anticancer Agents

Author(s): Fereshteh Azimian and Siavoush Dastmalchi*

Volume 30, Issue 24, 2023

Published on: 02 November, 2022

Page: [2734 - 2761] Pages: 28

DOI: 10.2174/0929867329666220920092908

Price: $65

Abstract

Lead optimization as a bottleneck in the process of drug discovery is conducted to tackle problems associated with poor pharmacokinetics, continuous emergence of drugresistance, adverse side effects and drug-drug interactions of known pharmaceuticals. Due to the intensive application of multi-targeted tyrosine kinase inhibitors (MTKI) in various pathological conditions, optimization of their structures has always been the focus of intensive medicinal chemistry research efforts. The current review portrays the application of scaffold hopping, bioisosterism, structure-based, and hybrid-based drug design methods in the optimization of lead compounds aiming to enhance their usefulness as novel drugs. Then, the review proceeds with examples of structural modifications carried out, particularly on multi-targeted drugs already available on the market. The demonstrated examples cover structural modifications on 7 well-known drugs during the last twenty years. The application of the above-mentioned strategies has led to the generation of 52 new multitargeted tyrosine kinase inhibitors. Most of the optimized compounds showed improved properties compared to their parent lead compound. The rationales behind the applied modifications and the achieved outcomes were discussed to present practical examples to the researchers engaged in the area.

Keywords: Structural modification, hybridization, tyrosine kinase inhibitors, lead optimization, drug discovery, anticancer agents.

[1]
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[2]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[3]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[4]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[5]
Cohen, P.; Alessi, D.R. Kinase drug discovery-what’s next in the field? ACS Chem. Biol., 2013, 8(1), 96-104.
[http://dx.doi.org/10.1021/cb300610s] [PMID: 23276252]
[6]
Zhou, J.; Jiang, X.; He, S.; Jiang, H.; Feng, F.; Liu, W.; Qu, W.; Sun, H. Rational design of multitarget-directed ligands: Strategies and emerging paradigms. J. Med. Chem., 2019, 62(20), 8881-8914.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00017] [PMID: 31082225]
[7]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[8]
Youdim, M.B.H.; Buccafusco, J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci., 2005, 26(1), 27-35.
[http://dx.doi.org/10.1016/j.tips.2004.11.007] [PMID: 15629202]
[9]
Guo, T.; Ma, S. Recent advances in the discovery of multitargeted tyrosine kinase inhibitors as anticancer agents. ChemMedChem, 2021, 16(4), 600-620.
[http://dx.doi.org/10.1002/cmdc.202000658] [PMID: 33179854]
[10]
Alizadeh, A.A.; Jafari, B.; Dastmalchi, S. Application of bioinformatics and molecular dynamics simulation approaches for identification of fibroblast growth factor 10 analogues with potentially improved thermostability. Growth Factors, 2020, 38(3-4), 197-209.
[http://dx.doi.org/10.1080/08977194.2021.1881501] [PMID: 34121575]
[11]
Dastmalchi, S. Applied Case Studies and Solutions in Molecular Docking-Based Drug Design; IGI Global: Pennsylvania, USA, 2016.
[http://dx.doi.org/10.4018/978-1-5225-0362-0]
[12]
Zarei, O.; Sarri, N.; Dastmalchi, S.; Zokai, F.; Papadopoulos, N.; Lennartsson, J.; Heldin, C.H.; Hamzeh-Mivehroud, M. Structure-based discovery of novel small molecule inhibitors of platelet-derived growth factor-B. Bioorg. Chem., 2020, 94, 103374.
[http://dx.doi.org/10.1016/j.bioorg.2019.103374] [PMID: 31699389]
[13]
Patani, G.A.; LaVoie, E.J. Bioisosterism: A rational approach in drug design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[14]
Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]
[15]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[16]
Luo, Z.; Wang, L.; Fu, Z.; Shuai, B.; Luo, M.; Hu, G.; Chen, J.; Sun, J.; Wang, J.; Li, J.; Chen, S.; Zhang, Y. Discovery and optimization of selective RET inhibitors via scaffold hopping. Bioorg. Med. Chem. Lett., 2021, 47, 128149.
[http://dx.doi.org/10.1016/j.bmcl.2021.128149] [PMID: 34058344]
[17]
Lima, L.; Barreiro, E. Bioisosterism: A useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540] [PMID: 15638729]
[18]
Rana, A.; Alex, J.M.; Chauhan, M.; Joshi, G.; Kumar, R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res., 2015, 24(3), 903-920.
[http://dx.doi.org/10.1007/s00044-014-1196-5]
[19]
Thornber, C.W. Isosterism and molecular modification in drug design. Chem. Soc. Rev., 1979, 8(4), 563-580.
[http://dx.doi.org/10.1039/cs9790800563]
[20]
Badrinarayan, P.; Sastry, G. Rational approaches towards lead optimization of kinase inhibitors: The issue of specificity. Curr. Pharm. Des., 2013, 19(26), 4714-4738.
[http://dx.doi.org/10.2174/1381612811319260005] [PMID: 23260022]
[21]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[22]
Milanesi, L.; Petrillo, M.; Sepe, L.; Boccia, A.; D’Agostino, N.; Passamano, M.; Di Nardo, S.; Tasco, G.; Casadio, R.; Paolella, G. Systematic analysis of human kinase genes: A large number of genes and alternative splicing events result in functional and structural diversity. BMC Bioinformatics, 2005, 6(Suppl. 4), S20.
[http://dx.doi.org/10.1186/1471-2105-6-S4-S20] [PMID: 16351747]
[23]
Subramani, S.; Jayapalan, S.; Kalpana, R.; Natarajan, J. HomoKinase: A curated database of human protein kinases. Int. Scholar. Res. Notices, 2013, 2013, 417634.
[http://dx.doi.org/10.1155/2013/417634]
[24]
Vulpetti, A.; Bosotti, R. Sequence and structural analysis of kinase ATP pocket residues. Farmaco, 2004, 59(10), 759-765.
[25]
Zhang, H.Q.; Gong, F.H.; Li, C.G.; Zhang, C.; Wang, Y.J.; Xu, Y.G.; Sun, L.P. Design and discovery of 4-anilinoquinazoline-acylamino derivatives as EGFR and VEGFR-2 dual TK inhibitors. Eur. J. Med. Chem., 2016, 109, 371-379.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.032] [PMID: 26826581]
[26]
Nagar, B.; Hantschel, O.; Young, M.A.; Scheffzek, K.; Veach, D.; Bornmann, W.; Clarkson, B.; Superti-Furga, G.; Kuriyan, J. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell, 2003, 112(6), 859-871.
[http://dx.doi.org/10.1016/S0092-8674(03)00194-6] [PMID: 12654251]
[27]
McTigue, M.; Murray, B.W.; Chen, J.H.; Deng, Y.L.; Solowiej, J.; Kania, R.S. Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(45), 18281-18289.
[http://dx.doi.org/10.1073/pnas.1207759109] [PMID: 22988103]
[28]
Musumeci, F.; Radi, M.; Brullo, C.; Schenone, S. Vascular endothelial growth factor (VEGF) receptors: Drugs and new inhibitors. J. Med. Chem., 2012, 55(24), 10797-10822.
[http://dx.doi.org/10.1021/jm301085w] [PMID: 23098265]
[29]
Wang, K.; Li, Y.; Zhang, L.J.; Chen, X-G.; Feng, Z-Q.; Feng, Z.Q. Synthesis and in vitro cytotoxic activities of sorafenib derivatives. Chin. Chem. Lett., 2014, 25(5), 702-704.
[http://dx.doi.org/10.1016/j.cclet.2014.03.020] [PMID: 25151734]
[30]
Liu, Z.; Wang, Y.; Lin, H.; Zuo, D.; Wang, L.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives containing diaryl urea moiety as potent antitumor agents. Eur. J. Med. Chem., 2014, 85, 215-227.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.099] [PMID: 25086238]
[31]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[32]
Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 216-221.
[http://dx.doi.org/10.1111/bcpt.12365] [PMID: 25495944]
[33]
Sun, M.; Wu, X.; Chen, J.; Cai, J.; Cao, M.; Ji, M. Design, synthesis, and in vitro antitumor evaluation of novel diaryl ureas derivatives. Eur. J. Med. Chem., 2010, 45(6), 2299-2306.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.005] [PMID: 20181414]
[34]
Azimian, F.; Hamzeh-Mivehroud, M.; Mojarrad, J.S.; Hemmati, S.; Dastmalchi, S. Facile one-pot sequential synthesis of novel diaryl urea derivatives and evaluation of their in vitro cytotoxicity on adenocarcinoma cells. Med. Chem. Res., 2021, 30, 672-684.
[http://dx.doi.org/10.1007/s00044-020-02673-7]
[35]
Azimian, F.; Hamzeh-Mivehroud, M.; Shahbazi Mojarrad, J.; Hemmati, S.; Dastmalchi, S. Synthesis and biological evaluation of diaryl urea derivatives designed as potential anticarcinoma agents using de novo structure-based lead optimization approach. Eur. J. Med. Chem., 2020, 201, 112461.
[http://dx.doi.org/10.1016/j.ejmech.2020.112461] [PMID: 32663641]
[36]
Zarei, O.; Azimian, F.; Hamzeh-Mivehroud, M.; Shahbazi Mojarrad, J.; Hemmati, S.; Dastmalchi, S. Design, synthesis, and biological evaluation of novel benzo[b]thiophenediaryl urea derivatives as potential anticancer agents. Med. Chem. Res., 2020, 29(8), 1438-1448.
[http://dx.doi.org/10.1007/s00044-020-02559-8]
[37]
Chen, F.; Fang, Y.; Zhao, R.; Le, J.; Zhang, B.; Huang, R.; Chen, Z.; Shao, J. Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma. Eur. J. Med. Chem., 2019, 179, 916-935.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.070] [PMID: 31306818]
[38]
Shan, Y.; Wang, C.; Zhang, L.; Wang, J.; Wang, M.; Dong, Y. Expanding the structural diversity of diarylureas as multi-target tyrosine kinase inhibitors. Bioorg. Med. Chem., 2016, 24(4), 750-758.
[http://dx.doi.org/10.1016/j.bmc.2015.12.038] [PMID: 26753815]
[39]
Qin, M.; Yan, S.; Wang, L.; Zhang, H.; Zhao, Y.; Wu, S.; Wu, D.; Gong, P. Discovery of novel diaryl urea derivatives bearing a triazole moiety as potential antitumor agents. Eur. J. Med. Chem., 2016, 115, 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.071] [PMID: 26991938]
[40]
Wang, M.; Xu, S.; Lei, H.; Wang, C.; Xiao, Z.; Jia, S.; Zhi, J.; Zheng, P.; Zhu, W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg. Med. Chem., 2017, 25(20), 5754-5763.
[http://dx.doi.org/10.1016/j.bmc.2017.09.003] [PMID: 28927801]
[41]
Wang, M.; Xu, S.; Wu, C.; Liu, X.; Tao, H.; Huang, Y.; Liu, Y.; Zheng, P.; Zhu, W. Design, synthesis and activity of novel sorafenib analogues bearing chalcone unit. Bioorg. Med. Chem. Lett., 2016, 26(22), 5450-5454.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.029] [PMID: 27777009]
[42]
El-Damasy, A.K.; Seo, S.H.; Cho, N.C.; Kang, S.B.; Pae, A.N.; Kim, K.S.; Keum, G. Design, synthesis, in-vitro antiproliferative activity and kinase profile of new picolinamide based 2-amido and ureido quinoline derivatives. Eur. J. Med. Chem., 2015, 101, 754-768.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.025] [PMID: 26218653]
[43]
Cao, Z.X.; Zheng, R.L.; Lin, H.J.; Luo, S.D.; Zhou, Y.; Xu, Y.Z.; Zeng, X.X.; Wang, Z.; Zhou, L.N.; Mao, Y.Q.; Yang, L.; Wei, Y.Q.; Yu, L.T.; Yang, S.Y.; Zhao, Y.L. SKLB610: A novel potential inhibitor of vascular endothelial growth factor receptor tyrosine kinases inhibits angiogenesis and tumor growth in vivo. Cell. Physiol. Biochem., 2011, 27(5), 565-574.
[44]
Zhan, W.; Li, Y.; Huang, W.; Zhao, Y.; Yao, Z.; Yu, S.; Yuan, S.; Jiang, F.; Yao, S.; Li, S. Design, synthesis and antitumor activities of novel bis-aryl ureas derivatives as Raf kinase inhibitors. Bioorg. Med. Chem., 2012, 20(14), 4323-4329.
[http://dx.doi.org/10.1016/j.bmc.2012.05.051] [PMID: 22721924]
[45]
Sun, Y.; Shan, Y.; Li, C.; Si, R.; Pan, X.; Wang, B.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 8: Diaryl thiourea bearing 1 H -indazole-3-amine as multi-target RTKs inhibitors. Eur. J. Med. Chem., 2017, 141, 373-385.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.008] [PMID: 29032031]
[46]
Shi, Z.H.; Liu, F.T.; Tian, H.Z.; Zhang, Y.M.; Li, N.G.; Lu, T. Design, synthesis and structure-activity relationship of diaryl-ureas with novel isoxazol[3,4-b]pyridine-3-amino-structure as multi-target inhibitors against receptor tyrosine kinase. Bioorg. Med. Chem., 2018, 26(16), 4735-4744.
[http://dx.doi.org/10.1016/j.bmc.2018.08.013] [PMID: 30121211]
[47]
Khanwelkar, R.R.; Chen, G.S.; Wang, H.C.; Yu, C.W.; Huang, C.H.; Lee, O.; Chen, C.H.; Hwang, C.S.; Ko, C.H.; Chou, N.T.; Lin, M.W.; Wang, L.; Chen, Y.C.; Hseu, T.H.; Chang, C.N.; Hsu, H.C.; Lin, H.C.; Shih, Y.C.; Chou, S.H.; Tseng, H.W.; Liu, C.P.; Tu, C.M.; Hu, T.L.; Tsai, Y.J.; Chern, J.W. Synthesis and structure–activity relationship of 6-arylureido-3-pyrrol-2-ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase inhibitors. Bioorg. Med. Chem., 2010, 18(13), 4674-4686.
[http://dx.doi.org/10.1016/j.bmc.2010.05.021] [PMID: 20570526]
[48]
Ravez, S.; Barczyk, A.; Six, P.; Cagnon, A.; Garofalo, A.; Goossens, L.; Depreux, P. Inhibition of tumor cell growth and angiogenesis by 7-Aminoalkoxy-4-aryloxy-quinazoline ureas, a novel series of multi-tyrosine kinase inhibitors. Eur. J. Med. Chem., 2014, 79, 369-381.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.007] [PMID: 24747748]
[49]
Zhang, Q.; Diao, Y.; Wang, F.; Fu, Y.; Tang, F.; You, Q.; Zhou, H. Design and discovery of 4-anilinoquinazoline ureas as multikinase inhibitors targeting BRAF, VEGFR-2 and EGFR. MedChemComm, 2013, 4(6), 979-986.
[http://dx.doi.org/10.1039/c3md00096f]
[50]
Yang, W.; Chen, Y.; Zhang, Y.; Tang, S.; Chen, H.; Tang, W.; Lu, T. Design, synthesis and antitumor activities of bis-arylureas and bis-arylamides based on 1H-benzo[d]imidazole moiety as novel BRafV600E/VEGFR2 dual inhibitors. Lett. Drug Des. Discov., 2014, 11(9), 1079-1089.
[51]
Ferguson, J.; Arozarena, I.; Ehrhardt, M.; Wellbrock, C. Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene, 2013, 32(1), 86-96.
[http://dx.doi.org/10.1038/onc.2012.25] [PMID: 22310287]
[52]
Cui, Z.; Li, X.; Li, L.; Zhang, B.; Gao, C.; Chen, Y.; Tan, C.; Liu, H.; Xie, W.; Yang, T.; Jiang, Y. Design, synthesis and evaluation of acridine derivatives as multi-target Src and MEK kinase inhibitors for anti-tumor treatment. Bioorg. Med. Chem., 2016, 24(2), 261-269.
[http://dx.doi.org/10.1016/j.bmc.2015.12.011] [PMID: 26707846]
[53]
Cui, Z.; Chen, S.; Wang, Y.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Design, synthesis and evaluation of azaacridine derivatives as dual-target EGFR and Src kinase inhibitors for antitumor treatment. Eur. J. Med. Chem., 2017, 136, 372-381.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.006] [PMID: 28525838]
[54]
Moy, B.; Kirkpatrick, P.; Kar, S.; Goss, P. Lapatinib. Nat. Rev. Drug Discov., 2007, 6(6), 431-432.
[55]
Mowafy, S.; Galanis, A.; Doctor, Z.M.; Paranal, R.M.; Lasheen, D.S.; Farag, N.A.; Jänne, P.A.; Abouzid, K.A.M. Toward discovery of mutant EGFR inhibitors; Design, synthesis and in vitro biological evaluation of potent 4-arylamino-6-ureido and thioureido-quinazoline derivatives. Bioorg. Med. Chem., 2016, 24(16), 3501-3512.
[http://dx.doi.org/10.1016/j.bmc.2016.05.063] [PMID: 27288180]
[56]
Zhang, L.; Fan, C.; Guo, Z.; Li, Y.; Zhao, S.; Yang, S.; Yang, Y.; Zhu, J.; Lin, D. Discovery of a potent dual EGFR/HER-2 inhibitor L-2 (selatinib) for the treatment of cancer. Eur. J. Med. Chem., 2013, 69, 833-841.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.032] [PMID: 24121234]
[57]
Xu, P.; Chu, J.; Li, Y.; Wang, Y.; He, Y.; Qi, C.; Chang, J. Novel promising 4-anilinoquinazoline-based derivatives as multi-target RTKs inhibitors: Design, molecular docking, synthesis, and antitumor activities in vitro and in vivo. Bioorg. Med. Chem., 2019, 27(20), 114938.
[http://dx.doi.org/10.1016/j.bmc.2019.06.001] [PMID: 31488358]
[58]
Li, S.; Guo, C.; Zhao, H.; Tang, Y.; Lan, M. Synthesis and biological evaluation of 4-[3-chloro-4-(3-fluorobenzyloxy)anilino]-6-(3-substituted-phenoxy)pyrimidines as dual EGFR/ErbB-2 kinase inhibitors. Bioorg. Med. Chem., 2012, 20(2), 877-885.
[http://dx.doi.org/10.1016/j.bmc.2011.11.056] [PMID: 22182581]
[59]
Abd El Hadi, S.R.; Lasheen, D.S.; Hassan, M.A.; Abouzid, K.A.M. Design and synthesis of 4-Anilinothieno[2,3- d]pyrimidine-based compounds as dual EGFR/HER-2 inhibitors. Arch. Pharm. (Weinheim), 2016, 349(11), 827-847.
[http://dx.doi.org/10.1002/ardp.201600197] [PMID: 27734525]
[60]
Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817]
[61]
Kawakita, Y.; Miwa, K.; Seto, M.; Banno, H.; Ohta, Y.; Tamura, T.; Yusa, T.; Miki, H.; Kamiguchi, H.; Ikeda, Y.; Tanaka, T.; Kamiyama, K.; Ishikawa, T. Design and synthesis of pyrrolo[3,2-d]pyrimidine HER2/EGFR dual inhibitors: Improvement of the physicochemical and pharmacokinetic profiles for potent in vivo anti-tumor efficacy. Bioorg. Med. Chem., 2012, 20(20), 6171-6180.
[http://dx.doi.org/10.1016/j.bmc.2012.08.002] [PMID: 22980219]
[62]
Kawakita, Y.; Seto, M.; Ohashi, T.; Tamura, T.; Yusa, T.; Miki, H.; Iwata, H.; Kamiguchi, H.; Tanaka, T.; Sogabe, S.; Ohta, Y.; Ishikawa, T. Design and synthesis of novel pyrimido[4,5- b]azepine derivatives as HER2/EGFR dual inhibitors. Bioorg. Med. Chem., 2013, 21(8), 2250-2261.
[http://dx.doi.org/10.1016/j.bmc.2013.02.014] [PMID: 23490150]
[63]
Mahboobi, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Novel chimeric histone deacetylase inhibitors: A series of lapatinib hybrides as potent inhibitors of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and histone deacetylase activity. J. Med. Chem., 2010, 53(24), 8546-8555.
[http://dx.doi.org/10.1021/jm100665z] [PMID: 21080629]
[64]
Zhang, H.Q.; Gong, F.H.; Ye, J.Q.; Zhang, C.; Yue, X.H.; Li, C.G.; Xu, Y.G.; Sun, L.P. Design and discovery of 4-anilinoquinazoline-urea derivatives as dual TK inhibitors of EGFR and VEGFR-2. Eur. J. Med. Chem., 2017, 125, 245-254.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.039] [PMID: 27688180]
[65]
Peng, F.W.; Wu, T.T.; Ren, Z.W.; Xue, J.Y.; Shi, L. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase. Bioorg. Med. Chem. Lett., 2015, 25(22), 5137-5141.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.006] [PMID: 26475519]
[66]
Peng, F.W.; Xuan, J.; Wu, T.T.; Xue, J.Y.; Ren, Z.W.; Liu, D.K.; Wang, X.Q.; Chen, X.H.; Zhang, J.W.; Xu, Y.G.; Shi, L. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur. J. Med. Chem., 2016, 109, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.033] [PMID: 26741358]
[67]
Ding, C.; Chen, S.; Zhang, C.; Hu, G.; Zhang, W.; Li, L.; Chen, Y.Z.; Tan, C.; Jiang, Y. Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorg. Med. Chem., 2017, 25(1), 27-37.
[http://dx.doi.org/10.1016/j.bmc.2016.10.006] [PMID: 27769671]
[68]
Tasler, S.; Müller, O.; Wieber, T.; Herz, T.; Pegoraro, S.; Saeb, W.; Lang, M.; Krauss, R.; Totzke, F.; Zirrgiebel, U.; Ehlert, J.E.; Kubbutat, M.H.G.; Schächtele, C. Substituted 2-arylbenzothiazoles as kinase inhibitors: Hit-to-lead optimization. Bioorg. Med. Chem., 2009, 17(18), 6728-6737.
[http://dx.doi.org/10.1016/j.bmc.2009.07.047] [PMID: 19692247]
[69]
Lin, J.; Shen, W.; Xue, J.; Sun, J.; Zhang, X.; Zhang, C. Novel oxazolo[4,5-g]quinazolin-2(1H)-ones: Dual inhibitors of EGFR and Src protein tyrosine kinases. Eur. J. Med. Chem., 2012, 55, 39-48.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.055] [PMID: 22818848]
[70]
Yin, S.; Tang, C.; Wang, B.; Zhang, Y.; Zhou, L.; Xue, L.; Zhang, C. Design, synthesis and biological evaluation of novel EGFR/HER2 dual inhibitors bearing a oxazolo[4,5-g]quinazolin-2(1H)-one scaffold. Eur. J. Med. Chem., 2016, 120, 26-36.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.072] [PMID: 27187856]
[71]
Sun, M.; Zhao, J.; Chen, X.; Zong, Z.; Han, J.; Du, Y.; Sun, H.; Wang, F. Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines. Part 2: Gefitinib analogs. Bioorg. Med. Chem. Lett., 2016, 26(19), 4842-4845.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.007] [PMID: 27524310]
[72]
Chen, X.; Du, Y.; Sun, H.; Wang, F.; Kong, L.; Sun, M. Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines. Part 1: Erlotinib analogs. Bioorg. Med. Chem. Lett., 2014, 24(3), 884-887.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.079] [PMID: 24411123]
[73]
Elkamhawy, A.; Farag, A.K.; Viswanath, A.N.I.; Bedair, T.M.; Leem, D.G.; Lee, K.T.; Pae, A.N.; Roh, E.J. Targeting EGFR/HER2 tyrosine kinases with a new potent series of 6-substituted 4-anilinoquinazoline hybrids: Design, synthesis, kinase assay, cell-based assay, and molecular docking. Bioorg. Med. Chem. Lett., 2015, 25(22), 5147-5154.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.003] [PMID: 26475520]
[74]
Lin, S.; Li, Y.; Zheng, Y.; Luo, L.; Sun, Q.; Ge, Z.; Cheng, T.; Li, R. Design, synthesis and biological evaluation of quinazoline–phosphoramidate mustard conjugates as anticancer drugs. Eur. J. Med. Chem., 2017, 127, 442-458.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.055] [PMID: 28092860]
[75]
Cai, X.; Zhai, H.X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C.J.; Bao, R.; Qian, C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(5), 2000-2009.
[http://dx.doi.org/10.1021/jm901453q] [PMID: 20143778]
[76]
Zhang, X.; Su, M.; Chen, Y.; Li, J.; Lu, W. The design and synthesis of a new class of RTK/HDAC dual-targeted inhibitors. Molecules, 2013, 18(6), 6491-6503.
[http://dx.doi.org/10.3390/molecules18066491] [PMID: 23736786]
[77]
Oliveres, H.; Pineda, E.; Maurel, J. MET inhibitors in cancer: Pitfalls and challenges. Expert Opin. Investig. Drugs, 2020, 29(1), 73-85.
[http://dx.doi.org/10.1080/13543784.2020.1699532] [PMID: 31783719]
[78]
Parikh, P.K.; Ghate, M.D. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 1103-1138.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.044] [PMID: 29157685]
[79]
Qi, B.; Yang, Y.; Gong, G.; He, H.; Yue, X.; Xu, X.; Hu, Y.; Li, J.; Chen, T.; Wan, X.; Zhang, A.; Zhou, G. Discovery of N(1)-(4-((7-(3-(4-ethylpiperazin-1-yl)propoxy)-6-methoxyquinolin-4-yl)oxy)-3,5-difluorophenyl)-N(3)-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)urea as a multi-tyrosine kinase inhibitor for drug-sensitive and drug-resistant cancers treatment. Eur. J. Med. Chem., 2019, 163, 10-27.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.057] [PMID: 30503936]
[80]
Sun, Z.G.; Yang, Y.A.; Zhang, Z.G.; Zhu, H.L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69.
[http://dx.doi.org/10.1080/17460441.2019.1551355] [PMID: 30518273]
[81]
Qi, B.; Yang, Y.; He, H.; Yue, X.; Zhou, Y.; Zhou, X.; Chen, Y.; Liu, M.; Zhang, A.; Wei, F. Identification of novel N-(2-aryl-1, 3-thiazolidin-4-one)-N-aryl ureas showing potent multi-tyrosine kinase inhibitory activities. Eur. J. Med. Chem., 2018, 146, 368-380.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.061] [PMID: 29407963]
[82]
Zhou, Y.; Xu, X.; Wang, F.; He, H.; Gong, G.; Xiong, L.; Qi, B. Identification of novel quinoline analogues bearing thiazolidinones as potent kinase inhibitors for the treatment of colorectal cancer. Eur. J. Med. Chem., 2020, 204, 112643.
[http://dx.doi.org/10.1016/j.ejmech.2020.112643] [PMID: 32731184]
[83]
Zhou, Y.; Xu, X.; Wang, F.; He, H.; Qi, B. Discovery of 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide as kinase inhibitor for the treatment of colorectal cancer. Bioorg. Chem., 2021, 106, 104511.
[http://dx.doi.org/10.1016/j.bioorg.2020.104511] [PMID: 33272707]
[84]
Xu, X.; Hu, L.; Fan, M.; Hu, Z.; Li, Q.; He, H.; Qi, B. Identification of 1,3-thiazinan-4-one urea-based derivatives as potent FLT3/VEGFR2 dual inhibitors for the treatment of acute myeloid leukemia. J. Mol. Struct., 2022, 1250, 131862.
[http://dx.doi.org/10.1016/j.molstruc.2021.131862]
[85]
Chen, G.; Weng, Q.; Fu, L.; Wang, Z.; Yu, P.; Liu, Z.; Li, X.; Zhang, H.; Liang, G. Synthesis and biological evaluation of novel oxin-dole-based RTK inhibitors as anti-cancer agents. Bioorg. Med. Chem., 2014, 22(24), 6953-6960.
[http://dx.doi.org/10.1016/j.bmc.2014.10.017] [PMID: 25456085]
[86]
Zhang, L.; Zheng, Q.; Yang, Y.; Zhou, H.; Gong, X.; Zhao, S.; Fan, C. Synthesis and in vivo SAR study of indolin-2-one-based multi-targeted inhibitors as potential anticancer agents. Eur. J. Med. Chem., 2014, 82, 139-151.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.051] [PMID: 24904961]
[87]
Hughes, T.V.; Emanuel, S.L.; O’Grady, H.R.; Connolly, P.J.; Rugg, C.; Fuentes-Pesquera, A.R.; Karnachi, P.; Alexander, R.; Middleton, S.A. 7-[1H-Indol-2-yl]-2,3-dihydro-isoindol-1-ones as dual Aurora-A/VEGF-R2 kinase inhibitors: Design, synthesis, and biological activity. Bioorg. Med. Chem. Lett., 2008, 18(18), 5130-5133.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.090] [PMID: 18718756]
[88]
Gajiwala, K.S.; Wu, J.C.; Christensen, J.; Deshmukh, G.D.; Diehl, W.; DiNitto, J.P.; English, J.M.; Greig, M.J.; He, Y.A.; Jacques, S.L.; Lunney, E.A.; McTigue, M.; Molina, D.; Quenzer, T.; Wells, P.A.; Yu, X.; Zhang, Y.; Zou, A.; Emmett, M.R.; Marshall, A.G.; Zhang, H.M.; Demetri, G.D. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc. Natl. Acad. Sci. USA, 2009, 106(5), 1542-1547.
[http://dx.doi.org/10.1073/pnas.0812413106] [PMID: 19164557]
[89]
Ahmed, E.Y.; Elserwy, W.S.; El-Mansy, M.F.; Serry, A.M.; Salem, A.M.; Abdou, A.M.; Abdelrahman, B.A.; Elsayed, K.H.; Abd Elaziz, M.R. Angiokinase inhibition of VEGFR-2, PDGFR and FGFR and cell growth inhibition in lung cancer: Design, synthesis, biological evaluation and molecular docking of novel azaheterocyclic coumarin derivatives. Bioorg. Med. Chem. Lett., 2021, 48, 128258.
[http://dx.doi.org/10.1016/j.bmcl.2021.128258] [PMID: 34246754]
[90]
Amiri-Kordestani, L.; Tan, A.R.; Swain, S.M. Pazopanib for the treatment of breast cancer. Expert Opin. Investig. Drugs, 2012, 21(2), 217-225.
[http://dx.doi.org/10.1517/13543784.2012.652304] [PMID: 22233389]
[91]
Schutz, F.A.B.; Choueiri, T.K.; Sternberg, C.N. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit. Rev. Oncol. Hematol., 2011, 77(3), 163-171.
[http://dx.doi.org/10.1016/j.critrevonc.2010.02.012] [PMID: 20456972]
[92]
Pick, A.M.; Nystrom, K.K. Pazopanib for the treatment of metastatic renal cell carcinoma. Clin. Ther., 2012, 34(3), 511-520.
[http://dx.doi.org/10.1016/j.clinthera.2012.01.014] [PMID: 22341567]
[93]
Qi, H.; Chen, L.; Liu, B.; Wang, X.; Long, L.; Liu, D. Synthesis and biological evaluation of novel pazopanib derivatives as antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(4), 1108-1110.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.003] [PMID: 24456902]
[94]
Cai, J.; Sun, M.; Wu, X.; Chen, J.; Wang, P.; Zong, X.; Ji, M. Design and synthesis of novel 4-benzothiazole amino quinazolines Dasatinib derivatives as potential anti-tumor agents. Eur. J. Med. Chem., 2013, 63(Suppl. C), 702-712.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.013] [PMID: 23567960]
[95]
Gao, G.R.; Li, M.Y.; Tong, L.J.; Wei, L.X.; Ding, J.; Xie, H.; Duan, W.H. Design, synthesis and biological evaluation of O-linked indoles as VEGFR-2 kinase inhibitors (I). Chin. Chem. Lett., 2015, 26(9), 1165-1168.
[http://dx.doi.org/10.1016/j.cclet.2015.07.016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy