Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Mechanisms of Metallic Nanomaterials to Induce an Antibacterial Effect

Author(s): Noé Rodríguez-Barajas, Ubaldo de Jesús Martín-Camacho and Alejandro Pérez-Larios*

Volume 22, Issue 30, 2022

Published on: 05 October, 2022

Page: [2506 - 2526] Pages: 21

DOI: 10.2174/1568026622666220919124104

Price: $65

Abstract

Pathogenic microorganisms, including bacteria, are becoming resistant to most existing drugs, which increases the failure of pharmacologic treatment. Therefore, new nanomaterials were studied to spearhead improvement against the same resistant pathogenic bacteria. This has increased the mortality in the world population, principally in under-developed countries. Moreover, recently there has been research to find new drug formulations to kill the most dangerous microorganisms, such as bacteria cells which should avoid the spread of disease. Therefore, lately, investigations have been focusing on nanomaterials because they can exhibit the capacity to show an antibacterial effect. These studies have been trying oriented in their ability to produce an improvement to get antibacterial damage against the same pathogenic bacteria resistance. However, there are many problems with the use of nanoparticles. One of them is understanding how they act against bacteria, "their mechanism(s) action" to induce reduction or even kill the bacterial strains. Therefore, it is essential to understand the specific mechanism(s) of each nanomaterial used to observe the interaction between bacteria cells and nanoparticles. In addition, since nanoparticles can be functionalized with different antibacterial drugs, it is necessary to consider and distinguish the antibacterial activity of the nanoparticles from the antibacterial activity of the drugs to avoid confusion about how the nanoparticles work. Knowledge of these differences can help better understand the applications of the primary nanoparticles (i.e., Ag, Au, CuO, ZnO, and TiO2, among others) described in detail in this review which are toxic against various bacterial strains.

Keywords: Mechanism action, Nanomaterials, Bacteria, Antibacterial effect, Nanoparticles, Metabolic damage.

Graphical Abstract
[1]
Raza, S. Matuła, K.; Karoń S.; Paczesny, J. Resistance and adaptation of bacteria to non‐antibiotic antibacterial agents: Physical stressors, nanoparticles, and bacteriophages. Antibiotics, 2021, 10(4), 435.
[http://dx.doi.org/10.3390/antibiotics10040435] [PMID: 33924618]
[2]
Zhang, Q.; Wang, Y.; Zhang, W.; Hickey, M.E.; Lin, Z.; Tu, Q.; Wang, J. In situ assembly of well-dispersed Ag nanoparticles on the surface of polylactic acid-Au@polydopamine nanofibers for antimicrobial applications. Colloids Surf. B Biointerfaces, 2019, 184, 110506.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110506] [PMID: 31541892]
[3]
Terreni, M.; Taccani, M.; Pregnolato, M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules, 2021, 26(9), 2671.
[http://dx.doi.org/10.3390/molecules26092671] [PMID: 34063264]
[4]
Liu, W.; Zhang, Y.; Zhang, Y.; Dong, A. Black phosphorus nanosheets counteract bacteria without causing antibiotic resistance. Chemistry, 2020, 26(11), 2478-2485.
[http://dx.doi.org/10.1002/chem.201905134] [PMID: 31756008]
[5]
Munir, M.U.; Ahmed, A.; Usman, M.; Salman, S. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int. J. Nanomedicine, 2020, 15, 7329-7358.
[http://dx.doi.org/10.2147/IJN.S265934] [PMID: 33116477]
[6]
Zohra, T.; Numan, M.; Ikram, A.; Salman, M.; Khan, T.; Din, M.; Salman, M.; Farooq, A.; Amir, A.; Ali, M. Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, nanotechnology and other strategies in ESKAPE pathogens. Microorganisms, 2021, 9(5), 954.
[http://dx.doi.org/10.3390/microorganisms9050954] [PMID: 33946643]
[7]
Allafchian, A.; Hosseini, S.S. Antibacterial magnetic nanoparticles for therapeutics: A review. IET Nanobiotechnol., 2019, 13(8), 786-799.
[http://dx.doi.org/10.1049/iet-nbt.2019.0146] [PMID: 31625518]
[8]
Shkodenko, L.; Kassirov, I.; Koshel, E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms, 2020, 8(10), 1545.
[http://dx.doi.org/10.3390/microorganisms8101545] [PMID: 33036373]
[9]
Mosselhy, D.A.; Assad, M.; Sironen, T.; Elbahri, M. Nanotheranostics: A possible solution for drug-resistant staphylococcus aureus and their biofilms? Nanomaterials, 2021, 11(1), 82.
[http://dx.doi.org/10.3390/nano11010082] [PMID: 33401760]
[10]
Wang, S.; Gao, Y.; Jin, Q.; Ji, J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater. Sci., 2020, 8(24), 6825-6839.
[http://dx.doi.org/10.1039/D0BM00974A] [PMID: 32996490]
[11]
Tanwar, J.; Sharma, M.; Parmar, A.; Tehri, N.; Verma, N.; Gahlaut, A.; Hooda, V. Antibacterial potential of silver nanoparticles against multidrug resistant bacterial isolates from blood cultures. Inorg. Nano-Met. Chem, 2020, 50(11), 1150-1156.
[http://dx.doi.org/10.1080/24701556.2020.1735433]
[12]
Ben, T.I.; Fickers, P.; Dziedzic, A. Płoch, D.; Skóra, B.; Kus, L.M. Green pyomelanin-mediated synthesis of gold nanoparticles: Modelling and design, physico-chemical and biological characteristics. Microb. Cell Fact., 2019, 18(1), 210.
[http://dx.doi.org/10.1186/s12934-019-1254-2] [PMID: 31796078]
[13]
Fan, X.; Yahia, L.H.; Sacher, E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology, 2021, 10(2), 137.
[http://dx.doi.org/10.3390/biology10020137] [PMID: 33578705]
[14]
Teli, M.D.; Sheikh, J. Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles. Int. J. Biol. Macromol., 2013, 61, 302-307.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.015] [PMID: 23916646]
[15]
Li, S.; Chen, G.; Qiang, S.; Yin, Z.; Zhang, Z.; Chen, Y. Synthesis and evaluation of highly dispersible and efficient photocatalytic TiO2/poly lactic acid nanocomposite films via sol-gel and casting processes. Int. J. Food Microbiol., 2020, 331, 108763.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2020.108763] [PMID: 32574819]
[16]
Alam, M.; Alandis, N.M.; Ahmad, N.; Husain, F.M. Anticorrosive and antibacterial nanocomposite coating material from sustainable resource. Ind. Crops Prod., 2020, 158, 112955.
[http://dx.doi.org/10.1016/j.indcrop.2020.112955]
[17]
Haghniaz, R.; Rabbani, A.; Vajhadin, F.; Khan, T.; Kousar, R.; Khan, A.R.; Montazerian, H.; Iqbal, J.; Libanori, A.; Kim, H.J.; Wahid, F. Anti‐bacterial and wound healing‐promoting effects of zinc ferrite nanoparticles. J. Nanobiotechnology, 2021, 19(1), 38.
[http://dx.doi.org/10.1186/s12951-021-00776-w] [PMID: 33546702]
[18]
Monedeiro, F.; Railean, P.V.; Monedeiro, M.M.; Pomastowski, P.; Buszewski, B. Metabolic profiling of VOCs emitted by bacteria isolated from pressure ulcers and treated with different concentrations of bio-AgNPs. Int. J. Mol. Sci., 2021, 22(9), 4696.
[http://dx.doi.org/10.3390/ijms22094696] [PMID: 33946710]
[19]
Jiang, H.; Sun, S. Morphology, growth, and size limit of bacterial cells. Natl. Inst. Heal., 2010, 105(2), 028101.
[20]
Biology, B.; Microbes, O. Basic biology of oral microbes. Atlas Oral Microbiol, 2015, 2015, 1-14.
[http://dx.doi.org/10.1016/B978-0-12-802234-4.00001-X]
[21]
Gao, Y.; Chen, Y.; Cao, Y.; Mo, A.; Peng, Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2021, 213, 113056.
[http://dx.doi.org/10.1016/j.ejmech.2020.113056] [PMID: 33280899]
[22]
Godoy, G.M.; Eckhard, U.; Delgado, L.M.; De Roo Puente, Y.J.D.; Hoyos, N.M.; Gil, F.J.; Perez, R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater., 2021, 6(12), 4470-4490.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.033] [PMID: 34027235]
[23]
Gonçalves, M.C. Sol-gel silica nanoparticles in medicine: A natural choice. Design, synthesis and products. Molecules, 2018, 23(8), 2021.
[http://dx.doi.org/10.3390/molecules23082021] [PMID: 30104542]
[24]
Baek, Y.W.; An, Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ., 2011, 409(8), 1603-1608.
[http://dx.doi.org/10.1016/j.scitotenv.2011.01.014] [PMID: 21310463]
[25]
Mba, I.E.; Nweze, E.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J. Microbiol. Biotechnol., 2021, 37(6), 108.
[http://dx.doi.org/10.1007/s11274-021-03070-x] [PMID: 34046779]
[26]
Ye, Q.; Chen, W.; Huang, H.; Tang, Y.; Wang, W.; Meng, F.; Wang, H.; Zheng, Y. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl. Microbiol. Biotechnol., 2020, 104(12), 5213-5227.
[http://dx.doi.org/10.1007/s00253-020-10600-4] [PMID: 32303820]
[27]
Spirescu, V.A. Chircov, C.; Grumezescu, A.M.; Vasile, B.Ș.; Andronescu, E. Inorganic nanoparticles and composite films for antimicrobial therapies. Int. J. Mol. Sci., 2021, 22(9), 4595.
[http://dx.doi.org/10.3390/ijms22094595] [PMID: 33925617]
[28]
Ferdous, Z.; Nemmar, A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci., 2020, 21(7), 2375.
[29]
Al-otibi, F.; Al-ahaidib, R.A.; Alharbi, R.I.; Al-otaibi, R.M.; Albasher, G. Antimicrobial potential of biosynthesized silver nanoparticles by Aaronsohnia factorovskyi extract. Molecules, 2020, 26(1), 130.
[30]
Hamida, R.S.; Ali, M.A.; Goda, D.A.; Al-Zaban, M.I. Lethal mechanisms of nostoc-synthesized silver nanoparticles against different pathogenic bacteria. Int. J. Nanomedicine, 2020, 15, 10499-10517.
[http://dx.doi.org/10.2147/IJN.S289243] [PMID: 33402822]
[31]
Fanoro, O.T.; Oluwafemi, O.S. Bactericidal antibacterial mechanism of plant synthesized silver, gold and bimetallic nanoparticles. Pharmaceutics, 2020, 12(11), 1044.
[http://dx.doi.org/10.3390/pharmaceutics12111044] [PMID: 33143388]
[32]
Wypij, M. Jędrzejewski, T.; Trzcińska, W.J.; Ostrowski, M.; Rai, M.; Golińska, P. Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol., 2021, 12, 632505.
[http://dx.doi.org/10.3389/fmicb.2021.632505] [PMID: 33967977]
[33]
Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; Batiha, G.E.S.; Elkady, A.A.; Mohamed, N.A.; Algammal, A.M. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep., 2021, 11(1), 10751.
[http://dx.doi.org/10.1038/s41598-021-90208-4] [PMID: 34031472]
[34]
Naseer, Q.A.; Xue, X.; Wang, X.; Dang, S.; Din, S.U. Kalsoom; Jamil, J. Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Braz. J. Biol., 2022, 82, e232434.
[http://dx.doi.org/10.1590/1519-6984.232434] [PMID: 33681895]
[35]
Sundaram, T.; Indu, B.; Srinivasulu, R.C.H.; Swathi, R.V.S.; Hari, P.S.; Poojitha, P.; Renusree, K.; Govindarajan, G.; Rajendiran, N.; Sundaram, V. Bio inspired silver nanoparticle synthesis from fish liver oil and its antibacterial activity against shrimp pathogen. IOP Conf. Ser. Mater. Sci. Eng., 2020, 993, 012166.
[http://dx.doi.org/10.1088/1757-899X/993/1/012166]
[36]
Gabrielyan, L.; Badalyan, H.; Gevorgyan, V.; Trchounian, A. Comparable antibacterial effects and action mechanisms of silver and iron oxide nanoparticles on Escherichia coli and Salmonella typhimurium. Sci. Rep., 2020, 10(1), 13145.
[http://dx.doi.org/10.1038/s41598-020-70211-x] [PMID: 32753725]
[37]
Lv, Y.; Cai, G.; Zhang, X.; Fu, S.; Zhang, E.; Yang, L.; Xiao, J.; Dong, Z. Microstructural characterization and in vitro biological performances of Ag, Zn co-incorporated TiO2 coating. Ceram. Int., 2020, 46(18), 29160-29172.
[http://dx.doi.org/10.1016/j.ceramint.2020.08.089]
[38]
Mao, K.; Zhu, Y.; Zhang, X.; Rong, J.; Qiu, F.; Chen, H.; Xu, J.; Yang, D.; Zhang, T. Effective loading of well-doped ZnO/Ag3PO4 nanohybrids on magnetic core via one step for promoting its photocatalytic antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp., 2020, 603, 125187.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125187]
[39]
Panicker, S.; Ahmady, I.M.; Han, C.; Chehimi, M.; Mohamed, A.A. On demand release of ionic silver from gold-silver alloy nanoparticles: Fundamental antibacterial mechanisms study. Mater. Today Chem., 2020, 16, 100237.
[http://dx.doi.org/10.1016/j.mtchem.2019.100237]
[40]
Bhatia, E.; Banerjee, R. Hybrid silver-gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4890-4898.
[http://dx.doi.org/10.1039/D0TB00158A] [PMID: 32285904]
[41]
Xu, Z.; Chen, K.; Li, M.; Hu, C.; Yin, P. Sustained release of Ag + confined inside polyoxometalates for long-lasting bacterial resistance. Chem. Commun., 2020, 56(39), 5287-5290.
[http://dx.doi.org/10.1039/D0CC01676D] [PMID: 32270825]
[42]
Li, W.; Li, Y.; Sun, P.; Zhang, N.; Zhao, Y.; Qin, S.; Zhao, Y. Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Advances, 2020, 10(64), 38746-38754.
[http://dx.doi.org/10.1039/D0RA05640E] [PMID: 35518403]
[43]
Lozovskis, P. Jankauskaitė V.; Guobienė A.; Kareivienė V.; Vitkauskienė A. Effect of graphene oxide and silver nanoparticles hybrid composite on P. aeruginosa strains with acquired resistance genes. Int. J. Nanomedicine, 2020, 15, 5147-5163.
[http://dx.doi.org/10.2147/IJN.S235748] [PMID: 32764942]
[44]
Mousavi, S.A.; Ghotaslou, R.; Khorramdel, A.; Akbarzadeh, A.; Aeinfar, A. Antibacterial and antifungal impacts of combined silver, zinc oxide, and chitosan nanoparticles within tissue conditioners of complete dentures in vitro. Ir. J. Med. Sci., 2020, 189(4), 1343-1350.
[http://dx.doi.org/10.1007/s11845-020-02243-1] [PMID: 32405923]
[45]
Zewde, B.; Atoyebi, O.; Gugssa, A.; Gaskell, K.J.; Raghavan, D. An investigation of the interaction between bovine serum albumin-conjugated silver nanoparticles and the hydrogel in hydrogel nanocomposites. ACS Omega, 2021, 6(17), 11614-11627.
[http://dx.doi.org/10.1021/acsomega.1c00834] [PMID: 34056317]
[46]
Sun, J.; Wang, L.; Wang, J.; Li, Y.; Zhou, X.; Guo, X.; Zhang, T.; Guo, H. Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: In vitro and in vivo animal study. Dent. Mater. J., 2021, 40(5), 1100-1108.
[http://dx.doi.org/10.4012/dmj.2020-129]
[47]
Slavin, Y.N.; Ivanova, K.; Hoyo, J.; Perelshtein, I.; Owen, G.; Haegert, A.; Lin, Y.Y.; LeBihan, S.; Gedanken, A.; Häfeli, U.O.; Tzanov, T.; Bach, H. Novel lignin-capped silver nanoparticles against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces, 2021, 13(19), 22098-22109.
[http://dx.doi.org/10.1021/acsami.0c16921] [PMID: 33945683]
[48]
Ghramh, H.A.; Khan, K.A.; Ibrahim, E.H.; Setzer, W.N. Synthesis of Gold Nanoparticles (AuNPs) using Ricinus communis leaf ethanol extract, their characterization, and biological applications. Nanomaterials, 2019, 9(5), 765.
[http://dx.doi.org/10.3390/nano9050765] [PMID: 31109084]
[49]
Chmielewska, S.J. Skłodowski, K.; Depciuch, J.; Deptuła, P.; Piktel, E.; Fiedoruk, K.; Kot, P.; Paprocka, P.; Fortunka, K.; Wollny, T.; Wolak, P.; Parlinska, W.M.; Savage, P.B.; Bucki, R. Bactericidal properties of rod-, peanut-, and star-shaped gold nanoparticles coated with ceragenin CSA-131 against multidrug-resistant bacterial strains. Pharmaceutics, 2021, 13(3), 425.
[http://dx.doi.org/10.3390/pharmaceutics13030425] [PMID: 33809901]
[50]
Shi, P.; Amarnath, P.R.; Deepa, S.; Suganya, K.; Gupta, P.; Ullah, R.; Bari, A.; Murugan, M.; Rajan, M. A promising drug delivery candidate (CS-g-PMDA-CYS-fused gold nanoparticles) for inhibition of multidrug-resistant uropathogenic Serratia marcescens. Drug Deliv., 2020, 27(1), 1271-1282.
[http://dx.doi.org/10.1080/10717544.2020.1809557] [PMID: 32885688]
[51]
Piktel, E. Suprewicz, Ł.; Depciuch, J.; Chmielewska, S.; Skłodowski, K.; Daniluk, T.; Król, G.; Kołat, B.P.; Bijak, P.; Pajor, Ś.A.; Fiedoruk, K.; Parlinska, W.M.; Bucki, R. Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Sci. Rep., 2021, 11(1), 12546.
[http://dx.doi.org/10.1038/s41598-021-91847-3] [PMID: 34131207]
[52]
Cudalbeanu, M.; Peitinho, D.; Silva, F.; Marques, R.; Pinheiro, T.; Ferreira, A.C.; Marques, F.; Paulo, A.; Soeiro, C.F.; Sousa, S.A.; Leitão, J.H. Tăbăcaru, A.; Avramescu, S.M.; Dinica, R.M.; Campello, M.P.C. Sono-biosynthesis and characterization of aunps from danube delta Nymphaea alba root extracts and their biological properties. Nanomaterials, 2021, 11(6), 1562.
[http://dx.doi.org/10.3390/nano11061562] [PMID: 34198512]
[53]
Das, S.; Pramanik, T.; Jethwa, M.; Roy, P. Flavonoid-decorated nano-gold for antimicrobial therapy against gram-negative bacteria Escherichia coli. Appl. Biochem. Biotechnol., 2021, 193(6), 1727-1743.
[http://dx.doi.org/10.1007/s12010-021-03543-7] [PMID: 33713270]
[54]
Donga, S.; Bhadu, G.R.; Chanda, S. Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artif. Cells Nanomed. Biotechnol., 2020, 48(1), 1315-1325.
[http://dx.doi.org/10.1080/21691401.2020.1843470] [PMID: 33226851]
[55]
Mandhata, C.P.; Sahoo, C.R.; Mahanta, C.S.; Padhy, R.N. Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess Biosyst. Eng., 2021, 44(8), 1617-1626.
[http://dx.doi.org/10.1007/s00449-021-02544-4] [PMID: 33704554]
[56]
Villa, G.L.D.; Márquez, P.R.; Ortiz, M.M.; Patrón, S.O.A.; Álvarez, P.M.A.; Pozos, G.A.; Sánchez, V.L.O. Antimicrobial effect of gold nanoparticles in the formation of the Staphylococcus aureus biofilm on a polyethylene surface. Braz. J. Microbiol., 2021, 52(2), 619-625.
[http://dx.doi.org/10.1007/s42770-021-00455-w] [PMID: 33619696]
[57]
Pišlová, M. Kolářová, K.; Vokatá, B.; Brož, A.; Ulbrich, P.; Bačáková, L.; Kolská, Z.; Švorčík, V. A new way to prepare gold nanoparticles by sputtering - Sterilization, stability and other properties. Mater. Sci. Eng. C, 2020, 115, 111087.
[http://dx.doi.org/10.1016/j.msec.2020.111087] [PMID: 32600693]
[58]
Al-musawi, S.; Albukhaty, S.; Al-karagoly, H. Molecules antibacterial activity of honey/chitosan nanofibers. Mol. Artic., 2020, 25, 4770.
[59]
Linklater, D.P.; Baulin, V.A.; Le Guével, X.; Fleury, J.B.; Hanssen, E.; Nguyen, T.H.P.; Juodkazis, S.; Bryant, G.; Crawford, R.J.; Stoodley, P.; Ivanova, E.P. Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes. Adv. Mater., 2020, 32(52), 2005679.
[http://dx.doi.org/10.1002/adma.202005679] [PMID: 33179362]
[60]
Shu, X.; Feng, J.; Liao, J.; Zhang, D.; Peng, R.; Shi, Q.; Xie, X. Amorphous carbon-coated nano-copper particles: Novel synthesis by sol-gel and carbothermal reduction method and extensive characterization. J. Alloys Compd., 2020, 848, 156556.
[http://dx.doi.org/10.1016/j.jallcom.2020.156556]
[61]
Phan, D.N.; Dorjjugder, N.; Saito, Y.; Khan, M.Q.; Ullah, A.; Bie, X.; Taguchi, G.; Kim, I.S. Antibacterial mechanisms of various copper species incorporated in polymeric nanofibers against bacteria. Mater. Today Commun., 2020, 25, 101377.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101377]
[62]
Tarrant, E.; P., Riboldi G. McIlvin, M.R.; Stevenson, J.; Barwinska, S.A.; Stewart, L.J.; Saito, M.A.; Waldron, K.J. Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism. Metallomics, 2019, 11(1), 183-200.
[http://dx.doi.org/10.1039/C8MT00239H] [PMID: 30443649]
[63]
Janczarek, M.; Endo, M.; Zhang, D.; Wang, K.; Kowalska, E. Enhanced photocatalytic and antimicrobial performance of cuprous oxide/titania: The effect of titania matrix. Materials, 2018, 11(11), 2069.
[http://dx.doi.org/10.3390/ma11112069] [PMID: 30360509]
[64]
Kalaiyan, G.; Prabu, K.M.; Suresh, S.; Suresh, N. Green synthesis of CuO nanostructures with bactericidal activities using Simarouba glauca leaf extract. Chem. Phys. Lett., 2020, 761, 138062.
[http://dx.doi.org/10.1016/j.cplett.2020.138062]
[65]
Nain, A.; Tseng, Y.T.; Wei, S.C.; Periasamy, A.P.; Huang, C.C.; Tseng, F.G.; Chang, H.T. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. J. Hazard. Mater., 2020, 389, 121821.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121821] [PMID: 31879116]
[66]
Deokar, A.R.; Perelshtein, I.; Saibene, M.; Perkas, N.; Mantecca, P.; Nitzan, Y.; Gedanken, A. Antibacterial and in vivo studies of a green, one-pot preparation of copper/zinc oxide nanoparticle-coated bandages. Membranes, 2021, 11(7), 462.
[http://dx.doi.org/10.3390/membranes11070462] [PMID: 34206493]
[67]
Zhang, H.; Wang, M.; Xu, F. Generating oxygen vacancies in Cu2+ ‐doped TiO 2 hollow spheres for enhanced photocatalytic activity and antimicrobial activity. Micro & Nano Lett., 2020, 15(8), 535-539.
[http://dx.doi.org/10.1049/mnl.2019.0781]
[68]
Ferrone, E.; Araneo, R.; Notargiacomo, A.; Pea, M.; Rinaldi, A. ZnO nanostructures and electrospun ZnO-polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials, 2019, 9(10), 1449.
[http://dx.doi.org/10.3390/nano9101449] [PMID: 31614707]
[69]
Banerjee, S.; Vishakha, K.; Das, S.; Dutta, M.; Mukherjee, D.; Mondal, J.; Mondal, S.; Ganguli, A. Antibacterial, anti-biofilm activity and mechanism of action of pancreatin doped zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus. Colloids Surf. B Biointerfaces, 2020, 190, 110921.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110921] [PMID: 32172163]
[70]
Rogowska, A.; Railean, P.V.; Pomastowski, P.; Walczak, S.J.; Król, G.A. Gołębiowski, A.; Buszewski, B. The study on molecular profile changes of pathogens via zinc nanocomposites immobilization approach. Int. J. Mol. Sci., 2021, 22(10), 5395.
[http://dx.doi.org/10.3390/ijms22105395] [PMID: 34065496]
[71]
Anaya, E.L.; Montalvo, G.E.; González, S.N.; Méndez, R.M.; Romero, T.R.; Yahia, E.; Pérez, L.A. Synthesis and characterization of TiO2-ZnO-MgO mixed oxide and their antibacterial activity. Materials, 2019, 12(5), 698.
[http://dx.doi.org/10.3390/ma12050698] [PMID: 30818789]
[72]
Heng, B.C.; Zhao, X.; Xiong, S.; Woei Ng, K.; Yin, C.B.F.; Say, C.L.J. Toxicity of Zinc Oxide (ZnO) nanoparticles on human Bronchial Epithelial Cells (BEAS-2B) is accentuated by oxidative stress. Food Chem. Toxicol., 2010, 48(6), 1762-1766.
[http://dx.doi.org/10.1016/j.fct.2010.04.023] [PMID: 20412830]
[73]
Wu, D.; Wei, D.; Du, M.; Ming, S.; Ding, Q.; Tan, R. Targeting antibacterial effect and promoting of skin wound healing after infected with methicillin-resistant Staphylococcus aureus for the novel polyvinyl alcohol nanoparticles. Int. J. Nanomedicine, 2021, 16, 4031-4044.
[http://dx.doi.org/10.2147/IJN.S303529] [PMID: 34140770]
[74]
Rayyif, S.M.I.; Mohammed, H.B. Curuțiu, C.; Bîrcă A.C.; Grumezescu, A.M.; Vasile, B.Ș.; Dițu, L.M.; Lazăr, V.; Chifiriuc, M.C.; Mihăescu, G.; Holban, A.M. Zno nanoparticles-modified dressings to inhibit wound pathogens. Materials, 2021, 14(11), 3084.
[http://dx.doi.org/10.3390/ma14113084] [PMID: 34200053]
[75]
Qian, X.; Gu, Z.; Tang, Q.; Hong, A.; Filser, J.; Sharma, V.K.; Li, L. Sulfidation of sea urchin-like zinc oxide nanospheres: Kinetics, mechanisms, and impacts on growth of Escherichia coli. Sci. Total Environ., 2020, 741, 140415.
[http://dx.doi.org/10.1016/j.scitotenv.2020.140415] [PMID: 32599405]
[76]
Du, M.; Zhao, W.; Ma, R.; Xu, H. zhu, Y.; Shan, C.; Liu, K.; Zhuang, J.; Jiao, Z. Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic Zinc Oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. J. Hazard. Mater., 2021, 418, 126013.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126013] [PMID: 34102362]
[77]
Sana, S.S.; Kumbhakar, D.V.; Pasha, A.; Pawar, S.C.; Grace, A.N.; Singh, R.P.; Nguyen, V.H.; Le, Q.V.; Peng, W. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules, 2020, 25(21), 4896.
[http://dx.doi.org/10.3390/molecules25214896] [PMID: 33113894]
[78]
Baruah, R.; Yadav, A.; Das, A.M. Livistona jekinsiana fabricated ZnO nanoparticles and their detrimental effect towards anthropogenic organic pollutants and human pathogenic bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 251, 119459.
[http://dx.doi.org/10.1016/j.saa.2021.119459] [PMID: 33497974]
[79]
Singh, J.; Dhaliwal, A.S. Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst. Environ. Technol., 2020, 41(12), 1520-1534.
[80]
Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep., 2020, 25, e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[81]
Skóra, B.; Krajewska, U.; Nowak, A.; Dziedzic, A.; Barylyak, A. Kus-Liśkiewicz, M. Noncytotoxic silver nanoparticles as a new antimicrobial strategy. Sci. Rep., 2021, 11(1), 13451.
[http://dx.doi.org/10.1038/s41598-021-92812-w] [PMID: 34188097]
[82]
Gabrielyan, L.; Badalyan, H.; Gevorgyan, V.; Trchounian, A. Author correction: Comparable antibacterial effects and action mechanisms of silver and iron oxide nanoparticles on Escherichia coli and Salmonella typhimurium (Scientific Reports, (2020), 10, 1, (13145), 10.1038/s41598-020-70211-x). Sci. Rep., 2021, 11, 10-12.
[http://dx.doi.org/10.1038/s41598-020-70211-x]
[83]
Gabrielyan, L.; Trchounian, A. Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. World J. Microbiol. Biotechnol., 2019, 35(10), 162.
[http://dx.doi.org/10.1007/s11274-019-2742-6] [PMID: 31612285]
[84]
Alayande, A.B.; Kang, Y.; Jang, J.; Jee, H.; Lee, Y.G.; Kim, I.S.; Yang, E. Antiviral nanomaterials for designing mixed matrix membranes. Membranes, 2021, 11(7), 458.
[http://dx.doi.org/10.3390/membranes11070458] [PMID: 34206245]
[85]
Gholami, A.; Mohammadi, F.; Ghasemi, Y.; Omidifar, N.; Ebrahiminezhad, A. Antibacterial activity of SPIONs versus ferrous and ferric ions under aerobic and anaerobic conditions: A preliminary mechanism study. IET Nanobiotechnol., 2020, 14(2), 155-160.
[http://dx.doi.org/10.1049/iet-nbt.2019.0266] [PMID: 32433033]
[86]
Khan, S.; Shah, Z.H.; Riaz, S.; Ahmad, N.; Islam, S.; Raza, M.A.; Naseem, S. Antimicrobial activity of citric acid functionalized iron oxide nanoparticles - Superparamagnetic effect. Ceram. Int., 2020, 46(8), 10942-10951.
[http://dx.doi.org/10.1016/j.ceramint.2020.01.109]
[87]
Chaudhary, M.; Maiti, A. Fe-Al-Mn@chitosan based metal oxides blended cellulose acetate mixed matrix membrane for fluoride decontamination from water: Removal mechanisms and antibacterial behavior. J. Membr. Sci., 2020, 611, 118372.
[http://dx.doi.org/10.1016/j.memsci.2020.118372]
[88]
Li, T.; Qiu, H.; Liu, N.; Li, J.; Bao, Y.; Tong, W. Construction of self-activated cascade metal−Organic framework/enzyme hybrid nanoreactors as antibacterial agents. Colloids Surf. B Biointerfaces, 2020, 191, 111001.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111001] [PMID: 32325361]
[89]
Fulaz, S.; Devlin, H.; Vitale, S.; Quinn, L.; O’Gara, P. Tailoring nanoparticle-biofilm interactions to increase the efficacy of antimicrobial agents against Staphylococcus aureus. Int. J. Nanomedicine, 2020, 15, 4779-4791.
[90]
Yu, C.H.; Chen, G.Y.; Xia, M.Y.; Xie, Y.; Chi, Y.Q.; He, Z.Y.; Zhang, C.L.; Zhang, T.; Chen, Q.M.; Peng, Q. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf. B Biointerfaces, 2020, 191, 111009.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111009] [PMID: 32305622]
[91]
Hussain, S.; Mahmood, A.T.; Sahar, H.; Kanwal, S.; Mansoor, F.; Darak, T.; Iqbal, M.Z.; Khurshid, B.F.; Hussain, A.; Muhammad, A.; Zaman, S.; Hasnain, T.G.; Muhammad, A.H. Functionalisation of MWCNTs with piperazine and dopamine derivatives and their potential antibacterial activity. Micro & Nano Lett., 2020, 15(15), 1105-1109.
[http://dx.doi.org/10.1049/mnl.2020.0114]
[92]
Ahmed, F.Y.; Aly, U.F.; El-Baky, A.R.M.; Waly, N.G.F.M. Effect of titanium dioxide nanoparticles on the expression of efflux pump and quorum-sensing genes in mdr Pseudomonas aeruginosa isolates. Antibiotics, 2021, 10(6), 625.
[http://dx.doi.org/10.3390/antibiotics10060625] [PMID: 34073802]
[93]
Helmy, E.T.; Abouellef, E.M.; Soliman, U.A.; Pan, J.H. Novel green synthesis of S-doped TiO2 nanoparticles using Malva parviflora plant extract and their photocatalytic, antimicrobial and antioxidant activities under sunlight illumination. Chemosphere, 2021, 271, 129524.
[http://dx.doi.org/10.1016/j.chemosphere.2020.129524] [PMID: 33460895]
[94]
Hkeem, I.K.; Ali, F.A.; Abdulla, S.S.M. Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum. Cell. Mol. Biol., 2020, 66(7), 111-117.
[http://dx.doi.org/10.14715/cmb/2020.66.7.17] [PMID: 33287930]
[95]
Bassous, N.J.; Garcia, C.B.; Webster, T.J. A study of the chemistries, growth mechanisms, and antibacterial properties of cerium- and yttrium-containing nanoparticles. ACS Biomater. Sci. Eng., 2021, 7(5), 1787-1807.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00776] [PMID: 33966381]
[96]
Liu, X.; Wang, Z.; Feng, X.; Bai, E.; Xiong, Y.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y.; Duan, Y. Platensimycin-encapsulated poly(lactic- co -glycolic acid) and poly(amidoamine) dendrimers nanoparticles with enhanced anti-staphylococcal activity in vivo. Bioconjug. Chem., 2020, 31(5), 1425-1437.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00121] [PMID: 32286051]
[97]
Liu, L.; Xiao, X.; Li, K.; Li, X.; Yu, K.; Liao, X.; Shi, B. Prevention of bacterial colonization based on self-assembled metal-phenolic nanocoating from rare-earth ions and catechin. ACS Appl. Mater. Interfaces, 2020, 12(19), 22237-22245.
[http://dx.doi.org/10.1021/acsami.0c06459] [PMID: 32312042]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy