Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Nanomaterial-based Biosensors for Determination of Glycated Hemoglobin

Author(s): Eka Noviana*, Soni Siswanto and Agustina Ari Murti Budi Hastuti

Volume 22, Issue 27, 2022

Published on: 03 October, 2022

Page: [2261 - 2281] Pages: 21

DOI: 10.2174/1568026622666220915114646

Price: $65

Abstract

Diabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring of glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.

Keywords: Biosensors, Glycated hemoglobin, HbA1c, Nanomaterials, Nanosensors, Tunable morphologies.

Graphical Abstract
[1]
WHO. The top 10 causes of death., Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (Accessed on: Apr 1, 2022).
[2]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global esti-mates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[3]
Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; Co-lagiuri, S. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2020, 162, 108072.
[http://dx.doi.org/10.1016/j.diabres.2020.108072] [PMID: 32061820]
[4]
Kollias, A.N.; Ulbig, M.W. Diabetic retinopathy: Early diagnosis and effective treatment. Dtsch. Arztebl. Int., 2010, 107(5), 75-83.
[PMID: 20186318]
[5]
Hjelmesæth, J.; Hartmann, A.; Leivestad, T.; Holdaas, H.; Sagedal, S.; Olstad, M.; Jenssen, T. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int., 2006, 69(3), 588-595.
[http://dx.doi.org/10.1038/sj.ki.5000116] [PMID: 16395250]
[6]
American Diabetes Association. Glycemic Targets: Standards of Medical Care in Diabetes—2020. Diabetes Care, 2020, 43(Suppl. 1), S66-S76.
[http://dx.doi.org/10.2337/dc20-S006] [PMID: 31862749]
[7]
Weykamp, C. HbA1c: A review of analytical and clinical aspects. Ann. Lab. Med., 2013, 33(6), 393-400.
[http://dx.doi.org/10.3343/alm.2013.33.6.393] [PMID: 24205486]
[8]
Jeppsson, J.O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; Thienpont, L.; Umemoto, M.; Weykamp, C. Approved IFCC reference method for the measurement of HbA1c in human blood. Clin. Chem. Lab. Med., 2002, 40(1), 78-89.
[http://dx.doi.org/10.1515/CCLM.2002.016] [PMID: 11916276]
[9]
Lin, H.; Yi, J. Current status of HbA1c biosensors. Sensors (Basel), 2017, 17(8), 1798.
[http://dx.doi.org/10.3390/s17081798] [PMID: 28777351]
[10]
Pohanka, M. Glycated hemoglobin and methods for its point of care testing. Biosensors (Basel), 2021, 11(3), 70.
[http://dx.doi.org/10.3390/bios11030070] [PMID: 33806493]
[11]
Sharma, P.; Panchal, A.; Yadav, N.; Narang, J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int. J. Biol. Macromol., 2020, 155, 685-696.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.205] [PMID: 32229211]
[12]
Zhan, Z.; Li, Y.; Zhao, Y.; Zhang, H.; Wang, Z.; Fu, B.; Li, W.J. A review of electrochemical sensors for the detection of glycated hemo-globin. Biosensors (Basel), 2022, 12(4), 221.
[http://dx.doi.org/10.3390/bios12040221] [PMID: 35448281]
[13]
Yazdanpanah, S.; Rabiee, M.; Tahriri, M.; Abdolrahim, M.; Tayebi, L. Glycated hemoglobin-detection methods based on electrochemical biosensors. Trends Analyt. Chem., 2015, 72, 53-67.
[http://dx.doi.org/10.1016/j.trac.2015.03.019]
[14]
Lee, S.H.; Sung, J.H.; Park, T.H. Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann. Biomed. Eng., 2012, 40(6), 1384-1397.
[http://dx.doi.org/10.1007/s10439-011-0457-4] [PMID: 22065202]
[15]
Abdelhamid, H.N.; Badr, G. Nanobiotechnology as a platform for the diagnosis of COVID-19: A review. Nanotechnol. Environ. Eng., 2021, 6(1), 19.
[http://dx.doi.org/10.1007/s41204-021-00109-0]
[16]
White, J.C.; Beaven, G.H. A review of the varieties of human haemoglobin in health and disease. J. Clin. Pathol., 1954, 7(3), 175-200.
[http://dx.doi.org/10.1136/jcp.7.3.175] [PMID: 13192193]
[17]
Schechter, A.N. Hemoglobin research and the origins of molecular medicine. Blood, 2008, 112(10), 3927-3938.
[http://dx.doi.org/10.1182/blood-2008-04-078188] [PMID: 18988877]
[18]
Allen, D.W.; Schroeder, W.A.; Balog, J. Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: A study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J. Am. Chem. Soc., 1958, 80(7), 1628-1634.
[http://dx.doi.org/10.1021/ja01540a030]
[19]
Huisman, T.H.J.; Meyering, C.A. Studies on the heterogeneity of hemoglobin. Clin. Chim. Acta, 1960, 5(1), 103-123.
[http://dx.doi.org/10.1016/0009-8981(60)90098-X] [PMID: 13852555]
[20]
Rahbar, S.; Blumenfeld, O.; Ranney, H.M. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem. Biophys. Res. Commun., 1969, 36(5), 838-843.
[http://dx.doi.org/10.1016/0006-291X(69)90685-8] [PMID: 5808299]
[21]
Koenig, Ronald.J. Peterson, C.M.; Jones, R.L.; Saudek, C.; Lehrman, M.; Cerami, A. Correlation of glucose regulation and hemoglobin A1c in diabetes mellitus. N. Engl. J. Med., 1976, 295, 417-420.
[http://dx.doi.org/10.1056/NEJM197608192950804] [PMID: 934240]
[22]
American Diabetes Association Professional Practice Committee. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care, 2022, 45(Suppl. 1), S17-S38.
[http://dx.doi.org/10.2337/dc22-S002] [PMID: 34964875]
[23]
Bunn, H.F.; Haney, D.N.; Kamin, S.; Gabbay, K.H.; Gallop, P.M. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J. Clin. Invest., 1976, 57(6), 1652-1659.
[http://dx.doi.org/10.1172/JCI108436] [PMID: 932199]
[24]
Rohlfing, C.L.; Wiedmeyer, H.M.; Little, R.R.; England, J.D.; Tennill, A.; Goldstein, D.E. Defining the relationship between plasma glucose and HbA(1c): Analysis of glucose profiles and HbA(1c) in the Diabetes Control and Complications Trial. Diabetes Care, 2002, 25(2), 275-278.
[http://dx.doi.org/10.2337/diacare.25.2.275] [PMID: 11815495]
[25]
Beck, R.W.; Bergenstal, R.M.; Cheng, P.; Kollman, C.; Carlson, A.L.; Johnson, M.L.; Rodbard, D. The relationships between time in range, hyperglycemia metrics, and HbA1c. J. Diabetes Sci. Technol., 2019, 13(4), 614-626.
[http://dx.doi.org/10.1177/1932296818822496] [PMID: 30636519]
[26]
Hirsch, I.B.; Welsh, J.B.; Calhoun, P.; Puhr, S.; Walker, T.C.; Price, D.A. Associations between HbA 1c and continuous glucose monitor-ing‐derived glycaemic variables. Diabet. Med., 2019, 36(12), 1637-1642.
[http://dx.doi.org/10.1111/dme.14065] [PMID: 31267573]
[27]
Lind, M.; Imberg, H.; Coleman, R.L.; Nerman, O.; Holman, R.R. Historical HbA1c values may explain the type 2 diabetes legacy effect: UKPDS 88. Diabetes Care, 2021, 44(10), 2231-2237.
[http://dx.doi.org/10.2337/dc20-2439]
[28]
Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights, 2016, 11, BMI-S38440.
[http://dx.doi.org/10.4137/BMI.S38440]
[29]
Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine, 2010, 6(2), 214-226.
[http://dx.doi.org/10.1016/j.nano.2009.07.009] [PMID: 19699322]
[30]
Cheng, Z.; Hou, J.; Zhou, Q.; Li, T.; Li, H.; Yang, L.; Jiang, K.; Wang, C.; Li, Y.; Fang, Y. Sensitivity limits and scaling of bioelectronic graphene transducers. Nano Lett., 2013, 13(6), 2902-2907.
[http://dx.doi.org/10.1021/nl401276n] [PMID: 23638876]
[31]
Jain, U.; Chauhan, N. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet. Biosens. Bioelectron., 2017, 89(Pt 1), 578-584.
[http://dx.doi.org/10.1016/j.bios.2016.02.033] [PMID: 26897102]
[32]
Madhavan, A.A.; Juneja, S.; Moulick, R.G.; Bhattacharya, J. Growth kinetics of gold nanoparticle formation from glycated hemoglobin. ACS Omega, 2020, 5(8), 3820-3827.
[http://dx.doi.org/10.1021/acsomega.9b02200] [PMID: 32149208]
[33]
Zhang, H.; Li, D.; Yang, Y.; Chang, H.; Simone, G. On-resonance islands of Ag-nanowires sense the level of glycated hemoglobin for diabetes diagnosis. Sens. Actuat. Biol. Chem., 2020, 321, 128451.
[http://dx.doi.org/10.1016/j.snb.2020.128451]
[34]
Kwak, J.; Park, H.J.; Lee, S.S. Gold nanoparticle-based novel biosensors for detecting glycated hemoglobin. Bull. Korean Chem. Soc., 2018, 39(2), 156-160.
[http://dx.doi.org/10.1002/bkcs.11360]
[35]
Fathi, F.; Rashidi, M.R.; Omidi, Y. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta, 2019, 192, 118-127.
[http://dx.doi.org/10.1016/j.talanta.2018.09.023] [PMID: 30348366]
[36]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[37]
Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 2006, 18(4), 319-326.
[http://dx.doi.org/10.1002/elan.200503415]
[38]
Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. Trends Analyt. Chem., 2016, 82, 55-67.
[http://dx.doi.org/10.1016/j.trac.2016.04.005]
[39]
Khalil, I.; Rahmati, S.; Muhd Julkapli, N.; Yehye, W.A. Graphene metal nanocomposites — Recent progress in electrochemical biosensing applications. J. Ind. Eng. Chem., 2018, 59, 425-439.
[http://dx.doi.org/10.1016/j.jiec.2017.11.001]
[40]
Lu, Y.; Biswas, M.C.; Guo, Z.; Jeon, J.W.; Wujcik, E.K. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron., 2019, 123, 167-177.
[http://dx.doi.org/10.1016/j.bios.2018.08.037] [PMID: 30174272]
[41]
Gao, N.; Yu, J.; Tian, Q.; Shi, J.; Zhang, M.; Chen, S.; Zang, L. Application of PEDOT:PSS and its composites in electrochemical and elec-tronic chemosensors. Chemosensors (Basel), 2021, 9(4), 79.
[http://dx.doi.org/10.3390/chemosensors9040079]
[42]
Liu, Z.; Zhang, L.; Poyraz, S.; Zhang, X. Conducting polymer - Metal nanocomposites synthesis and their sensory applications. Curr. Org. Chem., 2013, 17(20), 2256-2267.
[http://dx.doi.org/10.2174/13852728113179990048]
[43]
Saha, B.; Evers, T.H.; Prins, M.W.J. How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen cap-turing for biosensing. Anal. Chem., 2014, 86(16), 8158-8166.
[http://dx.doi.org/10.1021/ac501536z] [PMID: 25048623]
[44]
Qu, F.; Zhang, Y.; Rasooly, A.; Yang, M. Electrochemical biosensing platform using hydrogel prepared from ferrocene modified amino acid as highly efficient immobilization matrix. Anal. Chem., 2014, 86(2), 973-976.
[http://dx.doi.org/10.1021/ac403478z] [PMID: 24383679]
[45]
Shajaripour Jaberi, S.Y.; Ghaffarinejad, A.; Omidinia, E. An electrochemical paper based nano-genosensor modified with reduced gra-phene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal. Chim. Acta, 2019, 1078, 42-52.
[http://dx.doi.org/10.1016/j.aca.2019.06.018] [PMID: 31358227]
[46]
Lorenzetti, M.; Gongadze, E.; Kulkarni, M.; Junkar, I.; Iglič, A. Electrokinetic properties of TiO2 nanotubular surfaces. Nanoscale Res. Lett., 2016, 11(1), 378.
[http://dx.doi.org/10.1186/s11671-016-1594-3] [PMID: 27562014]
[47]
Sharafeldin, M.; McCaffrey, K.; Rusling, J.F. Influence of antibody immobilization strategy on carbon electrode immunoarrays. Analyst (Lond.), 2019, 144(17), 5108-5116.
[http://dx.doi.org/10.1039/C9AN01093A] [PMID: 31373337]
[48]
Wang, X.; Su, J.; Zeng, D.; Liu, G.; Liu, L.; Xu, Y.; Wang, C.; Liu, X.; Wang, L.; Mi, X. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta, 2019, 201, 119-125.
[http://dx.doi.org/10.1016/j.talanta.2019.03.100] [PMID: 31122401]
[49]
Hou, Q.; Wang, X.; Ragauskas, A.J. Dynamic self-assembly of polyelectrolyte composite nanomaterial film. Polymers (Basel), 2019, 11(8), 1258.
[http://dx.doi.org/10.3390/polym11081258] [PMID: 31366006]
[50]
Mun, K.S.; Alvarez, S.D.; Choi, W.Y.; Sailor, M.J. A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays. ACS Nano, 2010, 4(4), 2070-2076.
[http://dx.doi.org/10.1021/nn901312f] [PMID: 20356100]
[51]
Duanghathaipornsuk, S.; Shen, B.; Cameron, B.D.; Ijäs, H.; Linko, V.; Kostiainen, M.A.; Kim, D.S. Aptamer-embedded DNA origami cage for detecting (glycated) hemoglobin with a surface plasmon resonance sensor. Mater. Lett., 2020, 275, 128141.
[http://dx.doi.org/10.1016/j.matlet.2020.128141]
[52]
Rajpal, S.; Bhakta, S.; Mishra, P. Biomarker imprinted magnetic core–shell nanoparticles for rapid, culture free detection of pathogenic bacteria. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(10), 2436-2446.
[http://dx.doi.org/10.1039/D0TB02842H] [PMID: 33625438]
[53]
Bhakta, S.; Mishra, P. Molecularly imprinted polymer-based sensors for cancer biomarker detection. Sens. Actuat. Reports, 2021, 3, 100061.
[http://dx.doi.org/10.1016/j.snr.2021.100061]
[54]
Weerasuriya, D.R.K.; Bhakta, S.; Hiniduma, K.; Dixit, C.K.; Shen, M.; Tobin, Z.; He, J.; Suib, S.L.; Rusling, J.F. Magnetic nanoparticles with surface nanopockets for highly selective antibody isolation. ACS Appl. Bio Mater., 2021, 4(8), 6157-6166.
[http://dx.doi.org/10.1021/acsabm.1c00502] [PMID: 35006880]
[55]
Živanović, V.; Seifert, S.; Drescher, D.; Schrade, P.; Werner, S.; Guttmann, P.; Szekeres, G.P.; Bachmann, S.; Schneider, G.; Arenz, C.; Kneipp, J. Optical nanosensing of lipid accumulation due to enzyme inhibition in live cells. ACS Nano, 2019, 13(8), 9363-9375.
[http://dx.doi.org/10.1021/acsnano.9b04001] [PMID: 31314989]
[56]
Aylott, J.W. Optical nanosensors—an enabling technology for intracellular measurements. Analyst (Lond.), 2003, 128(4), 309-312.
[http://dx.doi.org/10.1039/b302174m] [PMID: 12741632]
[57]
Sabaté del Río, J.; Henry, O.Y.F.; Jolly, P.; Ingber, D.E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol., 2019, 14(12), 1143-1149.
[http://dx.doi.org/10.1038/s41565-019-0566-z] [PMID: 31712665]
[58]
Lin, S.Y.; Hsu, W.H.; Lo, J.M.; Tsai, H.C.; Hsiue, G.H. Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J. Control. Release, 2011, 154(1), 84-92.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.023] [PMID: 21565231]
[59]
Ruckh, T.T.; Clark, H.A. Implantable nanosensors: Toward continuous physiologic monitoring. Anal. Chem., 2014, 86(3), 1314-1323.
[http://dx.doi.org/10.1021/ac402688k] [PMID: 24325255]
[60]
Soo Choi, H.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[61]
Wagh, A.; Qian, S.Y.; Law, B. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging. Bioconjug. Chem., 2012, 23(5), 981-992.
[http://dx.doi.org/10.1021/bc200637h] [PMID: 22482883]
[62]
Park, Y.; Kim, Y.; Chang, H.; Won, S.; Kim, H.; Kwon, W. Correction: Biocompatible nitrogen-doped carbon dots: Synthesis, characteriza-tion, and application. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(42), 9812.
[http://dx.doi.org/10.1039/D0TB90176H] [PMID: 33089269]
[63]
Vaddiraju, S.; Tomazos, I.; Burgess, D.J.; Jain, F.C.; Papadimitrakopoulos, F. Emerging synergy between nanotechnology and implantable biosensors: A review. Biosens. Bioelectron., 2010, 25(7), 1553-1565.
[http://dx.doi.org/10.1016/j.bios.2009.12.001] [PMID: 20042326]
[64]
Li, Z.; Li, J.; Dou, Y.; Wang, L.; Song, S. A carbon-based antifouling nano-biosensing interface for label-free POCT of HbA1c. Biosensors (Basel), 2021, 11(4), 118.
[http://dx.doi.org/10.3390/bios11040118] [PMID: 33921226]
[65]
Timilsina, S.S.; Durr, N.; Yafia, M.; Sallum, H.; Jolly, P.; Ingber, D.E. Ultrarapid method for coating electrochemical sensors with antifoul-ing conductive nanomaterials enables highly sensitive multiplexed detection in whole blood. Adv. Healthc. Mater., 2022, 11(8), 2102244.
[http://dx.doi.org/10.1002/adhm.202102244] [PMID: 34965031]
[66]
Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv., 2021, 2(6), 1821-1871.
[http://dx.doi.org/10.1039/D0MA00807A]
[67]
Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assunção, M.; Rosa, J.; Baptista, P.V. Noble metal nanoparticles for biosensing applications. Sensors (Basel), 2012, 12(2), 1657-1687.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[68]
Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B, 2006, 110(32), 15700-15707.
[http://dx.doi.org/10.1021/jp061667w] [PMID: 16898714]
[69]
Sau, T.K.; Rogach, A.L. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater., 2010, 22(16), 1781-1804.
[http://dx.doi.org/10.1002/adma.200901271] [PMID: 20512953]
[70]
Yuan, Q.; Wang, X. Aqueous-based route toward noble metal nanocrystals: Morphology-controlled synthesis and their applications. Nanoscale, 2010, 2(11), 2328-2335.
[http://dx.doi.org/10.1039/c0nr00342e] [PMID: 20820647]
[71]
He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal., 2014, 101, 84-101.
[http://dx.doi.org/10.1016/j.jpba.2014.04.017] [PMID: 24809747]
[72]
Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomedicine, 2015, 10, 1727-1741.
[PMID: 25834422]
[73]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomedicine, 2012, 7, 6003-6009.
[http://dx.doi.org/10.2147/IJN.S35347] [PMID: 23233805]
[74]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[75]
Flieger, J.; Flieger, M. Ionic liquids toxicity—benefits and threats. Int. J. Mol. Sci., 2020, 21(17), 6267.
[http://dx.doi.org/10.3390/ijms21176267] [PMID: 32872533]
[76]
Cotta, M.A. Quantum dots and their applications: What lies ahead? ACS Appl. Nano Mater., 2020, 3(6), 4920-4924.
[http://dx.doi.org/10.1021/acsanm.0c01386]
[77]
Valizadeh, A.; Mikaeili, H.; Samiei, M.; Farkhani, S.M.; Zarghami, N. kouhi, M.; Akbarzadeh, A.; Davaran, S. Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Res. Lett., 2012, 7(1), 480.
[http://dx.doi.org/10.1186/1556-276X-7-480] [PMID: 22929008]
[78]
Lv, Y.; Yuan, Y.; Hu, N.; Jin, N.; Xu, D.; Wu, R.; Shen, H.; Chen, O.; Li, L.S. Thick-Shell CdSe/ZnS/CdZnS/ZnS Core/Shell Quantum Dots for Quantitative Immunoassays. ACS Appl. Nano Mater., 2021, 4(3), 2855-2865.
[http://dx.doi.org/10.1021/acsanm.0c03483]
[79]
Bera, D.; Qian, L.; Tseng, T.K.; Holloway, P.H. Quantum dots and their multimodal applications: A review. Materials (Basel), 2010, 3(4), 2260-2345.
[http://dx.doi.org/10.3390/ma3042260]
[80]
Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun., 2018, 9(1), 2415.
[http://dx.doi.org/10.1038/s41467-018-04813-5] [PMID: 29925838]
[81]
Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114(10), 5161-5214.
[http://dx.doi.org/10.1021/cr400425h] [PMID: 24605868]
[82]
Pilch, A.; Würth, C.; Kaiser, M.; Wawrzyńczyk, D.; Kurnatowska, M.; Arabasz, S.; Prorok, K.; Samoć, M.; Strek, W.; Resch-Genger, U.; Bednarkiewicz, A. Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell β-NaYF 4 nanoparticles by dopant distribution and spacing. Small, 2017, 13(47), 1701635.
[http://dx.doi.org/10.1002/smll.201701635] [PMID: 29116668]
[83]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[84]
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26(1), 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[85]
Wu, S.H.; Mou, C.Y.; Lin, H.P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 2013, 42(9), 3862-3875.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[86]
Janczak, C.M.; Calderon, I.A.C.; Noviana, E.; Hadvani, P.; Lee, J.R.; Aspinwall, C.A. Hybrid nanoparticle platform for nanoscale scintilla-tion proximity assay. ACS Appl. Nano Mater., 2019, 2(3), 1259-1266.
[http://dx.doi.org/10.1021/acsanm.8b02136] [PMID: 34316544]
[87]
Rudrapati, R. Graphene: Fabrication methods, properties, and applications in modern industries. In: Graphene Production and Application; IntechOpen, 2020.
[88]
Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-based sensors for human health monitoring. Front Chem., 2019, 7, 399.
[http://dx.doi.org/10.3389/fchem.2019.00399] [PMID: 31245352]
[89]
Eissa, S.; Almusharraf, A.Y.; Zourob, M. A comparison of the performance of voltammetric aptasensors for glycated haemoglobin on different carbon nanomaterials-modified screen printed electrodes. Mater. Sci. Eng. C, 2019, 101, 423-430.
[http://dx.doi.org/10.1016/j.msec.2019.04.001] [PMID: 31029337]
[90]
Liu, Y.; Huang, H.; Cao, W.; Mao, B.; Liu, Y.; Kang, Z. Advances in carbon dots: From the perspective of traditional quantum dots. Mater. Chem. Front., 2020, 4(6), 1586-1613.
[http://dx.doi.org/10.1039/D0QM00090F]
[91]
Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem., 2014, 65(1), 83-105.
[http://dx.doi.org/10.1146/annurev-physchem-040513-103659] [PMID: 24274702]
[92]
Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev., 2015, 44(13), 4433-4453.
[http://dx.doi.org/10.1039/C4CS00379A] [PMID: 25980819]
[93]
Ramanavicius, S.; Ramanavicius, A. Conducting polymers in the design of biosensors and biofuel cells. Polymers (Basel), 2020, 13(1), 49.
[http://dx.doi.org/10.3390/polym13010049] [PMID: 33375584]
[94]
K, N.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 2021, 11(10), 5659-5697.
[http://dx.doi.org/10.1039/D0RA07800J] [PMID: 35686160]
[95]
Khokhar, D.; Jadoun, S.; Arif, R.; Jabin, S. Functionalization of conducting polymers and their applications in optoelectronics. Polymer-Plastics Technol. Mater., 2021, 60(5), 465-487.
[http://dx.doi.org/10.1080/25740881.2020.1819312]
[96]
Chuang, Y.C.; Lan, K.C.; Hsieh, K.M.; Jang, L.S.; Chen, M.K. Detection of glycated hemoglobin (HbA1c) based on impedance measure-ment with parallel electrodes integrated into a microfluidic device. Sens. Actuat. Biol. Chem., 2012, 171-172, 1222-1230.
[http://dx.doi.org/10.1016/j.snb.2012.06.084]
[97]
Moreno-Bondi, M.C.; Navarro-Villoslada, F.; Benito-Pena, E.; Urraca, J.L. Molecularly imprinted polymers as selective recognition ele-ments in optical sensing. Curr. Anal. Chem., 2008, 4(4), 316-340.
[http://dx.doi.org/10.2174/157341108785914925]
[98]
Han, X.; Jiang, Y.; Li, S.; Zhang, Y.; Ma, X.; Wu, Z.; Wu, Z.; Qi, X. Multivalent aptamer-modified tetrahedral DNA nanocage demonstrates high selectivity and safety for anti-tumor therapy. Nanoscale, 2019, 11(1), 339-347.
[http://dx.doi.org/10.1039/C8NR05546G] [PMID: 30534748]
[99]
Liu, L.; Guo, X.; Li, Y.; Zhong, X. Bifunctional multidentate ligand modified highly stable water-soluble quantum dots. Inorg. Chem., 2010, 49(8), 3768-3775.
[http://dx.doi.org/10.1021/ic902469d] [PMID: 20329710]
[100]
Park, W.; Shin, H.; Choi, B.; Rhim, W.K.; Na, K.; Keun Han, D. Advanced hybrid nanomaterials for biomedical applications. Prog. Mater. Sci., 2020, 114, 100686.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100686]
[101]
Miletto, I.; Bottinelli, E.; Caputo, G.; Coluccia, S.; Gianotti, E. Bright photoluminescent hybrid mesostructured silica nanoparticles. Phys. Chem. Chem. Phys., 2012, 14(28), 10015-10021.
[http://dx.doi.org/10.1039/c2cp40975e] [PMID: 22706523]
[102]
Brunella, V.; Jadhav, S.A.; Miletto, I.; Berlier, G.; Ugazio, E.; Sapino, S.; Scalarone, D. Hybrid drug carriers with temperature-controlled on–off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles. React. Funct. Polym., 2016, 98, 31-37.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2015.11.006]
[103]
Medintz, I.L.; Clapp, A.R.; Mattoussi, H.; Goldman, E.R.; Fisher, B.; Mauro, J.M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater., 2003, 2(9), 630-638.
[http://dx.doi.org/10.1038/nmat961] [PMID: 12942071]
[104]
Li, M.; Luo, Z.; Zhao, Y. Self-assembled hybrid nanostructures: Versatile multifunctional nanoplatforms for cancer diagnosis and thera-py. Chem. Mater., 2018, 30(1), 25-53.
[http://dx.doi.org/10.1021/acs.chemmater.7b03924]
[105]
Yang, J.; Yang, Y.W. Metal–organic frameworks for biomedical applications. Small, 2020, 16(10), 1906846.
[http://dx.doi.org/10.1002/smll.201906846] [PMID: 32026590]
[106]
Dey, C.; Kundu, T.; Biswal, B.P.; Mallick, A.; Banerjee, R. Crystalline metal-organic frameworks (MOFs): Synthesis, structure and func-tion. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2014, 70(1), 3-10.
[http://dx.doi.org/10.1107/S2052520613029557] [PMID: 24441122]
[107]
Du, L.; Chen, W.; Zhu, P.; Tian, Y.; Chen, Y.; Wu, C. Applications of functional metal‐organic frameworks in biosensors. Biotechnol. J., 2021, 16(2), 1900424.
[http://dx.doi.org/10.1002/biot.201900424] [PMID: 32271998]
[108]
Abdelhamid, H.N.; Mathew, A.P. Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord. Chem. Rev., 2022, 451, 214263.
[http://dx.doi.org/10.1016/j.ccr.2021.214263]
[109]
Abdelhamid, H.N.; Georgouvelas, D.; Edlund, U.; Mathew, A.P. CelloZIFPaper: Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing. Chem. Eng. J., 2022, 446, 136614.
[http://dx.doi.org/10.1016/j.cej.2022.136614]
[110]
Wang, F.; Chen, L.; Liu, D.; Ma, W.; Dramou, P.; He, H. Nanozymes based on metal-organic frameworks: Construction and prospects. Trends Analyt. Chem., 2020, 133, 116080.
[http://dx.doi.org/10.1016/j.trac.2020.116080]
[111]
Tanaka, T.; Matsunaga, T. Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles. Biosens. Bioelectron., 2001, 16(9-12), 1089-1094.
[http://dx.doi.org/10.1016/S0956-5663(01)00187-7] [PMID: 11679293]
[112]
Mallia, A.K.; Hermanson, G.T.; Krohn, R.I.; Fujimoto, E.K.; Smith, P.K. Preparation and use of a boronic acid affinity support for separa-tion and quantitation of glycosylated hemoglobins. Anal. Lett., 1981, 14(8), 649-661.
[http://dx.doi.org/10.1080/00032718108055476]
[113]
Yang, J.K.; Lee, H.R.; Hwang, I.J.; Kim, H.I.; Yim, D.; Kim, J-H. Fluorescent 2D WS 2 nanosheets bearing chemical affinity elements for the recognition of glycated hemoglobin. Adv. Healthc. Mater., 2018, 7(14), 1701496.
[http://dx.doi.org/10.1002/adhm.201701496]
[114]
Çalışır, M.; Bakhshpour, M.; Yavuz, H.; Denizli, A. HbA1c detection via high-sensitive boronate based surface plasmon resonance sen-sor. Sens. Actuators B Chem., 2020, 306, 127561.
[http://dx.doi.org/10.1016/j.snb.2019.127561]
[115]
Thea, R.; Onna, D.; Kreuzer, M.P.; Hamer, M. Label-free nanostructured sensor for the simple determination of glycosylated hemoglobin (HbA1c). Sens. Actuators B Chem., 2019, 297, 126722.
[http://dx.doi.org/10.1016/j.snb.2019.126722]
[116]
Jo, E.J.; Mun, H.; Kim, M.G. Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Anal. Chem., 2016, 88(5), 2742-2746.
[http://dx.doi.org/10.1021/acs.analchem.5b04255] [PMID: 26836651]
[117]
Ang, C.; Lou, D.; Hu, L.; Chen, W.; Zhu, Y.; Guo, Z.; Gu, N.; Zhang, Y. A rapid test strip for diagnosing glycosylated hemoglobin (HbA1c) based on fluorescent affinity immunochromatography. Anal. Sci., 2018, 34(10), 1117-1123.
[http://dx.doi.org/10.2116/analsci.18P135] [PMID: 29863029]
[118]
Zhao, H.; Qiu, X.; Su, E.; Huang, L.; Zai, Y.; Liu, Y.; Chen, H.; Wang, Z.; Chen, Z.; Li, S.; Jin, L.; Deng, Y.; He, N. Multiple chemilumi-nescence immunoassay detection of the concentration ratio of glycosylated hemoglobin A1c to total hemoglobin in whole blood samples. Anal. Chim. Acta, 2022, 1192, 339379.
[http://dx.doi.org/10.1016/j.aca.2021.339379] [PMID: 35057955]
[119]
Chopra, A.; Tuteja, S.; Sachdeva, N.; Bhasin, K.K.; Bhalla, V.; Suri, C.R. CdTe nanobioprobe based optoelectrochemical immunodetection of diabetic marker HbA1c. Biosens. Bioelectron., 2013, 44, 132-135.
[http://dx.doi.org/10.1016/j.bios.2013.01.018] [PMID: 23416314]
[120]
Ang, S.H.; Yu, C.Y.; Ang, G.Y.; Chan, Y.Y.; Alias, Y.; Khor, S.M. A colloidal gold-based lateral flow immunoassay for direct determina-tion of haemoglobin A1c in whole blood. Anal. Methods, 2015, 7(9), 3972-3980.
[http://dx.doi.org/10.1039/C5AY00518C]
[121]
Ang, S.H.; Thevarajah, T.M.; Woi, P.M.; Alias, Y.; Khor, S.M. A lateral flow immunosensor for direct, sensitive, and highly selective detection of hemoglobin A1c in whole blood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1015-1016, 157-165.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.059] [PMID: 26927875]
[122]
Ang, S.H.; Rambeli, M.; Thevarajah, T.M.; Alias, Y.B.; Khor, S.M. Quantitative, single-step dual measurement of hemoglobin A1c and total hemoglobin in human whole blood using a gold sandwich immunochromatographic assay for personalized medicine. Biosens. Bioelectron., 2016, 78, 187-193.
[http://dx.doi.org/10.1016/j.bios.2015.11.045] [PMID: 26606311]
[123]
Srivastava, S.K.; Grüner, C.; Hirsch, D.; Rauschenbach, B.; Abdulhalim, I. Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt. Express, 2017, 25(5), 4761-4772.
[http://dx.doi.org/10.1364/OE.25.004761] [PMID: 28380745]
[124]
Manca, L.; Masala, B. Disorders of the synthesis of human fetal hemoglobin. IUBMB Life, 2008, 60(2), 94-111.
[http://dx.doi.org/10.1002/iub.4] [PMID: 18379999]
[125]
Li, J.; Chang, K.W.; Wang, C.H.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens. Bioelectron., 2016, 79, 887-893.
[http://dx.doi.org/10.1016/j.bios.2016.01.029] [PMID: 26797251]
[126]
Chang, K.W.; Li, J.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. An integrated microfluidic system for measurement of glycated hemoglobin Levels by using an aptamer–antibody assay on magnetic beads. Biosens. Bioelectron., 2015, 68, 397-403.
[http://dx.doi.org/10.1016/j.bios.2015.01.027] [PMID: 25618372]
[127]
Seo, H.B.; Gu, M.B. Aptamer-based sandwich-type biosensors. J. Biol. Eng., 2017, 11(1), 11.
[http://dx.doi.org/10.1186/s13036-017-0054-7]
[128]
Singh, V.; Nerimetla, R.; Yang, M.; Krishnan, S. Magnetite-quantum dot immunoarray for plasmon-coupled-fluorescence imaging of blood insulin and glycated hemoglobin. ACS Sens., 2017, 2(7), 909-915.
[http://dx.doi.org/10.1021/acssensors.7b00124] [PMID: 28750536]
[129]
Hu, P.; Wu, X.; Hu, S.; Tang, Z.; Dai, G.; Liu, Y. Upconversion nanoparticle arrays for detecting glycated hemoglobin with high sensitivity and good reusability. RSC Advances, 2016, 6(104), 102226-102230.
[http://dx.doi.org/10.1039/C6RA20642E]
[130]
Syamala Kiran, M.; Itoh, T.; Yoshida, K.; Kawashima, N.; Biju, V.; Ishikawa, M. Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy. Anal. Chem., 2010, 82(4), 1342-1348.
[http://dx.doi.org/10.1021/ac902364h] [PMID: 20095562]
[131]
Almusharraf, A.Y.; Eissa, S.; Zourob, M. Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Mikrochim. Acta, 2018, 185(5), 256.
[http://dx.doi.org/10.1007/s00604-018-2789-3] [PMID: 29675559]
[132]
Kim, D.M.; Shim, Y.B. Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. Anal. Chem., 2013, 85(13), 6536-6543.
[http://dx.doi.org/10.1021/ac401411y] [PMID: 23772545]
[133]
Liu, Y.; Li, X.; Chen, J.; Yuan, C. Micro/nano electrode array sensors: Advances in fabrication and emerging applications in bioanalysis. Front Chem., 2020, 8, 573865.
[http://dx.doi.org/10.3389/fchem.2020.573865] [PMID: 33324609]
[134]
Moon, J.M.; Kim, D.M.; Kim, M.H.; Han, J.Y.; Jung, D.K.; Shim, Y.B. A disposable amperometric dual-sensor for the detection of hemo-globin and glycated hemoglobin in a finger prick blood sample. Biosens. Bioelectron., 2017, 91, 128-135.
[http://dx.doi.org/10.1016/j.bios.2016.12.038] [PMID: 28006679]
[135]
Thiruppathi, M.; Lee, J.F.; Chen, C.C.; Ho, J.A. A disposable electrochemical sensor designed to estimate glycated hemoglobin (HbA1c) level in whole blood. Sens. Actuators B Chem., 2021, 329, 129119.
[http://dx.doi.org/10.1016/j.snb.2020.129119]
[136]
Jain, U.; Gupta, S.; Chauhan, N. Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites. Int. J. Biol. Macromol., 2017, 101, 896-903.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.127] [PMID: 28365286]
[137]
Jain, U.; Singh, A.; Kuchhal, N.K.; Chauhan, N. Glycated hemoglobin biosensing integration formed on Au nanoparticle-dotted tubular TiO2 nanoarray. Anal. Chim. Acta, 2016, 945, 67-74.
[http://dx.doi.org/10.1016/j.aca.2016.09.026] [PMID: 27968717]
[138]
Liu, G.; Iyengar, S.G.; Gooding, J.J. An amperometric immunosensor based on a gold nanoparticle-diazonium salt modified sensing inter-face for the detection of HbA1c in human blood. Electroanalysis, 2013, 25(4), 881-887.
[http://dx.doi.org/10.1002/elan.201200333]
[139]
Eissa, S.; Zourob, M. Aptamer- based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci. Rep., 2017, 7(1), 1016.
[http://dx.doi.org/10.1038/s41598-017-01226-0] [PMID: 28432344]
[140]
Pandey, I.; Tiwari, J.D. A novel dual imprinted conducting nanocubes based flexible sensor for simultaneous detection of hemoglobin and glycated haemoglobin in gestational diabetes mellitus patients. Sens. Actuators B Chem., 2019, 285, 470-478.
[http://dx.doi.org/10.1016/j.snb.2019.01.093]
[141]
Mozammal Hossain, M.D.; Moon, J.M.; Gurudatt, N.G.; Park, D.S.; Choi, C.S.; Shim, Y.B. Separation detection of hemoglobin and gly-cated hemoglobin fractions in blood using the electrochemical microfluidic channel with a conductive polymer composite sensor. Biosens. Bioelectron., 2019, 142, 111515.
[http://dx.doi.org/10.1016/j.bios.2019.111515] [PMID: 31325673]
[142]
Liu, S.; Wollenberger, U.; Katterle, M.; Scheller, F.W. Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin. Sens. Actuators B Chem., 2006, 113(2), 623-629.
[http://dx.doi.org/10.1016/j.snb.2005.07.011]
[143]
Song, S.Y.; Han, Y.D.; Park, Y.M.; Jeong, C.Y.; Yang, Y.J.; Kim, M.S.; Ku, Y.; Yoon, H.C. Bioelectrocatalytic detection of glycated hemo-globin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface. Biosens. Bioelectron., 2012, 35(1), 355-362.
[http://dx.doi.org/10.1016/j.bios.2012.03.017] [PMID: 22465449]
[144]
Wu, X.; Li, Z.; Chen, X.X.; Fossey, J.S.; James, T.D.; Jiang, Y.B. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem. Soc. Rev., 2013, 42(20), 8032-8048.
[http://dx.doi.org/10.1039/c3cs60148j] [PMID: 23860576]
[145]
Wright, A.T.; Zhong, Z.; Anslyn, E.V. A functional assay for heparin in serum using a designed synthetic receptor. Angew. Chem. Int. Ed., 2005, 44(35), 5679-5682.
[http://dx.doi.org/10.1002/anie.200501437] [PMID: 16086350]
[146]
Wang, J.Y.; Chou, T.C.; Chen, L.C.; Ho, K.C. Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosens. Bioelectron., 2015, 63, 317-324.
[http://dx.doi.org/10.1016/j.bios.2014.07.058] [PMID: 25113050]
[147]
Ferri, S.; Sode, K. Biomolecular engineering of biosensing molecules —the challenges in creating sensing molecules for glycated protein biosensing—. Electrochemistry (Tokyo), 2012, 80(5), 293-298.
[http://dx.doi.org/10.5796/electrochemistry.80.293]
[148]
Zhao, Q.; Tang, S.; Fang, C.; Tu, Y.F. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin. Anal. Chim. Acta, 2016, 936, 83-90.
[http://dx.doi.org/10.1016/j.aca.2016.07.015] [PMID: 27566342]
[149]
Ma, H.; Ó’Fágáin, C.; O’Kennedy, R. Antibody stability: A key to performance - Analysis, influences and improvement. Biochimie, 2020, 177, 213-225.
[http://dx.doi.org/10.1016/j.biochi.2020.08.019] [PMID: 32891698]
[150]
Liu, G.; Iyengar, S.G.; Gooding, J.J. An electrochemical impedance immunosensor based on gold nanoparticle-modified electrodes for the detection of HbA1c in human blood. Electroanalysis, 2012, 24(7), 1509-1516.
[http://dx.doi.org/10.1002/elan.201200233]
[151]
Wang, T.; Chen, C.; Larcher, L.M.; Barrero, R.A.; Veedu, R.N. Three decades of nucleic acid aptamer technologies: Lessons learned, pro-gress and opportunities on aptamer development. Biotechnol. Adv., 2019, 37(1), 28-50.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.001] [PMID: 30408510]
[152]
Zhang, P.; Zhang, Y.; Xiong, X.; Lu, Y.; Jia, N. A sensitive electrochemiluminescence immunoassay for glycosylated hemoglobin based on Ru(bpy)32+ encapsulated mesoporous polydopamine nanoparticles. Sens. Actuators B Chem., 2020, 321, 128626.
[http://dx.doi.org/10.1016/j.snb.2020.128626]
[153]
Anand, A.; Chen, C.Y.; Chen, T.H.; Liu, Y.C.; Sheu, S.Y.; Chen, Y.T. Detecting glycated hemoglobin in human blood samples using a transistor-based nanoelectronic aptasensor. Nano Today, 2021, 41, 101294.
[http://dx.doi.org/10.1016/j.nantod.2021.101294]
[154]
Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4), 507-514.
[http://dx.doi.org/10.1016/S0008-6223(00)00155-X]
[155]
Shahbazmohammadi, H.; Sardari, S.; Omidinia, E. An amperometric biosensor for specific detection of glycated hemoglobin based on recombinant engineered fructosyl peptide oxidase. Int. J. Biol. Macromol., 2020, 142, 855-865.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.025] [PMID: 31622711]
[156]
Ahmadi, A.; Khoshfetrat, S.M.; Kabiri, S.; Dorraji, P.S.; Larijani, B.; Omidfar, K. Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe3O4 nanosheet composites decorated with Au nanoclusters. Mikrochim. Acta, 2021, 188(9), 296.
[http://dx.doi.org/10.1007/s00604-021-04959-y] [PMID: 34401972]
[157]
Hirst, J.A.; McLellan, J.H.; Price, C.P.; English, E.; Feakins, B.G.; Stevens, R.J.; Farmer, A.J. Performance of point-of-care HbA1c test devices: Implications for use in clinical practice – a systematic review and meta-analysis. Clin. Chem. Lab. Med. (CCLM), 2017, 55(2), 167-180.
[http://dx.doi.org/10.1515/cclm-2016-0303] [PMID: 27658148]
[158]
Global Industry Analysts Inc. Global diabetes diagnostics market to reach $42.4 Billion by 2026 Available from: https://www.prnewswire.com/news-releases/global-diabetes-diagnostics-market-toreach-42-4-billion-by-2026--301507667.html (Accessed on: Apr 1, 2022).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy