Review Article

基于EGFR和蛋白酶体的肿瘤靶向治疗的研究进展

卷 23, 期 15, 2022

发表于: 30 September, 2022

页: [1406 - 1417] 页: 12

弟呕挨: 10.2174/1389450123666220908095121

价格: $65

摘要

背景:癌症是世界范围内最主要的死亡原因。据了解,致癌源主要包括内源性致癌基因的活性、非病毒化合物及其致癌基因的基础部分;酪氨酸激酶活性和蛋白酶体活性是细胞增殖的主要生物标志物。这些生物标记物可作为主要靶标,被认为是调节细胞死亡和细胞周期的信号通信活动的“启动开关”。因此,信号转导抑制剂(配体受体酪氨酸激酶抑制剂)和蛋白酶体抑制剂可以作为一种治疗方式,阻断细胞之间的信号传导作用和蛋白质分解,以诱导细胞凋亡。 目的:本文重点介绍了近年来具有治疗效果的EGFR和基于蛋白组体的抑制剂的专利研究进展。本文就治疗药物及其制备工艺和最终结果的相关专利进行综述。目的:本研究的主要目的是促进癌症治疗的进展和当前的观点。 结论:这些专利中讨论了许多改进EGFR和蛋白酶体抑制剂药代动力学和药效学的策略。此外,长期治疗后对靶向治疗的耐药性可以通过使用各种辅料来克服,这些辅料可以作为一种携带药物的策略。然而,对于具有更好基础和特点的癌症靶向治疗,仍有改进的需要和空间。对癌症治疗的广泛研究可以为未来治疗的进步开辟道路,带来更显著的结果。

关键词: 酪氨酸激酶抑制剂,表皮生长因子受体,生物标志物,靶向治疗,癌症,基因突变。

图形摘要
[1]
Ke X, Shen L. Molecular targeted therapy of cancer: The progress and future prospect. Front Lab Med 2017; 1(2): 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[2]
Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. Int J Mol Sci 2018; 19(11): 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[3]
Keating GM. Afatinib: A review in advanced non-small cell lung cancer. Target Oncol 2016; 11(6): 825-35.
[http://dx.doi.org/10.1007/s11523-016-0465-2] [PMID: 27873136]
[4]
Chen G, Kronenberger P, Teugels E, Umelo IA, De Grève J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: The effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med 2012; 10(1): 28.
[http://dx.doi.org/10.1186/1741-7015-10-28] [PMID: 22436374]
[5]
Astra Zeneca Pharmaceuticals. Treatment of patient with non small cell lung cancer. Gefitinib 206995Orig1s000 2014.
[6]
Fernandez LA, Guillan MG, Murpani D, Martinez MV. Pharmaceutical composition comprising erlotinib hydrochloride. WO Patent 2016082879A1, 2016.
[7]
Agus D. Gefitinib (Iressa) for the treatment of cancer. European Patent 1509230B1, 2009.
[8]
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: Focus on cancer. Int J Nanomedicine 2014; 9: 467-83.
[9]
Goldberg AL, Akopian TN, Kisselev AF, Lee DH, Rohrwild M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 1997; 378(3-4): 131-40.
[PMID: 9165063]
[10]
Dou Q, Zonder J. Overview of proteasome inhibitor-based anti-cancer therapies: Perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 2014; 14(6): 517-36.
[http://dx.doi.org/10.2174/1568009614666140804154511] [PMID: 25092212]
[11]
Usayapant A, Bowman D. Bortezomib formulations. US Patent US8962572B2 2011.
[12]
Patel P, Sehgal A, Patel P. Stable carfilzomib injection. WO Patent, 2015198257, 2015.
[13]
Onyx Pharmaceuticals, Inc.. KYPROLIS® (carfilzomib) for injection, for intravenous use. 202714s025lbl 2012. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202714s025lbl.pdf [cited : 1st March 2022].
[14]
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473-80.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[15]
Kandela I, Chou J, Chow K, et al. Registered report: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Cancer Biol 2015; 4: e06959.
[http://dx.doi.org/10.7554/eLife.06959]
[16]
Chan JM, Zhang L, Tong R, et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci USA 2010; 107(5): 2213-8.
[http://dx.doi.org/10.1073/pnas.0914585107] [PMID: 20133865]
[17]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34.
[http://dx.doi.org/10.1021/ar200054n]
[18]
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147-235.
[http://dx.doi.org/10.1039/C2CS35265F] [PMID: 23238558]
[19]
Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008; 60(8): 876-85.
[http://dx.doi.org/10.1016/j.addr.2007.08.044] [PMID: 18423779]
[20]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[21]
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and immunomodulating multiresponsive nanomaterial for cancer theranostics. Front Chem 2021; 8: 631351.
[http://dx.doi.org/10.3389/fchem.2020.631351]
[22]
Pang J, Gao Z, Zhang L, Wang H, Hu X. Synthesis and characterization of photoresponsive macromolecule for biomedical application. Front Chem 2018; 6: 217.
[http://dx.doi.org/10.3389/fchem.2018.00217] [PMID: 30013963]
[23]
Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 2011; 152(2): 303-9.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.009] [PMID: 21338635]
[24]
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063]
[25]
Yuan J, Hegde PS, Clynes R, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016; 4(1): 3.
[http://dx.doi.org/10.1186/s40425-016-0107-3]
[26]
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10(10): 4557-88.
[http://dx.doi.org/10.7150/thno.38069] [PMID: 32292515]
[27]
Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27(7): 286-98.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[28]
Yao VJ, D’Angelo S, Butler KS, et al. Pasqualini. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240: 267-86.
[29]
Zhu J, Huang H, Dong S, Ge L, Zhang Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014; 4(9): 931-44.
[http://dx.doi.org/10.7150/thno.9663] [PMID: 25057317]
[30]
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol Ther Nucleic Acids 2014; 3: e182.
[http://dx.doi.org/10.1038/mtna.2014.32] [PMID: 25093706]
[31]
Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193]
[32]
Madamsetty VS, Mukherjee A, Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol 2019; 10: 1264.
[http://dx.doi.org/10.3389/fphar.2019.01264] [PMID: 31708785]
[33]
Alonso J, Khurshid H, Devkota J, et al. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys 2016; 119(8): 083904.
[http://dx.doi.org/10.1063/1.4942618]
[34]
Li CX, Zhang Y, Dong X, et al. Artificially reprogrammed macrophages as tumor‐tropic immunosuppression‐resistant biologics to realize therapeutics production and immune activation. Adv Mater 2019; 31(15): 1807211.
[http://dx.doi.org/10.1002/adma.201807211] [PMID: 30803083]
[35]
Grillo R, Gallo J, Stroppa DG, et al. Sub-micrometer magnetic nanocomposites: Insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl Mater Interfaces 2016; 8(39): 25777-87.
[http://dx.doi.org/10.1021/acsami.6b08663] [PMID: 27595772]
[36]
Sun Z, Huang G, Ma Z. Synthesis of theranostic Anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer. J Drug Deliv Sci Technol 2020; 55: 101367.
[http://dx.doi.org/10.1016/j.jddst.2019.101367]
[37]
Yu AYH, Fu RH, Hsu SH, et al. Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer. Materials Today Advances 2021; 12: 100191.
[38]
Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J Control Release 2019; 295: 250-67.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.009] [PMID: 30639691]
[39]
Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2015; 46: 13-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.028]
[40]
Gao F, Zhang J, Fu C, et al. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine 2017; 12: 4147-62.
[http://dx.doi.org/10.2147/IJN.S134148] [PMID: 28615942]
[41]
Colapicchioni V, Palchetti S, Pozzi D, et al. Killing cancer cells using nanotechnology: Novel poly(I:C) loaded liposome-silica hybrid nanoparticles. J Mater Chem B Mater Biol Med 2015; 3(37): 7408-16.
[http://dx.doi.org/10.1039/C5TB01383F] [PMID: 32262767]
[42]
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23): 1706759.
[http://dx.doi.org/10.1002/adma.201706759]
[43]
Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1): 61-8.
[http://dx.doi.org/10.1038/nnano.2012.212] [PMID: 23241654]
[44]
Zhou X, Shi K, Hao Y, et al. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy. Asian J Pharm Sci 2020; 15(1): 26-41.
[http://dx.doi.org/10.1016/j.ajps.2019.06.001]
[45]
Doktorova M, Heberle FA, Eicher B, et al. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nat Protoc 2018; 13(9): 2086-101.
[http://dx.doi.org/10.1038/s41596-018-0033-6] [PMID: 30190552]
[46]
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics 2019; 11(1): 22.
[http://dx.doi.org/10.3390/pharmaceutics11010022]
[47]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861]
[48]
Lamichhane N, Udayakumar T, D’Souza W, et al. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018; 23(2): 288.
[http://dx.doi.org/10.3390/molecules23020288] [PMID: 29385755]
[49]
Morton SW, Lee MJ, Deng ZJ, et al. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal 2014; 7(325): ra44.
[http://dx.doi.org/10.1126/scisignal.2005261] [PMID: 24825919]
[50]
Lee MJ, Ye AS, Gardino AK, et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 2012; 149(4): 780-94.
[http://dx.doi.org/10.1016/j.cell.2012.03.031] [PMID: 22579283]
[51]
Li F, Mei H, Xie X, et al. Aptamer-conjugated chitosan-anchored liposomal complexes for targeted delivery of erlotinib to EGFR-mutated lung cancer cells. AAPS J 2017; 19(3): 814-26.
[http://dx.doi.org/10.1208/s12248-017-0057-9] [PMID: 28233244]
[52]
Li F, Mei H, Gao Y, et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017; 145: 56-71.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.030] [PMID: 28843733]
[53]
Chen Y, Wang J, Wang J, et al. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J Biomed Nanotechnol 2016; 12(4): 656-66.
[http://dx.doi.org/10.1166/jbn.2016.2203] [PMID: 27301192]
[54]
Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv Healthc Mater 2015; 4(18): 2816-21.
[http://dx.doi.org/10.1002/adhm.201500389] [PMID: 26592186]
[55]
Xie L, Tong W, Yu D, Xu J, Li J, Gao C. Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery. J Mater Chem 2012; 22(13): 6053.
[http://dx.doi.org/10.1039/c2jm16831f]
[56]
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2020; 207: 107456.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107456] [PMID: 31863820]
[57]
Le QV, Choi J, Oh YK. Nano delivery systems and cancer immunotherapy. J Pharm Investig 2018; 48(5): 527-39.
[http://dx.doi.org/10.1007/s40005-018-0399-z]
[58]
Le QV, Yang G, Wu Y, Jang HW, Shokouhimehr M, Oh YK. Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian J Pharm Sci 2019; 14(1): 16-29.
[http://dx.doi.org/10.1016/j.ajps.2018.07.003]
[59]
Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med 2016; 57(10): 1487-92.
[http://dx.doi.org/10.2967/jnumed.116.177493]
[60]
Zavaleta C, Ho D, Chung EJ. Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technol 2018; 23(3): 281-93.
[http://dx.doi.org/10.1177/2472630317738699] [PMID: 29115174]
[61]
Kasten BB, Udayakumar N, Leavenworth JW, et al. Current and future imaging methods for evaluating response to immunotherapy in neuro-oncology. Theranostics 2019; 9(17): 5085-104.
[http://dx.doi.org/10.7150/thno.34415] [PMID: 31410203]
[62]
Li S, Liu J, Sun M, Wang J, Wang C, Sun Y. Cell membrane-camouflaged nanocarriers for cancer diagnostic and therapeutic. Front Pharmacol 2020; 11: 24.
[63]
Kang T, Zhu Q, Wei D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017; 11(2): 1397-411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[64]
Wang Y, Huang HY, Yang L, Zhang Z, Ji H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci Rep 2016; 6(1): 25468.
[http://dx.doi.org/10.1038/srep25468] [PMID: 27151505]
[65]
Correia da Silva D, Andrade P, Ribeiro V, Valentao P, Pereira MD. Recent patents on proteasome inhibitors of natural origin. Recent Pat Anticancer Drug Discov 2017; 12(1): 4-15.
[http://dx.doi.org/10.2174/1574892812666161123142037]
[66]
Brisander M, Demirbiker M, Jesson G, Malmsten D. Hybrid nanoparticles of TKIs. US Patent US20140378454A1 2014.
[67]
Bilgicer ZB, Ashley J, Kiziltepe T. Dual-drug loaded liposomal nanoparticles. WO Patent 2017048990A1, 2017.
[68]
Ashley JD, Quinlan CJ, Schroeder VA, et al. Dual carfilzomib and doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther 2016; 15(7): 1452-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0867] [PMID: 27196779]
[69]
Shrawat VK. Rafiuddin, Singh VK, Chaturvedi AK. Crystalline bortezomib process. WO Patent 2014076713 2014.
[70]
Groll M, Berkers CR, Ploegh HL, Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 2006; 14(3): 451-6.
[http://dx.doi.org/10.1016/j.str.2005.11.019] [PMID: 16531229]
[71]
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome complexes and their heterogeneity in colorectal, breast and pancreatic cancers. J Cancer 2021; 12(9): 2472-87.
[http://dx.doi.org/10.7150/jca.52414] [PMID: 33854609]
[72]
Morozov AV, Karpov VL. Proteasomes and several aspects of their heterogeneity relevant to cancer. Front Oncol 2019; 9: 761.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy