Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Wound Healing: An Overview of Wound Dressings on Health Care

Author(s): Mona Sadeghi-Aghbash, Mostafa Rahimnejad*, Hassan Adeli and Farideh Feizi

Volume 24, Issue 9, 2023

Published on: 07 October, 2022

Page: [1079 - 1093] Pages: 15

DOI: 10.2174/1389201023666220913153725

Price: $65

Abstract

Chronic wound healing is a time-consuming and complicated process. Severe risk for wound healing that can be life-threatening is bacterial invasion and wound during the healing process. Therefore, it is necessary to use a sui barrier to create a controlled environment for wound healing. Various wound dressings such as hydrocolloids, hydrogels, sponges, foams, films, and micro and nanofibers have been explored in recent decades. High surface-to-volume ratio, high similarity to the biological structure of the extracellular matrix, high porosity and very small pore size are some advantages of nanofibers that have become potential candidates for wound healing applications. Different methods are used to fabricate nanofibers like drawing-processing, template synthesis, self-assembly, phase separation, force-spinning and electrospinning. Electrospinning is the most desirable method due to the possibility of producing independent, accessible and controllable nanofibers. The fiberbased wound dressings and their manufacturing methods have been extensively discussed.

Keywords: Wound, wound dressing, nanofibers, electrospinning, natural polymers, synthetic polymers.

Next »
Graphical Abstract
[1]
Chen, S.; Cui, S.; Hu, J.; Zhou, Y.; Liu, Y. Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydr. Polym., 2017, 174, 591-600.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.096] [PMID: 28821109]
[2]
Chaudhari, A.; Vig, K.; Baganizi, D.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S.; Pillai, S. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci., 2016, 17(12), 1974.
[http://dx.doi.org/10.3390/ijms17121974] [PMID: 27898014]
[3]
Ambekar, R.S.; Kandasubramanian, B. Advancements in nanofibers for wound dressing: A review. Eur. Polym. J., 2019, 117, 304-336.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.020]
[4]
Yildirimer, L.; Thanh, N.T.K.; Seifalian, A.M. Skin regeneration scaffolds: A multimodal bottom-up approach. Trends Biotechnol., 2012, 30(12), 638-648.
[http://dx.doi.org/10.1016/j.tibtech.2012.08.004] [PMID: 22981509]
[5]
Ghaderi, R. Efficacy of epiglue, suture, honey and animal oil in accelerating healing of full thickness wound of skin in mice. J. Invest. Dermatol., 2005, 125.
[6]
Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[7]
Grazul-Bilska, A.T.; Johnson, M.L.; Bilski, J.J.; Redmer, D.A.; Reynolds, L.P.; Abdullah, A.; Abdullah, K.M. Wound healing: The role of growth factors. Med. Actual., 2003, 39(10), 787-800.
[http://dx.doi.org/10.1358/dot.2003.39.10.799472] [PMID: 14668934]
[8]
Afsharian, Y.P.; Rahimnejad, M. Bioactive electrospun scaffolds for wound healing applications: A comprehensive review. Polym. Test., 2020, 93106952
[9]
Mandla, S.; Davenport Huyer, L.; Radisic, M. Review: Multimodal bioactive material approaches for wound healing. APL Bioeng., 2018, 2(2)021503
[http://dx.doi.org/10.1063/1.5026773] [PMID: 31069297]
[10]
Morgado, P.I.; Aguiar-Ricardo, A.; Correia, I.J. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J. Membr. Sci., 2015, 490, 139-151.
[http://dx.doi.org/10.1016/j.memsci.2015.04.064]
[11]
Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; Yue, K.; Swieszkowski, W.; Memic, A.; Tamayol, A.; Khademhosseini, A. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev., 2018, 127, 138-166.
[http://dx.doi.org/10.1016/j.addr.2018.04.008] [PMID: 29626550]
[12]
Guo, S.; DiPietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[13]
Gizaw, M.; Thompson, J.; Faglie, A.; Lee, S.Y.; Neuenschwander, P.; Chou, S.F. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering, 2018, 5(1), 9.
[http://dx.doi.org/10.3390/bioengineering5010009] [PMID: 29382065]
[14]
Gupta, B.; Agarwal, R.; Alam, M. Textile-based smart wound dressings. Indian J. Fibre Text. Res., 2010, 35(2), 174-187.
[15]
Rezvani Ghomi, E.; Khalili, S.; Nouri Khorasani, S.; Esmaeely Neisiany, R.; Ramakrishna, S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci., 2019, 136(27), 47738.
[http://dx.doi.org/10.1002/app.47738]
[16]
Jones, A.M.; San Miguel, L. Are modern wound dressings a clinical and cost-effective alternative to the use of gauze? J. Wound Care, 2006, 15(2), 65-69.
[http://dx.doi.org/10.12968/jowc.2006.15.2.26886] [PMID: 16521594]
[17]
Dumville, J.C.; O’Meara, S.; Deshpande, S.; Speak, K. Hydrogel dressings for healing diabetic foot ulcers. Cochrane Database Syst. Rev., 2013, (7)CD009101
[http://dx.doi.org/10.1002/14651858.CD009101.pub3]
[18]
Fletcher, J.; Moore, Z.; Anderson, I.; Matsuzaki, K. Pressure ulcers and hydrocolloids. Int. Wound J., 2011, 2(4), 1-6.
[19]
Liu, X.; Nielsen, L.H.; Kłodzińska, S.N.; Nielsen, H.M.; Qu, H.; Christensen, L.P.; Rantanen, J.; Yang, M. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur. J. Pharm. Biopharm., 2018, 123, 42-49.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.004] [PMID: 29129734]
[20]
Sweeney, I.R.; Miraftab, M.; Collyer, G. A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int. Wound J., 2012, 9(6), 601-612.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00923.x] [PMID: 22248337]
[21]
Thomas, S. A comparative study of the properties of twelve hydrocolloid dressings. World wide wounds; , 1997. Available from: http://www.worldwidewounds.com/1997/july/Thomas-Hydronet/hydronet.html
[22]
Eaglstein, W.H. Moist wound healing with occlusive dressings: A clinical focus. Dermatol. Surg., 2001, 27(2), 175-182.
[http://dx.doi.org/10.1097/00042728-200102000-00016] [PMID: 11207694]
[23]
Juris, S.; Mueller, A.; Smith, B.; Johnston, S.; Walker, R.; Kross, R. Biodegradable polysaccharide gels for skin scaffolds. J. Biomater. Nanobiotechnol., 2011, 2(3), 216-225.
[http://dx.doi.org/10.4236/jbnb.2011.23027]
[24]
Khorasani, M.T.; Joorabloo, A.; Adeli, H.; Mansoori-Moghadam, Z.; Moghaddam, A. Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohydr. Polym., 2019, 207, 542-554.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.021] [PMID: 30600038]
[25]
Dong, Y.; Hassan, W.U.; Kennedy, R.; Greiser, U.; Pandit, A.; Garcia, Y.; Wang, W. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater., 2014, 10(5), 2076-2085.
[http://dx.doi.org/10.1016/j.actbio.2013.12.045] [PMID: 24389319]
[26]
Khorasani, M.T.; Joorabloo, A.; Adeli, H.; Milan, P.B.; Amoupour, M. Enhanced antimicrobial and full-thickness wound healing efficiency of hydrogels loaded with heparinized ZnO nanoparticles: In vitro and in vivo evaluation. Int. J. Biol. Macromol., 2021, 166, 200-212.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.142] [PMID: 33190822]
[27]
Joorabloo, A.; Khorasani, M.T.; Adeli, H.; Mansoori-Moghadam, Z.; Moghaddam, A. Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J. Ind. Eng. Chem., 2019, 70, 253-263.
[http://dx.doi.org/10.1016/j.jiec.2018.10.022]
[28]
Stashak, T.S.; Farstvedt, E.; Othic, A. Update on wound dressings: Indications and best use. Clin. Teach., 2004, 3(2), 148-163.
[29]
Morgan, D. Wounds-What should a dressing formulary include. Hosp. Pharm., 2019, 9(9), 261-266.
[30]
Davies, P.; Rippon, M. Comparison of foam and hydrocolloid dressings in the management of wounds: A review of the published literature. World Wide Wounds. 2010. Available from: http://www.worldwidewounds.com/2010/July/DaviesRippon/DaviesRippon.html
[31]
Ramos-e-Silva, M.; Ribeiro de Castro, M.C. New dressings, including tissue-engineered living skin. Clin. Dermatol., 2002, 20(6), 715-723.
[http://dx.doi.org/10.1016/S0738-081X(02)00298-5] [PMID: 12490366]
[32]
Dinah, F.; Adhikari, A. Gauze packing of open surgical wounds: Empirical or evidence-based practice? Ann. R. Coll. Surg. Engl., 2006, 88(1), 33-36.
[http://dx.doi.org/10.1308/003588406X83014] [PMID: 16460637]
[33]
Daunton, C.; Kothari, S.; Smith, L.; Steele, D. A history of materials and practices for wound management. Wound Pract. Res., 2012, 20(4), 174.
[34]
Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[35]
Raghavan, B.; Soto, H.; Lozano, K. Fabrication of melt spun polypropylene nanofibers by forcespinning. J. Eng. Fibers Fabrics, 2013, 8(1)
[http://dx.doi.org/10.1177/155892501300800106]
[36]
Tehrani, N.; Faridi-Majidi, R.; Attar, H.; Rezayat, M. Burn-dressing materials with antibacterial activity from electrospun chitosan nanofiber mats containing silver sulfadiazine. Proceedings of the 4th International Conference on Nanostructure, Kish Island, Iran2012.
[37]
Abd Razak, S.I.; Wahab, I.F.; Fadil, F.; Dahli, F.N.; Md Khudzari, A.Z.; Adeli, H. A review of electrospun conductive polyaniline based nanofiber composites and blends: Processing features, applications, and future directions. Adv. Mater. Sci. Eng., 2015, 2015356286
[http://dx.doi.org/10.1155/2015/356286]
[38]
Ramakrishna, S.; Kazutoshi, F.; Wee-Eong, T.; Teik-Cheng, L. An introduction to electrospinning and nanofibers; World Scientific, Publishing Ltd: Singapore, 2005, p. 396.
[http://dx.doi.org/10.1142/5894]
[39]
Neo, Y.P.; Ray, S.; Easteal, A.J.; Nikolaidis, M.G.; Quek, S.Y. Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. J. Food Eng., 2012, 109(4), 645-651.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.11.032]
[40]
Shenoy, S.L.; Bates, W.D.; Frisch, H.L.; Wnek, G.E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer–polymer interaction limit. Polymer, 2005, 46(10), 3372-3384.
[http://dx.doi.org/10.1016/j.polymer.2005.03.011]
[41]
Megelski, S.; Stephens, J.S.; Chase, D.B.; Rabolt, J.F. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 2002, 35(22), 8456-8466.
[http://dx.doi.org/10.1021/ma020444a]
[42]
Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.S.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16), 4403-4412.
[http://dx.doi.org/10.1016/S0032-3861(02)00275-6]
[43]
Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2), 232-238.
[http://dx.doi.org/10.1021/bm015533u] [PMID: 11888306]
[44]
Son, W.K.; Youk, J.H.; Lee, T.S.; Park, W.H. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer, 2004, 45(9), 2959-2966.
[45]
Wang, X.; Lin, T. Needleless electrospinning of nanofibers: Technology and applications; Jenny Stanford Publishing: Pan Stanford, NY, 2013, p. 204.
[http://dx.doi.org/10.1201/b15489]
[46]
Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer , 1999, 40(16), 4585-4592.
[http://dx.doi.org/10.1016/S0032-3861(99)00068-3]
[47]
Zhao, S.; Wu, X.; Wang, L.; Huang, Y. Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. J. Appl. Polym. Sci., 2004, 91(1), 242-246.
[http://dx.doi.org/10.1002/app.13196]
[48]
Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 2018, 11(8), 1165-1188.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.015]
[49]
Andrady, A.L. Science and technology of polymer nanofibers; John Wiley & Sons: Hoboke, NJ, 2008, pp. 1-403.
[http://dx.doi.org/10.1002/9780470229842]
[50]
Yuan, X.; Zhang, Y.; Dong, C.; Sheng, J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int., 2004, 53(11), 1704-1710.
[http://dx.doi.org/10.1002/pi.1538]
[51]
Casper, C.L.; Stephens, J.S.; Tassi, N.G.; Chase, D.B.; Rabolt, J.F. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules, 2004, 37(2), 573-578.
[http://dx.doi.org/10.1021/ma0351975]
[52]
Kleinman, H.K.; Philp, D.; Hoffman, M.P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol., 2003, 14(5), 526-532.
[http://dx.doi.org/10.1016/j.copbio.2003.08.002] [PMID: 14580584]
[53]
Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J., 2008, 17(S4), 467-479.
[http://dx.doi.org/10.1007/s00586-008-0745-3] [PMID: 19005702]
[54]
Zahedi, P.; Rezaeian, I.; Ranaei-Siadat, S.O.; Jafari, S.H.; Supaphol, P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym. Adv. Technol., 2010, 21(2), 77-95.
[http://dx.doi.org/10.1002/pat.1625]
[55]
Naseri, N.; Algan, C.; Jacobs, V.; John, M.; Oksman, K.; Mathew, A.P. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr. Polym., 2014, 109, 7-15.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.031] [PMID: 24815394]
[56]
Waldrop, J.; Doughty, D. In: Mosby: St Louis, MO, Eds.; Wound healing physiology. Acute and Chronic Wounds: Nursing Management, 2nd ed; London, 2000, pp. 17-80.
[57]
Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer , 2008, 49(26), 5603-5621.
[http://dx.doi.org/10.1016/j.polymer.2008.09.014]
[58]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[59]
Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011, 29(3), 322-337.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[60]
Shi, G.; Cai, Q.; Wang, C.; Lu, N.; Wang, S.; Bei, J. Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid). Polym. Adv. Technol., 2002, 13(3-4), 227-232.
[http://dx.doi.org/10.1002/pat.178]
[61]
Sadeghi-Aghbash, M.; Rahimnejad, M.; Pourali, S.M. Bio-mediated synthesis and characterization of zinc phosphate nanoparticles using Enterobacter aerogenes cells for antibacterial and anticorrosion applications. Curr. Pharm. Biotechnol., 2020, 21(12), 1232-1241.
[http://dx.doi.org/10.2174/1389201021666200506073534] [PMID: 32370712]
[62]
Sadeghi Aqbash, M.; Rahimnejad, M. Effect of zinc phosphate nanoparticles in combination with glass ionomer cements on Streptococcus mutans. J. Maz. Univ. Med. Sci., 2017, 27(153), 39-48.
[63]
Sadeghi-Aghbash, M.; Rahimnejad, M. Zinc phosphate nanoparticles: A review on physical, chemical, and biological synthesis and their applications. Curr. Pharm. Biotechnol., 2022, 23(10), 1228-1244.
[http://dx.doi.org/10.2174/1389201022666211015115753] [PMID: 34779369]
[64]
Da, L.C.; Huang, Y.Z.; Xie, H.Q. Progress in development of bioderived materials for dermal wound healing. Regen. Biomater., 2017, 4(5), 325-334.
[http://dx.doi.org/10.1093/rb/rbx025] [PMID: 29026647]
[65]
Mogoşanu, G.D.; Grumezescu, A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm., 2014, 463(2), 127-136.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.015] [PMID: 24368109]
[66]
Pabjańczyk-Wlazło, E.; Krucińska, I.; Chrzanowski, M.; Szparaga, G.; Chaberska, A.; Kolesińska, B.; Komisarczyk, A.; Boguń, M. Fabrication of pure electrospun materials from hyaluronic acid. Fibres Text. East. Eur., 2017, 25(0), 45-52.
[http://dx.doi.org/10.5604/01.3001.0010.1688]
[67]
Pabjanczyk-Wlazło, E.; Król,, P.; Krucinska, I.; Chrzanowski, M.; Puchalski, M.; Szparaga, G.; Kadłubowski, S.; Bogun, M. Bioactive nanofibrous structures based on hyaluronic acid. Adv. Polym. Technol.,, 2018, 37(6), 1929-1940.
[http://dx.doi.org/10.1002/adv.21851]
[68]
Agarwal, T.; Narayan, R.; Maji, S.; Behera, S.; Kulanthaivel, S.; Maiti, T.K.; Banerjee, I.; Pal, K.; Giri, S. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int. J. Biol. Macromol.,, 2016, 93(Pt B), 1499-1506.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.028] [PMID: 27086289]
[69]
Antunes, B.P.; Moreira, A.F.; Gaspar, V.M.; Correia, I.J. Chitosan/arginine–chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr. Polym., 2015, 130, 104-112.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.072] [PMID: 26076606]
[70]
Baranov, I.A.; Dzhons, D.Y.; Budruev, A.V.; Mochalova, A.E.; Smirnova, L.A.; Koryagin, A.S. Long-acting bioactive composition based on chitosan and taxifolin. Inorg. Mater.: Appl. Res., 2015, 6(5), 479-484.
[http://dx.doi.org/10.1134/S2075113315050020]
[71]
Dragostin, O.M.; Samal, S.K.; Dash, M.; Lupascu, F.; Pânzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym., 2016, 141, 28-40.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.078] [PMID: 26876993]
[72]
Adeli, H.; Khorasani, M.T.; Parvazinia, M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol., 2019, 122, 238-254.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.115] [PMID: 30342125]
[73]
Wongkanya, R.; Chuysinuan, P.; Pengsuk, C.; Techasakul, S.; Lirdprapamongkol, K.; Svasti, J.; Nooeaid, P. Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. J. Sci. Adv. Mater. Devices, 2017, 2(3), 309-316.
[http://dx.doi.org/10.1016/j.jsamd.2017.05.010]
[74]
De Silva, R.; Mantilaka, M.; Goh, K.; Ratnayake, S.; Amaratunga, G.; de Silva, K. Magnesium oxide nanoparticles reinforced electrospun alginate-based nanofibrous scaffolds with improved physical properties. Int. J. Biomater., 2017, 20171391298
[http://dx.doi.org/10.1155/2017/1391298]
[75]
Rezvanian, M.; Amin, M.C.I.M.; Ng, S.F. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr. Polym., 2016, 137, 295-304.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.091] [PMID: 26686133]
[76]
Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P.D.; Chen, D.; Shi, R.; Zhang, L. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 2014, 35(34), 9395-9405.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.060] [PMID: 25134855]
[77]
Kanokpanont, S.; Damrongsakkul, S.; Ratanavaraporn, J.; Aramwit, P. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int. J. Pharm., 2012, 436(1-2), 141-153.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.046] [PMID: 22771972]
[78]
Wray, L.S.; Hu, X.; Gallego, J.; Georgakoudi, I.; Omenetto, F.G.; Schmidt, D.; Kaplan, D.L. Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 99B(1), 89-101.
[http://dx.doi.org/10.1002/jbm.b.31875] [PMID: 21695778]
[79]
Shen, X.R.; Chen, X.L.; Xie, H.X.; He, Y.; Chen, W.; Luo, Q.; Yuan, W.H.; Tang, X.; Hou, D.Y.; Jiang, D.W.; Wang, Q.R. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing. Mil. Med. Res., 2017, 4(1), 33.
[http://dx.doi.org/10.1186/s40779-017-0143-4] [PMID: 29502521]
[80]
Hall Barrientos, I.J.; Paladino, E.; Szabó, P.; Brozio, S.; Hall, P.J; Oseghale, C.I.; Passarelli, M.K.; Moug, S.J.; Black, R.A.; Wilson, C.G.; Zelkó, R.; Lamprou, D.A. Electrospun collagen-based nanofibres: A sustainable material for improved antibiotic utilisation in tissue engineering applications. Int. J. Pharm., 2017, 531(1), 67-79.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.071] [PMID: 28807566]
[81]
Pilehvar-Soltanahmadi, Y.; Akbarzadeh, A.; Moazzez-Lalaklo, N.; Zarghami, N. An update on clinical applications of electrospun nanofibers for skin bioengineering. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1350-1364.
[http://dx.doi.org/10.3109/21691401.2015.1036999] [PMID: 25939744]
[82]
Guo, B.L.; Ma, P.X. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem., 2014, 57(4), 490-500.
[http://dx.doi.org/10.1007/s11426-014-5086-y] [PMID: 25729390]
[83]
Toncheva, A.; Spasova, M.; Paneva, D.; Manolova, N.; Rashkov, I. Polylactide (PLA)-based electrospun fibrous materials containing ionic drugs as wound dressing materials: A review. Int. J. Polym. Mater., 2014, 63(13), 657-671.
[http://dx.doi.org/10.1080/00914037.2013.854240]
[84]
Wang, C.; Zhang, L.; Li, S.; Zhang, M.; Wang, T.; Li, L.; Wang, C.; Su, Z. A designed synthesis of multifunctional Fe3O4 @carbon/zinc phosphate nanoparticles for simultaneous imaging and synergic chemo-photothermal cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(35), 5809-5813.
[http://dx.doi.org/10.1039/C6TB01669C] [PMID: 32263753]
[85]
Zhao, W.; Li, J.; Jin, K.; Liu, W.; Qiu, X.; Li, C. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater. Sci. Eng. C, 2016, 59, 1181-1194.
[http://dx.doi.org/10.1016/j.msec.2015.11.026]
[86]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[87]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[http://dx.doi.org/10.3390/ijms15033640] [PMID: 24590126]
[88]
Sant, S.; Hwang, C.M.; Lee, S.H.; Khademhosseini, A. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J. Tissue Eng. Regen. Med., 2011, 5(4), 283-291.
[http://dx.doi.org/10.1002/term.313] [PMID: 20669260]
[89]
Kalakonda, P.; Aldhahri, M.A.; Abdel-wahab, M.S.; Tamayol, A.; Moghaddam, K.M.; Ben Rached, F.; Pain, A.; Khademhosseini, A.; Memic, A.; Chaieb, S. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties. RSC Adv.,, 2017, 7(55), 34331-34338.
[http://dx.doi.org/10.1039/C6RA25151J]
[90]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[91]
Abu Lila, A.S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Control. Release, 2013, 172(1), 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.026] [PMID: 23933235]
[92]
Gibas, I.; Janik, H. Review: Synthetic polymer hydrogels forbiomedical application. Chemist. Chem. Technol., 2010, 4(4), 297-304.
[http://dx.doi.org/10.23939/chcht04.04.297]
[93]
da Silva, J. únior, W.F.; de Oliveira Pinheiro, J.G.; Moreira, C.D.; de Souza, F.J.; de Lima, Á.A. Alternative technologies to improve solubility and stability of poorly water-soluble drugs. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier, 2017; pp. 281-305.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00015-0]
[94]
Gaaz, T.; Sulong, A.; Akhtar, M.; Kadhum, A.; Mohamad, A.; Al-Amiery, A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules, 2015, 20(12), 22833-22847.
[http://dx.doi.org/10.3390/molecules201219884] [PMID: 26703542]
[95]
Belenkaya, B.G.; Sakharova, V.I.; Polevov, V.N. Biodegradable absorbents and methods of preparation; Patents US7858837B2, 2012.
[96]
Kamoun, E.A.; Chen, X.; Mohy Eldin, M.S.; Kenawy, E.R.S. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem., 2015, 8(1), 1-14.
[http://dx.doi.org/10.1016/j.arabjc.2014.07.005]
[97]
Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release, 2014, 185, 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[98]
Vedakumari, W.S.; Ayaz, N.; Karthick, A.S.; Senthil, R.; Sastry, T.P. Quercetin impregnated chitosan–fibrin composite scaffolds as potential wound dressing materials — Fabrication, characterization and in vivo analysis. Eur. J. Pharm. Sci., 2017, 97, 106-112.
[http://dx.doi.org/10.1016/j.ejps.2016.11.012] [PMID: 27864063]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy