Review Article

A Perspective on EGFR and Proteasome-based Targeted Therapy for Cancer

Author(s): Drishti Panjwani, Deepak Mishra, Shruti Patel, Viral Patel, Abhay Dharamsi and Asha Patel*

Volume 23, Issue 15, 2022

Published on: 30 September, 2022

Page: [1406 - 1417] Pages: 12

DOI: 10.2174/1389450123666220908095121

Price: $65

Abstract

Background: Cancer is known to be the most leading cause of death worldwide. It is understood that the sources causing cancer mainly include the activity of endogenous oncogenes, nonviral compounds and the fundamental portion of these oncogenes; the tyrosine kinase activity and proteasome activity are the main biomarkers responsible for cell proliferation. These biomarkers can be used as main targets and are believed to be the ‘prime switches’ for the signal communication activity to regulate cell death and cell cycle. Thus, signal transduction inhibitors (ligandreceptor tyrosine kinase inhibitors) and proteasome inhibitors can be used as a therapeutic modality to block the action of signaling between the cells as well as protein breakdown in order to induce cell apoptosis.

Aims: This article highlights the key points and provides an overview of the recent patents on EGFR and proteosome-based inhibitors having therapeutic efficacy. This review focuses on the patents related to therapeutic agents, their preparation process and the final outcome.

Objective: The main objective of this study is to facilitate the advancement and current perspectives in the treatment of cancer.

Conclusion: There are numerous strategies discussed in these patents to improve the pharmacokinetics and pharmacodynamics of EGFR and proteasome inhibitors. Further, the resistance to targeted therapy after long-term treatment can be overcome by using various excipients that can be used as a strategy to carry the drug. However, there is a need and scope for improving targeted therapeutics for cancer treatment with better fundamentals and characteristics. The widespread research on cancer therapy can create the path for future advancements in therapy with more prominent outcomes.

Keywords: Tyrosine kinase inhibitors, EGFR, biomarker, targeted therapeutic, cancer, genetic mutations.

Graphical Abstract
[1]
Ke X, Shen L. Molecular targeted therapy of cancer: The progress and future prospect. Front Lab Med 2017; 1(2): 69-75.
[http://dx.doi.org/10.1016/j.flm.2017.06.001]
[2]
Yamaoka T, Kusumoto S, Ando K, Ohba M, Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. Int J Mol Sci 2018; 19(11): 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[3]
Keating GM. Afatinib: A review in advanced non-small cell lung cancer. Target Oncol 2016; 11(6): 825-35.
[http://dx.doi.org/10.1007/s11523-016-0465-2] [PMID: 27873136]
[4]
Chen G, Kronenberger P, Teugels E, Umelo IA, De Grève J. Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: The effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med 2012; 10(1): 28.
[http://dx.doi.org/10.1186/1741-7015-10-28] [PMID: 22436374]
[5]
Astra Zeneca Pharmaceuticals. Treatment of patient with non small cell lung cancer. Gefitinib 206995Orig1s000 2014.
[6]
Fernandez LA, Guillan MG, Murpani D, Martinez MV. Pharmaceutical composition comprising erlotinib hydrochloride. WO Patent 2016082879A1, 2016.
[7]
Agus D. Gefitinib (Iressa) for the treatment of cancer. European Patent 1509230B1, 2009.
[8]
Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: Focus on cancer. Int J Nanomedicine 2014; 9: 467-83.
[9]
Goldberg AL, Akopian TN, Kisselev AF, Lee DH, Rohrwild M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol Chem 1997; 378(3-4): 131-40.
[PMID: 9165063]
[10]
Dou Q, Zonder J. Overview of proteasome inhibitor-based anti-cancer therapies: Perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 2014; 14(6): 517-36.
[http://dx.doi.org/10.2174/1568009614666140804154511] [PMID: 25092212]
[11]
Usayapant A, Bowman D. Bortezomib formulations. US Patent US8962572B2 2011.
[12]
Patel P, Sehgal A, Patel P. Stable carfilzomib injection. WO Patent, 2015198257, 2015.
[13]
Onyx Pharmaceuticals, Inc.. KYPROLIS® (carfilzomib) for injection, for intravenous use. 202714s025lbl 2012. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202714s025lbl.pdf [cited : 1st March 2022].
[14]
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473-80.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[15]
Kandela I, Chou J, Chow K, et al. Registered report: Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Cancer Biol 2015; 4: e06959.
[http://dx.doi.org/10.7554/eLife.06959]
[16]
Chan JM, Zhang L, Tong R, et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci USA 2010; 107(5): 2213-8.
[http://dx.doi.org/10.1073/pnas.0914585107] [PMID: 20133865]
[17]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34.
[http://dx.doi.org/10.1021/ar200054n]
[18]
Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42(3): 1147-235.
[http://dx.doi.org/10.1039/C2CS35265F] [PMID: 23238558]
[19]
Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008; 60(8): 876-85.
[http://dx.doi.org/10.1016/j.addr.2007.08.044] [PMID: 18423779]
[20]
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[21]
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and immunomodulating multiresponsive nanomaterial for cancer theranostics. Front Chem 2021; 8: 631351.
[http://dx.doi.org/10.3389/fchem.2020.631351]
[22]
Pang J, Gao Z, Zhang L, Wang H, Hu X. Synthesis and characterization of photoresponsive macromolecule for biomedical application. Front Chem 2018; 6: 217.
[http://dx.doi.org/10.3389/fchem.2018.00217] [PMID: 30013963]
[23]
Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release 2011; 152(2): 303-9.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.009] [PMID: 21338635]
[24]
Lammers T, Kiessling F, Hennink WE, Storm G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J Control Release 2012; 161(2): 175-87.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063]
[25]
Yuan J, Hegde PS, Clynes R, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016; 4(1): 3.
[http://dx.doi.org/10.1186/s40425-016-0107-3]
[26]
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020; 10(10): 4557-88.
[http://dx.doi.org/10.7150/thno.38069] [PMID: 32292515]
[27]
Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27(7): 286-98.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[28]
Yao VJ, D’Angelo S, Butler KS, et al. Pasqualini. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240: 267-86.
[29]
Zhu J, Huang H, Dong S, Ge L, Zhang Y. Progress in aptamer-mediated drug delivery vehicles for cancer targeting and its implications in addressing chemotherapeutic challenges. Theranostics 2014; 4(9): 931-44.
[http://dx.doi.org/10.7150/thno.9663] [PMID: 25057317]
[30]
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol Ther Nucleic Acids 2014; 3: e182.
[http://dx.doi.org/10.1038/mtna.2014.32] [PMID: 25093706]
[31]
Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 2020; 7: 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193]
[32]
Madamsetty VS, Mukherjee A, Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front Pharmacol 2019; 10: 1264.
[http://dx.doi.org/10.3389/fphar.2019.01264] [PMID: 31708785]
[33]
Alonso J, Khurshid H, Devkota J, et al. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys 2016; 119(8): 083904.
[http://dx.doi.org/10.1063/1.4942618]
[34]
Li CX, Zhang Y, Dong X, et al. Artificially reprogrammed macrophages as tumor‐tropic immunosuppression‐resistant biologics to realize therapeutics production and immune activation. Adv Mater 2019; 31(15): 1807211.
[http://dx.doi.org/10.1002/adma.201807211] [PMID: 30803083]
[35]
Grillo R, Gallo J, Stroppa DG, et al. Sub-micrometer magnetic nanocomposites: Insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl Mater Interfaces 2016; 8(39): 25777-87.
[http://dx.doi.org/10.1021/acsami.6b08663] [PMID: 27595772]
[36]
Sun Z, Huang G, Ma Z. Synthesis of theranostic Anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer. J Drug Deliv Sci Technol 2020; 55: 101367.
[http://dx.doi.org/10.1016/j.jddst.2019.101367]
[37]
Yu AYH, Fu RH, Hsu SH, et al. Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer. Materials Today Advances 2021; 12: 100191.
[38]
Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J Control Release 2019; 295: 250-67.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.009] [PMID: 30639691]
[39]
Zhao X, Li F, Li Y, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 2015; 46: 13-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.028]
[40]
Gao F, Zhang J, Fu C, et al. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine 2017; 12: 4147-62.
[http://dx.doi.org/10.2147/IJN.S134148] [PMID: 28615942]
[41]
Colapicchioni V, Palchetti S, Pozzi D, et al. Killing cancer cells using nanotechnology: Novel poly(I:C) loaded liposome-silica hybrid nanoparticles. J Mater Chem B Mater Biol Med 2015; 3(37): 7408-16.
[http://dx.doi.org/10.1039/C5TB01383F] [PMID: 32262767]
[42]
Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater 2018; 30(23): 1706759.
[http://dx.doi.org/10.1002/adma.201706759]
[43]
Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1): 61-8.
[http://dx.doi.org/10.1038/nnano.2012.212] [PMID: 23241654]
[44]
Zhou X, Shi K, Hao Y, et al. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy. Asian J Pharm Sci 2020; 15(1): 26-41.
[http://dx.doi.org/10.1016/j.ajps.2019.06.001]
[45]
Doktorova M, Heberle FA, Eicher B, et al. Preparation of asymmetric phospholipid vesicles for use as cell membrane models. Nat Protoc 2018; 13(9): 2086-101.
[http://dx.doi.org/10.1038/s41596-018-0033-6] [PMID: 30190552]
[46]
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics 2019; 11(1): 22.
[http://dx.doi.org/10.3390/pharmaceutics11010022]
[47]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861]
[48]
Lamichhane N, Udayakumar T, D’Souza W, et al. Liposomes: Clinical applications and potential for image-guided drug delivery. Molecules 2018; 23(2): 288.
[http://dx.doi.org/10.3390/molecules23020288] [PMID: 29385755]
[49]
Morton SW, Lee MJ, Deng ZJ, et al. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal 2014; 7(325): ra44.
[http://dx.doi.org/10.1126/scisignal.2005261] [PMID: 24825919]
[50]
Lee MJ, Ye AS, Gardino AK, et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 2012; 149(4): 780-94.
[http://dx.doi.org/10.1016/j.cell.2012.03.031] [PMID: 22579283]
[51]
Li F, Mei H, Xie X, et al. Aptamer-conjugated chitosan-anchored liposomal complexes for targeted delivery of erlotinib to EGFR-mutated lung cancer cells. AAPS J 2017; 19(3): 814-26.
[http://dx.doi.org/10.1208/s12248-017-0057-9] [PMID: 28233244]
[52]
Li F, Mei H, Gao Y, et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017; 145: 56-71.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.030] [PMID: 28843733]
[53]
Chen Y, Wang J, Wang J, et al. Aptamer functionalized cisplatin-albumin nanoparticles for targeted delivery to epidermal growth factor receptor positive cervical cancer. J Biomed Nanotechnol 2016; 12(4): 656-66.
[http://dx.doi.org/10.1166/jbn.2016.2203] [PMID: 27301192]
[54]
Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv Healthc Mater 2015; 4(18): 2816-21.
[http://dx.doi.org/10.1002/adhm.201500389] [PMID: 26592186]
[55]
Xie L, Tong W, Yu D, Xu J, Li J, Gao C. Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery. J Mater Chem 2012; 22(13): 6053.
[http://dx.doi.org/10.1039/c2jm16831f]
[56]
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2020; 207: 107456.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107456] [PMID: 31863820]
[57]
Le QV, Choi J, Oh YK. Nano delivery systems and cancer immunotherapy. J Pharm Investig 2018; 48(5): 527-39.
[http://dx.doi.org/10.1007/s40005-018-0399-z]
[58]
Le QV, Yang G, Wu Y, Jang HW, Shokouhimehr M, Oh YK. Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian J Pharm Sci 2019; 14(1): 16-29.
[http://dx.doi.org/10.1016/j.ajps.2018.07.003]
[59]
Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med 2016; 57(10): 1487-92.
[http://dx.doi.org/10.2967/jnumed.116.177493]
[60]
Zavaleta C, Ho D, Chung EJ. Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technol 2018; 23(3): 281-93.
[http://dx.doi.org/10.1177/2472630317738699] [PMID: 29115174]
[61]
Kasten BB, Udayakumar N, Leavenworth JW, et al. Current and future imaging methods for evaluating response to immunotherapy in neuro-oncology. Theranostics 2019; 9(17): 5085-104.
[http://dx.doi.org/10.7150/thno.34415] [PMID: 31410203]
[62]
Li S, Liu J, Sun M, Wang J, Wang C, Sun Y. Cell membrane-camouflaged nanocarriers for cancer diagnostic and therapeutic. Front Pharmacol 2020; 11: 24.
[63]
Kang T, Zhu Q, Wei D, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017; 11(2): 1397-411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[64]
Wang Y, Huang HY, Yang L, Zhang Z, Ji H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci Rep 2016; 6(1): 25468.
[http://dx.doi.org/10.1038/srep25468] [PMID: 27151505]
[65]
Correia da Silva D, Andrade P, Ribeiro V, Valentao P, Pereira MD. Recent patents on proteasome inhibitors of natural origin. Recent Pat Anticancer Drug Discov 2017; 12(1): 4-15.
[http://dx.doi.org/10.2174/1574892812666161123142037]
[66]
Brisander M, Demirbiker M, Jesson G, Malmsten D. Hybrid nanoparticles of TKIs. US Patent US20140378454A1 2014.
[67]
Bilgicer ZB, Ashley J, Kiziltepe T. Dual-drug loaded liposomal nanoparticles. WO Patent 2017048990A1, 2017.
[68]
Ashley JD, Quinlan CJ, Schroeder VA, et al. Dual carfilzomib and doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther 2016; 15(7): 1452-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0867] [PMID: 27196779]
[69]
Shrawat VK. Rafiuddin, Singh VK, Chaturvedi AK. Crystalline bortezomib process. WO Patent 2014076713 2014.
[70]
Groll M, Berkers CR, Ploegh HL, Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 2006; 14(3): 451-6.
[http://dx.doi.org/10.1016/j.str.2005.11.019] [PMID: 16531229]
[71]
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome complexes and their heterogeneity in colorectal, breast and pancreatic cancers. J Cancer 2021; 12(9): 2472-87.
[http://dx.doi.org/10.7150/jca.52414] [PMID: 33854609]
[72]
Morozov AV, Karpov VL. Proteasomes and several aspects of their heterogeneity relevant to cancer. Front Oncol 2019; 9: 761.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy