Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Promising Marine Natural Products for Tackling Viral Outbreaks: A Focus on Possible Targets and Structure-activity Relationship

Author(s): Mirnawati Salampe*, Sukamto Salang Mamada, Yayu Mulsiani Evary, Saikat Mitra, Talha Bin Emran, Harapan Harapan, Firzan Nainu* and Jesus Simal-Gandara*

Volume 23, Issue 14, 2023

Published on: 07 October, 2022

Page: [1352 - 1379] Pages: 28

DOI: 10.2174/1568026622666220831114838

Price: $65

Abstract

Recently, people worldwide have experienced several outbreaks caused by viruses that have attracted much interest globally, such as HIV, Zika, Ebola, and the one being faced, SARSCoV- 2 viruses. Unfortunately, the availability of drugs giving satisfying outcomes in curing those diseases is limited. Therefore, it is necessary to dig deeper to provide compounds that can tackle the causative viruses. Meanwhile, the efforts to explore marine natural products have been gaining great interest as the products have consistently shown several promising biological activities, including antiviral activity. This review summarizes some products extracted from marine organisms, such as seaweeds, seagrasses, sponges, and marine bacteria, reported in recent years to have potential antiviral activities tested through several methods. The mechanisms by which those compounds exert their antiviral effects are also described here, with several main mechanisms closely associated with the ability of the products to block the entry of the viruses into the host cells, inhibiting replication or transcription of the viral genetic material, and disturbing the assembly of viral components. In addition, the structure-activity relationship of the compounds is also highlighted by focusing on six groups of marine compounds, namely sulfated polysaccharides, phlorotannins, terpenoids, lectins, alkaloids, and flavonoids. In conclusion, due to their uniqueness compared to substances extracted from terrestrial sources, marine organisms provide abundant products having promising activities as antiviral agents that can be explored to tackle virus-caused outbreaks.

Keywords: HIV, Zika virus, Ebola virus, SARS-CoV-2, Marine natural products, Mechanism of action, Structure-activity relationship.

Graphical Abstract
[1]
Steele, J.H.; Brink, K.H.; Scott, B.E. Comparison of marine and terrestrial ecosystems: Suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci., 2018, 76, 50-59.
[http://dx.doi.org/10.1093/icesjms/fsy149]
[2]
Lu, W-Y.; Li, H-J.; Li, Q-Y.; Wu, Y-C. Application of marine natural products in drug research. Bioorg. Med. Chem., 2021, 35, 116058.
[http://dx.doi.org/10.1016/j.bmc.2021.116058] [PMID: 33588288]
[3]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[4]
Cappello, E.; Nieri, P. From life in the sea to the clinic: The marine drugs approved and under clinical trial. Life (Basel), 2021, 11(12), 1390.
[http://dx.doi.org/10.3390/life11121390] [PMID: 34947921]
[5]
Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. (Seoul), 2016, 24(6), 561-571.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
[6]
Cenciarelli, O.; Pietropaoli, S.; Malizia, A.; Carestia, M.; D’Amico, F.; Sassolini, A.; Di Giovanni, D.; Rea, S.; Gabbarini, V.; Tamburrini, A.; Palombi, L.; Bellecci, C.; Gaudio, P. Ebola virus disease 2013-2014 outbreak in west Africa: An analysis of the epidemic spread and response. Int. J. Microbiol., 2015, 2015, 769121-769121.
[http://dx.doi.org/10.1155/2015/769121] [PMID: 25852754]
[7]
Lowe, R.; Barcellos, C.; Brasil, P.; Cruz, O.G.; Honório, N.A.; Kuper, H.; Carvalho, M.S. The zika virus epidemic in Brazil: From discovery to future implications. Int. J. Environ. Res. Public Health, 2018, 15(1), 96.
[http://dx.doi.org/10.3390/ijerph15010096] [PMID: 29315224]
[8]
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed on: 15 January 2022).
[9]
Nainu, F.; Abidin, R.S.; Bahar, M.A.; Frediansyah, A.; Emran, T.B.; Rabaan, A.A.; Dhama, K.; Harapan, H. SARS-CoV-2 reinfection and implications for vaccine development. Hum. Vaccin. Immunother., 2020, 16(12), 3061-3073.
[http://dx.doi.org/10.1080/21645515.2020.1830683] [PMID: 33393854]
[10]
Khandia, R.; Singhal, S.; Alqahtani, T.; Kamal, M.A.; El-Shall, N.A.; Nainu, F.; Desingu, P.A.; Dhama, K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ. Res., 2022, 209, 112816.
[http://dx.doi.org/10.1016/j.envres.2022.112816] [PMID: 35093310]
[11]
Kirchhoff, F. HIV life cycle: Overview. In: Encyclopedia of AIDS; Elsevier, New York, 2013; pp. 1-9.
[12]
Shaw, G.M.; Hunter, E. HIV transmission. Cold Spring Harb. Perspect. Med., 2012, 2(11), a006965.
[http://dx.doi.org/10.1101/cshperspect.a006965] [PMID: 23043157]
[13]
Woodham, A.W.; Skeate, J.G.; Sanna, A.M.; Taylor, J.R.; Da Silva, D.M.; Cannon, P.M.; Kast, W.M. Human immunodeficiency virus immune cell receptors, coreceptors, and cofactors: Implications for prevention and treatment. AIDS Patient Care STDS, 2016, 30(7), 291-306.
[http://dx.doi.org/10.1089/apc.2016.0100] [PMID: 27410493]
[14]
Alkhatib, G. The biology of CCR5 and CXCR4. Curr. Opin. HIV AIDS, 2009, 4(2), 96-103.
[http://dx.doi.org/10.1097/COH.0b013e328324bbec] [PMID: 19339947]
[15]
Picchio, G.R.; Gulizia, R.J.; Wehrly, K.; Chesebro, B.; Mosier, D.E. The cell tropism of human immunodeficiency virus type 1 determines the kinetics of plasma viremia in SCID mice reconstituted with human peripheral blood leukocytes. J. Virol., 1998, 72(3), 2002-2009.
[http://dx.doi.org/10.1128/JVI.72.3.2002-2009.1998] [PMID: 9499054]
[16]
Kameoka, J.; Tanaka, T.; Nojima, Y.; Schlossman, S.F.; Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science, 1993, 261(5120), 466-469.
[http://dx.doi.org/10.1126/science.8101391] [PMID: 8101391]
[17]
Zhu, W.; Lei, R.; Le Duff, Y.; Li, J.; Guo, F.; Wainberg, M.A.; Liang, C. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology, 2015, 12, 22.
[http://dx.doi.org/10.1186/s12977-015-0150-z] [PMID: 25808449]
[18]
Ebina, H.; Misawa, N.; Kanemura, Y.; Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep., 2013, 3, 2510.
[http://dx.doi.org/10.1038/srep02510] [PMID: 23974631]
[19]
Wang, G.; Zhao, N.; Berkhout, B.; Das, A.T. A combinatorial CRISPR-Cas9 attack on HIV-1 DNA extinguishes all infectious provirus in infected T cell cultures. Cell Rep., 2016, 17(11), 2819-2826.
[http://dx.doi.org/10.1016/j.celrep.2016.11.057] [PMID: 27974196]
[20]
Ohlmann, T.; Mengardi, C.; López-Lastra, M. Translation initiation of the HIV-1 mRNA. Translation, 2014, 2(2), e960242.
[http://dx.doi.org/10.4161/2169074X.2014.960242] [PMID: 26779410]
[21]
Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS (Auckl.), 2015, 7, 95-104.
[PMID: 25897264]
[22]
Cinti, A. HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Sci. Rep., 2017, 7, 1-14.
[http://dx.doi.org/10.1038/s41598-017-05410-0]
[23]
Akbay, B.; Shmakova, A.; Vassetzky, Y.; Dokudovskaya, S. Modulation of mTORC1 signaling pathway by HIV-1. Cells, 2020, 9(5), 1090.
[http://dx.doi.org/10.3390/cells9051090] [PMID: 32354054]
[24]
Besnard, E.; Hakre, S.; Kampmann, M.; Lim, H.W.; Hosmane, N.N.; Martin, A.; Bassik, M.C.; Verschueren, E.; Battivelli, E.; Chan, J.; Svensson, J.P.; Gramatica, A.; Conrad, R.J.; Ott, M.; Greene, W.C.; Krogan, N.J.; Siliciano, R.F.; Weissman, J.S.; Verdin, E. The mTOR complex controls HIV latency. Cell Host Microbe, 2016, 20(6), 785-797.
[http://dx.doi.org/10.1016/j.chom.2016.11.001] [PMID: 27978436]
[25]
Kumar, B.; Arora, S.; Ahmed, S.; Banerjea, A.C. Hyperactivation of mammalian target of rapamycin complex 1 by HIV-1 is necessary for virion production and latent viral reactivation. FASEB J., 2017, 31(1), 180-191.
[http://dx.doi.org/10.1096/fj.201600813r] [PMID: 27702769]
[26]
Bernard, M.A.; Zhao, H.; Yue, S.C.; Anandaiah, A.; Koziel, H.; Tachado, S.D. Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS One, 2014, 9(9), e106006.
[http://dx.doi.org/10.1371/journal.pone.0106006] [PMID: 25191859]
[27]
Sharma, M.; Callen, S.; Zhang, D.; Singhal, P.C.; Vanden Heuvel, G.B.; Buch, S. Activation of notch signaling pathway in HIV-associated nephropathy. AIDS, 2010, 24(14), 2161-2170.
[http://dx.doi.org/10.1097/QAD.0b013e32833dbc31] [PMID: 20706108]
[28]
Yuan, S-B.; Ji, G.; Li, B.; Andersson, T.; Neugebauer, V.; Tang, S-J.A. A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain. Pain, 2015, 156(7), 1311-1319.
[http://dx.doi.org/10.1097/j.pain.0000000000000177] [PMID: 25840108]
[29]
Gong, J.; Shen, X.H.; Chen, C.; Qiu, H.; Yang, R.G. Down-regulation of HIV-1 infection by inhibition of the MAPK signaling pathway. Virol. Sin., 2011, 26(2), 114-122.
[http://dx.doi.org/10.1007/s12250-011-3184-y] [PMID: 21468934]
[30]
Wang, J-H.; Kong, J.; Li, W.; Molchanova, V.; Chikalovets, I.; Belogortseva, N.; Luk’yanov, P.; Zheng, Y-T. A β-galactose-specific lectin isolated from the marine worm Chaetopterus variopedatus possesses anti-HIV-1 activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 142(1-2), 111-117.
[http://dx.doi.org/10.1016/j.cbpc.2005.10.019] [PMID: 16316787]
[31]
Oku, N.; Gustafson, K.R.; Cartner, L.K.; Wilson, J.A.; Shigematsu, N.; Hess, S.; Pannell, L.K.; Boyd, M.R.; McMahon, J.B. Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. J. Nat. Prod., 2004, 67(8), 1407-1411.
[http://dx.doi.org/10.1021/np040003f] [PMID: 15332865]
[32]
Plaza, A.; Gustchina, E.; Baker, H.L.; Kelly, M.; Bewley, C.A. Mirabamides A-D, depsipeptides from the sponge Siliquarias pongia mirabilis that inhibit HIV-1 fusion. J. Nat. Prod., 2007, 70(11), 1753-1760.
[http://dx.doi.org/10.1021/np070306k] [PMID: 17963357]
[33]
Boyd, M.R.; Gustafson, K.R.; McMahon, J.B.; Shoemaker, R.H.; O’Keefe, B.R.; Mori, T.; Gulakowski, R.J.; Wu, L.; Rivera, M.I.; Laurencot, C.M.; Currens, M.J.; Cardellina, J.H., II; Buckheit, R.W., Jr; Nara, P.L.; Pannell, L.K.; Sowder, R.C., II; Henderson, L.E. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development. Antimicrob. Agents Chemother., 1997, 41(7), 1521-1530.
[http://dx.doi.org/10.1128/AAC.41.7.1521] [PMID: 9210678]
[34]
Mitchell, C.A.; Ramessar, K.; O’Keefe, B.R. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res., 2017, 142, 37-54.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.007] [PMID: 28322922]
[35]
Meiyu, G.; Fuchuan, L.; Xianliang, X.; Jing, L.; Zuowei, Y.; Huashi, G. The potential molecular targets of marine sulfated polymannuroguluronate interfering with HIV-1 entry. Interaction between SPMG and HIV-1 rgp120 and CD4 molecule. Antiviral Res., 2003, 59(2), 127-135.
[http://dx.doi.org/10.1016/S0166-3542(03)00068-8] [PMID: 12895696]
[36]
Liu, H.; Geng, M.; Xin, X.; Li, F.; Zhang, Z.; Li, J.; Ding, J. Multiple and multivalent interactions of novel anti-AIDS drug candidates, sulfated polymannuronate (SPMG)-derived oligosaccharides, with gp120 and their anti-HIV activities. Glycobiology, 2005, 15(5), 501-510.
[http://dx.doi.org/10.1093/glycob/cwi031] [PMID: 15616125]
[37]
Wang, S.C.; Bligh, S.W.; Shi, S.S.; Wang, Z.T.; Hu, Z.B.; Crowder, J.; Branford-White, C.; Vella, C. Structural features and anti-HIV-1 activity of novel polysaccharides from red algae Grateloupia longifolia and Grateloupia filicina. Int. J. Biol. Macromol., 2007, 41(4), 369-375.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.05.008] [PMID: 17602734]
[38]
Ghosh, T.; Chattopadhyay, K.; Marschall, M.; Karmakar, P.; Mandal, P.; Ray, B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology, 2009, 19(1), 2-15.
[http://dx.doi.org/10.1093/glycob/cwn092] [PMID: 18815291]
[39]
Thuy, T.T.T.; Ly, B.M.; Van, T.T.T.; Quang, N.V.; Tu, H.C.; Zheng, Y.; Seguin-Devaux, C.; Mi, B.; Ai, U. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr. Polym., 2015, 115, 122-128.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.068] [PMID: 25439876]
[40]
Mori, T.; O’Keefe, B.R.; Sowder, R.C., II; Bringans, S.; Gardella, R.; Berg, S.; Cochran, P.; Turpin, J.A.; Buckheit, R.W., Jr; McMahon, J.B.; Boyd, M.R. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem., 2005, 280(10), 9345-9353.
[http://dx.doi.org/10.1074/jbc.M411122200] [PMID: 15613479]
[41]
Tan, S.; Yang, B.; Liu, J.; Xun, T.; Liu, Y.; Zhou, X. Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent. Nat. Prod. Res., 2019, 33(10), 1467-1471.
[http://dx.doi.org/10.1080/14786419.2017.1416376] [PMID: 29258357]
[42]
Pardo-Vargas, A.; de Barcelos Oliveira, I.; Stephens, P.R.S.; Cirne-Santos, C.C.; de Palmer Paixão, I.C.N.; Ramos, F.A.; Jiménez, C.; Rodríguez, J.; Resende, J.A.L.C.; Teixeira, V.L.; Castellanos, L. Dolabelladienols A-C, new diterpenes isolated from Brazilian brown alga Dictyota pfaffii. Mar. Drugs, 2014, 12(7), 4247-4259.
[http://dx.doi.org/10.3390/md12074247] [PMID: 25056631]
[43]
vonRanke, N.; Ribeiro, M.; Miceli, L.; de Souza, N.; Abrahim-Vieira, B.; Castro, H.; Teixeira, V.; Rodrigues, C.; Souza, A. Structure-activity relationship, molecular docking, and molecular dynamic studies of diterpenes from marine natural products with Anti-HIV activity. J. Biomol. Struct. Dyn., 2022, 40(7), 3185-3195.
[PMID: 33183161]
[44]
Karadeniz, F.; Kang, K-H.; Park, J.W.; Park, S-J.; Kim, S-K. Anti-HIV-1 activity of phlorotannin derivative 8, 4‴-dieckol from Korean brown alga Ecklonia cava. Biosci. Biotechnol. Biochem., 2014, 78(7), 1151-1158.
[http://dx.doi.org/10.1080/09168451.2014.923282] [PMID: 25229850]
[45]
Artan, M.; Li, Y.; Karadeniz, F.; Lee, S-H.; Kim, M-M.; Kim, SK. Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorg. Med. Chem., 2008, 16(17), 7921-7926.
[http://dx.doi.org/10.1016/j.bmc.2008.07.078] [PMID: 18693022]
[46]
Kim, S-K.; Karadeniz, F. Anti-HIV activity of extracts and compounds from marine algae. Adv. Food Nutr. Res., 2011, 64, 255-265.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00020-X] [PMID: 22054953]
[47]
Ahn, M.J.; Yoon, K.D.; Min, S.Y.; Lee, J.S.; Kim, J.H.; Kim, T.G.; Kim, S.H.; Kim, N.G.; Huh, H.; Kim, J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol. Pharm. Bull., 2004, 27(4), 544-547.
[http://dx.doi.org/10.1248/bpb.27.544] [PMID: 15056863]
[48]
Yang, Y.I.; Jung, S.H.; Lee, K.T.; Choi, J.H. 8, 8′-Bieckol, isolated from edible brown algae, exerts its anti-inflammatory effects through inhibition of NF-κB signaling and ROS production in LPS-stimulated macrophages. Int. Immunopharmacol., 2014, 23(2), 460-468.
[http://dx.doi.org/10.1016/j.intimp.2014.09.019] [PMID: 25261704]
[49]
O’Rourke, A.; Kremb, S.; Bader, T.M.; Helfer, M.; Schmitt-Kopplin, P.; Gerwick, W.H.; Brack-Werner, R.; Voolstra, C.R. Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency virus 1 (HIV-1). Mar. Drugs, 2016, 14(2), 28.
[http://dx.doi.org/10.3390/md14020028] [PMID: 26861355]
[50]
Rudi, A.; Yosief, T.; Loya, S.; Hizi, A.; Schleyer, M.; Kashman, Y. Clathsterol, a novel anti-HIV-1 RT sulfated sterol from the sponge Clathria species. J. Nat. Prod., 2001, 64(11), 1451-1453.
[http://dx.doi.org/10.1021/np010121s] [PMID: 11720531]
[51]
Gómez-Archila, L.G.; Zapata, W.; Galeano, E.; Martínez, A.M.; Díaz, F.J.; Rugeles, M.T. Bromotyrosine derivatives from marine sponges inhibit the HIV-1 replication in vitro. Vitae-revista De La Facultad De Quimica Farmaceutica, 2014, 21, 114-125.
[52]
Rowley, D.C.; Hansen, M.S.; Rhodes, D.; Sotriffer, C.A.; Ni, H.; McCammon, J.A.; Bushman, F.D.; Fenical, W. Thalassiolins A-C: New marine-derived inhibitors of HIV cDNA integrase. Bioorg. Med. Chem., 2002, 10(11), 3619-3625.
[http://dx.doi.org/10.1016/S0968-0896(02)00241-9] [PMID: 12213478]
[53]
Ahn, M.J.; Yoon, K.D.; Kim, C.Y.; Kim, J.H.; Shin, C.G.; Kim, J. Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown Alga, Ishige okamurae. Phytother. Res., 2006, 20(8), 711-713.
[http://dx.doi.org/10.1002/ptr.1939] [PMID: 16775811]
[54]
Heo, S-J.; Hwang, J-Y.; Choi, J-I.; Han, J-S.; Kim, H-J.; Jeon, YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol., 2009, 615(1-3), 252-256.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.017] [PMID: 19482018]
[55]
Ellithey, M.S.; Lall, N.; Hussein, A.A.; Meyer, D. Cytotoxic, cytostatic and HIV-1 PR inhibitory activities of the soft coral Litophyton arboreum. Mar. Drugs, 2013, 11(12), 4917-4936.
[http://dx.doi.org/10.3390/md11124917] [PMID: 24336129]
[56]
Tan, T.Y.; Fibriansah, G.; Kostyuchenko, V.A.; Ng, T-S.; Lim, X-X.; Zhang, S.; Lim, X-N.; Wang, J.; Shi, J.; Morais, M.C.; Corti, D.; Lok, S.M. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat. Commun., 2020, 11(1), 895.
[http://dx.doi.org/10.1038/s41467-020-14647-9] [PMID: 32060358]
[57]
Rana, J.; Slon Campos, J.L.; Leccese, G.; Francolini, M.; Bestagno, M.; Poggianella, M.; Burrone, O.R. Role of capsid anchor in the morphogenesis of Zika virus. J. Virol., 2018, 92(22), e01174-e01118.
[http://dx.doi.org/10.1128/JVI.01174-18] [PMID: 30158295]
[58]
Li, A.; Yu, J.; Lu, M.; Ma, Y.; Attia, Z.; Shan, C.; Xue, M.; Liang, X.; Craig, K.; Makadiya, N.; He, J.J.; Jennings, R.; Shi, P.Y.; Peeples, M.E.; Liu, S.L.; Boyaka, P.N.; Li, J. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat. Commun., 2018, 9(1), 3067.
[http://dx.doi.org/10.1038/s41467-018-05276-4] [PMID: 30076287]
[59]
Garcia-Blanco, M.A.; Vasudevan, S.G.; Bradrick, S.S.; Nicchitta, C. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res., 2016, 134, 244-249.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.010] [PMID: 27666184]
[60]
Li, Z.; Brecher, M.; Deng, Y-Q.; Zhang, J.; Sakamuru, S.; Liu, B.; Huang, R.; Koetzner, C.A.; Allen, C.A.; Jones, S.A.; Chen, H.; Zhang, N.N.; Tian, M.; Gao, F.; Lin, Q.; Banavali, N.; Zhou, J.; Boles, N.; Xia, M.; Kramer, L.D.; Qin, C.F.; Li, H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res., 2017, 27(8), 1046-1064.
[http://dx.doi.org/10.1038/cr.2017.88] [PMID: 28685770]
[61]
Puerta-Guardo, H.; Tabata, T.; Petitt, M.; Dimitrova, M.; Glasner, D.R.; Pereira, L.; Harris, E. Zika virus nonstructural protein 1 disrupts glycosaminoglycans and causes permeability in developing human placentas. J. Infect. Dis., 2020, 221(2), 313-324.
[http://dx.doi.org/10.1093/infdis/jiz331] [PMID: 31250000]
[62]
Ma, J.; Ketkar, H.; Geng, T.; Lo, E.; Wang, L.; Xi, J.; Sun, Q.; Zhu, Z.; Cui, Y.; Yang, L.; Wang, P. Zika virus non-structural protein 4A blocks the RLR-MAVS signaling. Front. Microbiol., 2018, 9, 1350.
[http://dx.doi.org/10.3389/fmicb.2018.01350] [PMID: 29988497]
[63]
Olagnier, D.; Muscolini, M.; Coyne, C.B.; Diamond, M.S.; Hiscott, J. Mechanisms of Zika virus infection and neuropathogenesis. DNA Cell Biol., 2016, 35(8), 367-372.
[http://dx.doi.org/10.1089/dna.2016.3404] [PMID: 27348136]
[64]
Brasil, P.; Calvet, G.A.; Siqueira, A.M.; Wakimoto, M.; de Sequeira, P.C.; Nobre, A.; Quintana, Mde.S.; Mendonça, M.C.; Lupi, O.; de Souza, R.V.; Romero, C.; Zogbi, H.; Bressan, Cda.S.; Alves, S.S.; Lourenço-de-Oliveira, R.; Nogueira, R.M.; Carvalho, M.S.; de Filippis, A.M.; Jaenisch, T. Zika virus outbreak in Rio de Janeiro, Brazil: clinical characterization, epidemiological and virological aspects. PLoS Negl. Trop. Dis., 2016, 10(4), e0004636.
[http://dx.doi.org/10.1371/journal.pntd.0004636] [PMID: 27070912]
[65]
Mead, P.S.; Duggal, N.K.; Hook, S.A.; Delorey, M.; Fischer, M.; Olzenak McGuire, D.; Becksted, H.; Max, R.J.; Anishchenko, M.; Schwartz, A.M.; Tzeng, W.P.; Nelson, C.A.; McDonald, E.M.; Brooks, J.T.; Brault, A.C.; Hinckley, A.F. Zika virus shedding in semen of symptomatic infected men. N. Engl. J. Med., 2018, 378(15), 1377-1385.
[http://dx.doi.org/10.1056/NEJMoa1711038] [PMID: 29641964]
[66]
Yockey, L.J.; Varela, L.; Rakib, T.; Khoury-Hanold, W.; Fink, S.L.; Stutz, B.; Szigeti-Buck, K.; Van den Pol, A.; Lindenbach, B.D.; Horvath, T.L. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell, 2016, 166, 1247-1256.
[http://dx.doi.org/10.1016/j.cell.2016.08.004]
[67]
Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V-M. Potential sexual transmission of Zika virus. Emerg. Infect. Dis., 2015, 21(2), 359-361.
[http://dx.doi.org/10.3201/eid2102.141363] [PMID: 25625872]
[68]
Sherley, M.; Ong, C-W. Sexual transmission of Zika virus: A literature review. Sex. Health, 2018, 15(3), 183-199.
[http://dx.doi.org/10.1071/SH17046] [PMID: 29268073]
[69]
Barjas-Castro, M.L.; Angerami, R.N.; Cunha, M.S.; Suzuki, A.; Nogueira, J.S.; Rocco, I.M.; Maeda, A.Y.; Vasami, F.G.; Katz, G.; Boin, I.F.; Stucchi, R.S.; Resende, M.R.; Esposito, D.L.; de Souza, R.P.; da Fonseca, B.A.; Addas-Carvalho, M. Probable transfusion-transmitted Zika virus in Brazil. Transfusion, 2016, 56(7), 1684-1688.
[http://dx.doi.org/10.1111/trf.13681] [PMID: 27329551]
[70]
Gourinat, A-C.; O’Connor, O.; Calvez, E.; Goarant, C.; Dupont-Rouzeyrol, M. Detection of Zika virus in urine. Emerg. Infect. Dis., 2015, 21(1), 84-86.
[http://dx.doi.org/10.3201/eid2101.140894] [PMID: 25530324]
[71]
Musso, D.; Roche, C.; Nhan, T-X.; Robin, E.; Teissier, A.; Cao-Lormeau, V-M. Detection of Zika virus in saliva. J. Clin. Virol., 2015, 68, 53-55.
[http://dx.doi.org/10.1016/j.jcv.2015.04.021] [PMID: 26071336]
[72]
Sun, J.; Wu, D.; Zhong, H.; Guan, D.; Zhang, H.; Tan, Q.; Ke, C. Presence of Zika virus in conjunctival fluid. JAMA Ophthalmol., 2016, 134(11), 1330-1332.
[http://dx.doi.org/10.1001/jamaophthalmol.2016.3417] [PMID: 27632055]
[73]
Aid, M.; Abbink, P.; Larocca, R.A.; Boyd, M.; Nityanandam, R.; Nanayakkara, O.; Martinot, A.J.; Moseley, E.T.; Blass, E.; Borducchi, E.N. Zika virus persistence in the central nervous system and lymph nodes of rhesus monkeys. Cell, 2017, 169, 610-620.
[http://dx.doi.org/10.1016/j.cell.2017.04.008]
[74]
Christian, K.M.; Song, H.; Ming, G.L. Pathophysiology and mechanisms of Zika virus infection in the nervous system. Annu. Rev. Neurosci., 2019, 42, 249-269.
[http://dx.doi.org/10.1146/annurev-neuro-080317-062231] [PMID: 31283901]
[75]
Hasan, S.S.; Sevvana, M.; Kuhn, R.J.; Rossmann, M.G. Structural biology of Zika virus and other flaviviruses. Nat. Struct. Mol. Biol., 2018, 25(1), 13-20.
[http://dx.doi.org/10.1038/s41594-017-0010-8] [PMID: 29323278]
[76]
Gorshkov, K.; Shiryaev, S.A.; Fertel, S.; Lin, Y-W.; Huang, C-T.; Pinto, A.; Farhy, C.; Strongin, A.Y.; Zheng, W.; Terskikh, A.V. Zika virus: Origins, pathological action, and treatment strategies. Front. Microbiol., 2019, 9, 3252.
[http://dx.doi.org/10.3389/fmicb.2018.03252] [PMID: 30666246]
[77]
Fréour, T.; Mirallié, S.; Hubert, B.; Splingart, C.; Barrière, P.; Maquart, M.; Leparc-Goffart, I. Sexual transmission of Zika virus in an entirely asymptomatic couple returning from a Zika epidemic area, France, April 2016. Euro Surveill., 2016, 21(23), 30254.
[http://dx.doi.org/10.2807/1560-7917.ES.2016.21.23.30254] [PMID: 27311680]
[78]
Gallian, P.; Cabié, A.; Richard, P.; Paturel, L.; Charrel, R.N.; Pastorino, B.; Leparc-Goffart, I.; Tiberghien, P.; de Lamballerie, X. Zika virus in asymptomatic blood donors in Martinique. Blood, 2017, 129(2), 263-266.
[http://dx.doi.org/10.1182/blood-2016-09-737981] [PMID: 27827826]
[79]
Haby, M.M.; Pinart, M.; Elias, V.; Reveiz, L. Prevalence of asymptomatic Zika virus infection: A systematic review. Bull. World Health Organ., 2018, 96(6), 402-413D.
[http://dx.doi.org/10.2471/BLT.17.201541] [PMID: 29904223]
[80]
Chen, J.; Yang, Y.F.; Yang, Y.; Zou, P.; Chen, J.; He, Y.; Shui, S.L.; Cui, Y.R.; Bai, R.; Liang, Y.J.; Hu, Y.; Jiang, B.; Lu, L.; Zhang, X.; Liu, J.; Xu, J. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat. Microbiol., 2018, 3(3), 302-309.
[http://dx.doi.org/10.1038/s41564-017-0092-4] [PMID: 29379210]
[81]
Kim, J.; Alejandro, B.; Hetman, M.; Hattab, E.M.; Joiner, J.; Schroten, H.; Ishikawa, H.; Chung, D-H. Zika virus infects pericytes in the choroid plexus and enters the central nervous system through the blood-cerebrospinal fluid barrier. PLoS Pathog., 2020, 16(5), e1008204.
[http://dx.doi.org/10.1371/journal.ppat.1008204] [PMID: 32357162]
[82]
Papa, M.P.; Meuren, L.M.; Coelho, S.V.A.; Lucas, C.G.O.; Mustafá, Y.M.; Lemos Matassoli, F.; Silveira, P.P.; Frost, P.S.; Pezzuto, P.; Ribeiro, M.R.; Tanuri, A.; Nogueira, M.L.; Campanati, L.; Bozza, M.T.; Paula Neto, H.A.; Pimentel-Coelho, P.M.; Figueiredo, C.P.; de Aguiar, R.S.; de Arruda, L.B. Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front. Microbiol., 2017, 8, 2557.
[http://dx.doi.org/10.3389/fmicb.2017.02557] [PMID: 29312238]
[83]
Oh, Y.; Zhang, F.; Wang, Y.; Lee, E.M.; Choi, I.Y.; Lim, H.; Mirakhori, F.; Li, R.; Huang, L.; Xu, T.; Wu, H.; Li, C.; Qin, C.F.; Wen, Z.; Wu, Q.F.; Tang, H.; Xu, Z.; Jin, P.; Song, H.; Ming, G.L.; Lee, G. Zika virus directly infects peripheral neurons and induces cell death. Nat. Neurosci., 2017, 20(9), 1209-1212.
[http://dx.doi.org/10.1038/nn.4612] [PMID: 28758997]
[84]
Tang, H.; Hammack, C.; Ogden, S.C.; Wen, Z.; Qian, X.; Li, Y.; Yao, B.; Shin, J.; Zhang, F.; Lee, E.M.; Christian, K.M.; Didier, R.A.; Jin, P.; Song, H.; Ming, G.L. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell, 2016, 18(5), 587-590.
[http://dx.doi.org/10.1016/j.stem.2016.02.016] [PMID: 26952870]
[85]
Dang, J.; Tiwari, S.K.; Lichinchi, G.; Qin, Y.; Patil, V.S.; Eroshkin, A.M.; Rana, T.M. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell, 2016, 19(2), 258-265.
[http://dx.doi.org/10.1016/j.stem.2016.04.014] [PMID: 27162029]
[86]
Ferraris, P.; Cochet, M.; Hamel, R.; Gladwyn-Ng, I.; Alfano, C.; Diop, F.; Garcia, D.; Talignani, L.; Montero-Menei, C.N.; Nougairède, A.; Yssel, H.; Nguyen, L.; Coulpier, M.; Missé, D. Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerg. Microbes Infect., 2019, 8(1), 1003-1016.
[http://dx.doi.org/10.1080/22221751.2019.1637283] [PMID: 31282298]
[87]
Harsh, S.; Fu, Y.; Kenney, E.; Han, Z.; Eleftherianos, I. Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Dis. Model. Mech., 2020, 13(4), dmm040816.
[http://dx.doi.org/10.1242/dmm.040816] [PMID: 32152180]
[88]
Ho, C.Y.; Ames, H.M.; Tipton, A.; Vezina, G.; Liu, J.S.; Scafidi, J.; Torii, M.; Rodriguez, F.J.; du Plessis, A.; DeBiasi, R.L. Differential neuronal susceptibility and apoptosis in congenital Zika virus infection. Ann. Neurol., 2017, 82(1), 121-127.
[http://dx.doi.org/10.1002/ana.24968] [PMID: 28556287]
[89]
Liang, Q.; Luo, Z.; Zeng, J.; Chen, W.; Foo, S-S.; Lee, S-A.; Ge, J.; Wang, S.; Goldman, S.A.; Zlokovic, B.V.; Zhao, Z.; Jung, J.U. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell, 2016, 19(5), 663-671.
[http://dx.doi.org/10.1016/j.stem.2016.07.019] [PMID: 27524440]
[90]
Ghouzzi, V.E.; Bianchi, F.T.; Molineris, I.; Mounce, B.C.; Berto, G.E.; Rak, M.; Lebon, S.; Aubry, L.; Tocco, C.; Gai, M.; Chiotto, A.M.; Sgrò, F.; Pallavicini, G.; Simon-Loriere, E.; Passemard, S.; Vignuzzi, M.; Gressens, P.; Di Cunto, F. ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly. Cell Death Dis., 2016, 7(10), e2440-e2440.
[http://dx.doi.org/10.1038/cddis.2016.266] [PMID: 27787521]
[91]
Santos, C.N.O.; Ribeiro, D.R.; Cardoso Alves, J.; Cazzaniga, R.A.; Magalhães, L.S.; de Souza, M.S.F.; Fonseca, A.B.L.; Bispo, A.J.B.; Porto, R.L.S.; Santos, C.A.D.; da Silva, Â.M.; Teixeira, M.M.; de Almeida, R.P.; de Jesus, A.R. Association between Zika virus microcephaly in newborns with the rs3775291 variant in Toll-like receptor 3 and rs1799964 variant at Tumor Necrosis Factor-α gene. J. Infect. Dis., 2019, 220(11), 1797-1801.
[http://dx.doi.org/10.1093/infdis/jiz392] [PMID: 31352487]
[92]
Ojha, C.R.; Rodriguez, M.; Karuppan, M.K.M.; Lapierre, J.; Kashanchi, F.; El-Hage, N. Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS One, 2019, 14(2), e0208543.
[http://dx.doi.org/10.1371/journal.pone.0208543] [PMID: 30735502]
[93]
de Araújo, T.V.B.; Rodrigues, L.C.; de Alencar Ximenes, R.A.; de Barros Miranda-Filho, D.; Montarroyos, U.R.; de Melo, A.P.L.; Valongueiro, S.; de Albuquerque, M.F.P.M.; Souza, W.V.; Braga, C.; Filho, S.P.B.; Cordeiro, M.T.; Vazquez, E.; Di Cavalcanti Souza Cruz, D.; Henriques, C.M.P.; Bezerra, L.C.A.; da Silva Castanha, P.M.; Dhalia, R.; Marques-Júnior, E.T.A.; Martelli, C.M.T. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: Preliminary report of a case-control study. Lancet Infect. Dis., 2016, 16(12), 1356-1363.
[http://dx.doi.org/10.1016/S1473-3099(16)30318-8] [PMID: 27641777]
[94]
Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika virus and birth defects—reviewing the evidence for causality. N. Engl. J. Med., 2016, 374(20), 1981-1987.
[http://dx.doi.org/10.1056/NEJMsr1604338] [PMID: 27074377]
[95]
Bayless, N.L.; Greenberg, R.S.; Swigut, T.; Wysocka, J.; Blish, C.A. Zika virus infection induces cranial neural crest cells to produce cytokines at levels detrimental for neurogenesis. Cell Host Microbe, 2016, 20(4), 423-428.
[http://dx.doi.org/10.1016/j.chom.2016.09.006] [PMID: 27693308]
[96]
Maucourant, C.; Queiroz, G.A.N.; Samri, A.; Grassi, M.F.R.; Yssel, H.; Vieillard, V. Zika virus in the eye of the cytokine storm. Eur. Cytokine Netw., 2019, 30(3), 74-81.
[PMID: 31957701]
[97]
Park, C.; Lee, S.; Cho, I.H.; Lee, H.K.; Kim, D.; Choi, S.Y.; Oh, S.B.; Park, K.; Kim, J.S.; Lee, S.J. TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: Differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia, 2006, 53(3), 248-256.
[http://dx.doi.org/10.1002/glia.20278] [PMID: 16265667]
[98]
Pan, T.; Peng, Z.; Tan, L.; Zou, F.; Zhou, N.; Liu, B.; Liang, L.; Chen, C.; Liu, J.; Wu, L.; Liu, G.; Peng, Z.; Liu, W.; Ma, X.; Zhang, J.; Zhu, X.; Liu, T.; Li, M.; Huang, X.; Tao, L.; Zhang, Y.; Zhang, H. Nonsteroidal anti-inflammatory drugs potently inhibit the replication of Zika viruses by inducing the degradation of AXL. J. Virol., 2018, 92(20), e01018-e01018.
[http://dx.doi.org/10.1128/JVI.01018-18] [PMID: 30068645]
[99]
Cao, B.; Parnell, L.A.; Diamond, M.S.; Mysorekar, I.U. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J. Exp. Med., 2017, 214(8), 2303-2313.
[http://dx.doi.org/10.1084/jem.20170957] [PMID: 28694387]
[100]
Peng, H.; Liu, B.; Yves, T.D.; He, Y.; Wang, S.; Tang, H.; Ren, H.; Zhao, P.; Qi, Z.; Qin, Z. Zika virus induces autophagy in human umbilical vein endothelial cells. Viruses, 2018, 10(5), 259.
[http://dx.doi.org/10.3390/v10050259] [PMID: 29762492]
[101]
Olmo, I.G.; Carvalho, T.G.; Costa, V.V.; Alves-Silva, J.; Ferrari, C.Z.; Izidoro-Toledo, T.C.; da Silva, J.F.; Teixeira, A.L.; Souza, D.G.; Marques, J.T.; Teixeira, M.M.; Vieira, L.B.; Ribeiro, F.M. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front. Immunol., 2017, 8, 1016.
[http://dx.doi.org/10.3389/fimmu.2017.01016] [PMID: 28878777]
[102]
Zhang, F.; Hammack, C.; Ogden, S.C.; Cheng, Y.; Lee, E.M.; Wen, Z.; Qian, X.; Nguyen, H.N.; Li, Y.; Yao, B.; Xu, M.; Xu, T.; Chen, L.; Wang, Z.; Feng, H.; Huang, W.K.; Yoon, K.J.; Shan, C.; Huang, L.; Qin, Z.; Christian, K.M.; Shi, P.Y.; Xu, M.; Xia, M.; Zheng, W.; Wu, H.; Song, H.; Tang, H.; Ming, G.L.; Jin, P. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res., 2016, 44(18), 8610-8620.
[http://dx.doi.org/10.1093/nar/gkw765] [PMID: 27580721]
[103]
Amaral, J.D.; Xavier, J.M.; Steer, C.J.; Rodrigues, C.M. The role of p53 in apoptosis. Discov. Med., 2010, 9(45), 145-152.
[PMID: 20193641]
[104]
Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[105]
Han, X.; Wang, J.; Yang, Y.; Qu, S.; Wan, F.; Zhang, Z.; Wang, R.; Li, G.; Cong, H. Zika virus infection induced apoptosis by modulating the recruitment and activation of proapoptotic protein bax. J. Virol., 2021, 95, e01445-e01420.
[http://dx.doi.org/10.1128/JVI.01445-20]
[106]
Li, P.; Jiang, H.; Peng, H.; Zeng, W.; Zhong, Y.; He, M.; Xie, L.; Chen, J.; Guo, D.; Wu, J.; Li, C.M. Non-structural protein 5 of Zika virus interacts with p53 in human neural progenitor cells and induces p53-mediated apoptosis. Virol. Sin., 2021, 36(6), 1411-1420.
[http://dx.doi.org/10.1007/s12250-021-00422-7] [PMID: 34224111]
[107]
Adams, C.J.; Kopp, M.C.; Larburu, N.; Nowak, P.R.; Ali, M.M.U. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci., 2019, 6, 11.
[http://dx.doi.org/10.3389/fmolb.2019.00011] [PMID: 30931312]
[108]
Gladwyn-Ng, I.; Cordón-Barris, L.; Alfano, C.; Creppe, C.; Couderc, T.; Morelli, G.; Thelen, N.; America, M.; Bessières, B.; Encha-Razavi, F.; Bonnière, M.; Suzuki, I.K.; Flamand, M.; Vanderhaeghen, P.; Thiry, M.; Lecuit, M.; Nguyen, L. Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly. Nat. Neurosci., 2018, 21(1), 63-71.
[http://dx.doi.org/10.1038/s41593-017-0038-4] [PMID: 29230053]
[109]
Matsumiya, T.; Stafforini, D.M. Function and regulation of retinoic acid-inducible gene-I. Crit. Rev. Immunol., 2010, 30(6), 489-513.
[110]
Lundberg, R.; Melén, K.; Westenius, V.; Jiang, M.; Österlund, P.; Khan, H.; Vapalahti, O.; Julkunen, I.; Kakkola, L. Zika virus non-structural protein NS5 inhibits the RIG-I pathway and interferon lambda 1 promoter activation by targeting IKK epsilon. Viruses, 2019, 11(11), 1024.
[http://dx.doi.org/10.3390/v11111024] [PMID: 31690057]
[111]
Amaya García, F.; Cirne-Santos, C.; de Souza Barros, C.; Pinto, A.M.; Sanchez Nunez, M.L.; Laneuville Teixeira, V.; Resende, J.A.L.C.; Ramos, F.A.; Paixão, I.C.N.P.; Castellanos, L. Semisynthesis of dolabellane diterpenes: Oxygenated analogues with increased activity against zika and chikungunya viruses. J. Nat. Prod., 2021, 84(4), 1373-1384.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00199] [PMID: 33822611]
[112]
Cirne-Santos, C.C. In vitro antiviral activity against zika virus from a natural product of the Brazilian brown seaweed Dictyota menstrualis. Nat. Prod. Commun., 2019, 14, 7.
[http://dx.doi.org/10.1177/1934578X19859128]
[113]
Yuan, B.; Wu, Z.; Ji, W.; Liu, D.; Guo, X.; Yang, D.; Fan, A.; Jia, H.; Ma, M.; Lin, W. Discovery of cyclohexadepsipeptides with anti-Zika virus activities and biosynthesis of the nonproteinogenic building block (3S)-methyl-l-proline. J. Biol. Chem., 2021, 297(1), 100822.
[http://dx.doi.org/10.1016/j.jbc.2021.100822] [PMID: 34029593]
[114]
Cirne-Santos, C.C.; de Souza Barros, C.; de Oliveira, M.C.; Rabelo, V.W-H.; Azevedo, R.C.; Teixeira, V.L.; Ferreira, D.F.; de Palmer Paixão, I.C.N. In vitro studies on the inhibition of replication of zika and chikungunya viruses by dolastane isolated from seaweed canistrocarpus cervicornis. Sci. Rep., 2020, 10(1), 8263.
[http://dx.doi.org/10.1038/s41598-020-65357-7] [PMID: 32427940]
[115]
Guo, Y.W.; Liu, X.J.; Yuan, J.; Li, H.J.; Mahmud, T.; Hong, M.J.; Yu, J.C.; Lan, W.J. l-tryptophan induces a marine-derived Fusarium sp. to produce indole alkaloids with activity against the Zika virus. J. Nat. Prod., 2020, 83(11), 3372-3380.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00717] [PMID: 33180497]
[116]
Rivera, A.; Messaoudi, I. Molecular mechanisms of Ebola pathogenesis. J. Leukoc. Biol., 2016, 100(5), 889-904.
[http://dx.doi.org/10.1189/jlb.4RI0316-099RR] [PMID: 27587404]
[117]
Formenty, P.; Hatz, C.; Le Guenno, B.; Stoll, A.; Rogenmoser, P.; Widmer, A. Human infection due to Ebola virus, subtype Côte d’Ivoire: clinical and biologic presentation. J. Infect. Dis., 1999, 179(Suppl. 1), S48-S53.
[http://dx.doi.org/10.1086/514285] [PMID: 9988164]
[118]
Goeijenbier, M.; van Kampen, J.J.; Reusken, C.B.; Koopmans, M.P.; van Gorp, E.C. Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis. Neth. J. Med., 2014, 72(9), 442-448.
[PMID: 25387613]
[119]
Furuyama, W.; Shifflett, K.; Feldmann, H.; Marzi, A. The Ebola virus soluble glycoprotein contributes to viral pathogenesis by activating the MAP kinase signaling pathway. PLoS Pathog., 2021, 17(9), e1009937.
[http://dx.doi.org/10.1371/journal.ppat.1009937] [PMID: 34529738]
[120]
Wolf, K.; Beimforde, N.; Falzarano, D.; Feldmann, H.; Schnittler, H-J. The Ebola virus soluble glycoprotein (sGP) does not affect lymphocyte apoptosis and adhesion to activated endothelium. J. Infect. Dis., 2011, 204(Suppl. 3), S947-S952.
[http://dx.doi.org/10.1093/infdis/jir322] [PMID: 21987774]
[121]
Mateo, M.; Carbonnelle, C.; Martinez, M.J.; Reynard, O.; Page, A.; Volchkova, V.A.; Volchkov, V.E. Knockdown of Ebola virus VP24 impairs viral nucleocapsid assembly and prevents virus replication. J. Infect. Dis., 2011, 204(Suppl. 3), S892-S896.
[http://dx.doi.org/10.1093/infdis/jir311] [PMID: 21987766]
[122]
Zhu, W.; Banadyga, L.; Emeterio, K.; Wong, G.; Qiu, X. The roles of ebola virus soluble glycoprotein in replication, pathogenesis, and countermeasure development. Viruses, 2019, 11(11), 999.
[http://dx.doi.org/10.3390/v11110999] [PMID: 31683550]
[123]
Woolsey, C.; Menicucci, A.R.; Cross, R.W.; Luthra, P.; Agans, K.N.; Borisevich, V.; Geisbert, J.B.; Mire, C.E.; Fenton, K.A.; Jankeel, A. A A VP35 mutant Ebola virus lacks virulence but can elicit protective immunity to wild-type virus challenge. Cell Reports, 2019, 28, 3032-3046.
[http://dx.doi.org/10.1016/j.celrep.2019.08.047]
[124]
Higashi, N.; Fujioka, K.; Denda-Nagai, K.; Hashimoto, S.; Nagai, S.; Sato, T.; Fujita, Y.; Morikawa, A.; Tsuiji, M.; Miyata-Takeuchi, M.; Sano, Y.; Suzuki, N.; Yamamoto, K.; Matsushima, K.; Irimura, T. The macrophage C-type lectin specific for galactose/Nacetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem., 2002, 277(23), 20686-20693.
[http://dx.doi.org/10.1074/jbc.M202104200] [PMID: 11919201]
[125]
Takada, A.; Fujioka, K.; Tsuiji, M.; Morikawa, A.; Higashi, N.; Ebihara, H.; Kobasa, D.; Feldmann, H.; Irimura, T.; Kawaoka, Y. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol., 2004, 78(6), 2943-2947.
[http://dx.doi.org/10.1128/JVI.78.6.2943-2947.2004] [PMID: 14990712]
[126]
Dahlmann, F.; Biedenkopf, N.; Babler, A.; Jahnen-Dechent, W.; Karsten, C.B.; Gnirß, K.; Schneider, H.; Wrensch, F.; O’Callaghan, C.A.; Bertram, S.; Herrler, G.; Becker, S.; Pöhlmann, S.; Hofmann-Winkler, H. Analysis of Ebola virus entry into macrophages. J. Infect. Dis., 2015, 212(Suppl. 2), S247-S257.
[http://dx.doi.org/10.1093/infdis/jiv140] [PMID: 25877552]
[127]
Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muñiz, O.; Corbí, A.L.; Delgado, R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol., 2002, 76(13), 6841-6844.
[http://dx.doi.org/10.1128/JVI.76.13.6841-6844.2002] [PMID: 12050398]
[128]
Simmons, G.; Reeves, J.D.; Grogan, C.C.; Vandenberghe, L.H.; Baribaud, F.; Whitbeck, J.C.; Burke, E.; Buchmeier, M.J.; Soilleux, E.J.; Riley, J.L.; Doms, R.W.; Bates, P.; Pöhlmann, S. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology, 2003, 305(1), 115-123.
[http://dx.doi.org/10.1006/viro.2002.1730] [PMID: 12504546]
[129]
Marzi, A.; Möller, P.; Hanna, S.L.; Harrer, T.; Eisemann, J.; Steinkasserer, A.; Becker, S.; Baribaud, F.; Pöhlmann, S. Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J. Infect. Dis., 2007, 196(Suppl. 2), S237-S246.
[http://dx.doi.org/10.1086/520607] [PMID: 17940955]
[130]
Chan, S.Y.; Empig, C.J.; Welte, F.J.; Speck, R.F.; Schmaljohn, A.; Kreisberg, J.F.; Goldsmith, M.A. Folate receptor-α is a cofactor for cellular entry by Marburg and Ebola viruses. Cell, 2001, 106(1), 117-126.
[http://dx.doi.org/10.1016/S0092-8674(01)00418-4] [PMID: 11461707]
[131]
Weissenhorn, W.; Calder, L.J.; Wharton, S.A.; Skehel, J.J.; Wiley, D.C. The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6032-6036.
[http://dx.doi.org/10.1073/pnas.95.11.6032] [PMID: 9600912]
[132]
Wool-Lewis, R.J.; Bates, P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J. Virol., 1998, 72(4), 3155-3160.
[http://dx.doi.org/10.1128/JVI.72.4.3155-3160.1998] [PMID: 9525641]
[133]
Hensley, L.E.; Young, H.A.; Jahrling, P.B.; Geisbert, T.W. Proinflammatory response during Ebola virus infection of primate models: Possible involvement of the tumor necrosis factor receptor superfamily. Immunol. Lett., 2002, 80(3), 169-179.
[http://dx.doi.org/10.1016/S0165-2478(01)00327-3] [PMID: 11803049]
[134]
Gupta, M.; Mahanty, S.; Ahmed, R.; Rollin, P.E. Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-α in vitro. Virology, 2001, 284(1), 20-25.
[http://dx.doi.org/10.1006/viro.2001.0836] [PMID: 11352664]
[135]
Grunnet, L.G.; Aikin, R.; Tonnesen, M.F.; Paraskevas, S.; Blaabjerg, L.; Størling, J.; Rosenberg, L.; Billestrup, N.; Maysinger, D.; Mandrup-Poulsen, T. Proinflammatory cytokines activate the intrinsic apoptotic pathway in β-cells. Diabetes, 2009, 58(8), 1807-1815.
[http://dx.doi.org/10.2337/db08-0178] [PMID: 19470609]
[136]
Chang, S-H.; Park, C-G. Allogeneic ADSCs induce CD8 T cell-mediated cytotoxicity and faster cell death after exposure to xenogeneic serum or proinflammatory cytokines. Exp. Mol. Med., 2019, 51(3), 1-10.
[http://dx.doi.org/10.1038/s12276-019-0231-5] [PMID: 30858365]
[137]
Martines, R.B.; Ng, D.L.; Greer, P.W.; Rollin, P.E.; Zaki, S.R. Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses. J. Pathol., 2015, 235(2), 153-174.
[http://dx.doi.org/10.1002/path.4456] [PMID: 25297522]
[138]
Johnson, J.C.; Martinez, O.; Honko, A.N.; Hensley, L.E.; Olinger, G.G.; Basler, C.F. Pyridinyl imidazole inhibitors of p38 MAP kinase impair viral entry and reduce cytokine induction by Zaire ebolavirus in human dendritic cells. Antiviral Res., 2014, 107, 102-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.04.014] [PMID: 24815087]
[139]
Saeed, M.F.; Kolokoltsov, A.A.; Freiberg, A.N.; Holbrook, M.R.; Davey, R.A. Phosphoinositide-3 kinase-Akt pathway controls cellular entry of Ebola virus. PLoS Pathog., 2008, 4(8), e1000141.
[http://dx.doi.org/10.1371/journal.ppat.1000141] [PMID: 18769720]
[140]
Okumura, A.; Pitha, P.M.; Yoshimura, A.; Harty, R.N. Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J. Virol., 2010, 84(1), 27-33.
[http://dx.doi.org/10.1128/JVI.01462-09] [PMID: 19846529]
[141]
Ayithan, N.; Bradfute, S.B.; Anthony, S.M.; Stuthman, K.S.; Dye, J.M.; Bavari, S.; Bray, M.; Ozato, K. Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways. J. Interferon Cytokine Res., 2014, 34(2), 79-89.
[http://dx.doi.org/10.1089/jir.2013.0035] [PMID: 24102579]
[142]
Martins, K.A.; Steffens, J.T.; van Tongeren, S.A.; Wells, J.B.; Bergeron, A.A.; Dickson, S.P.; Dye, J.M.; Salazar, A.M.; Bavari, S. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS One, 2014, 9(2), e89735.
[http://dx.doi.org/10.1371/journal.pone.0089735] [PMID: 24586996]
[143]
Jasenosky, L.D.; Cadena, C.; Mire, C.E.; Borisevich, V.; Haridas, V.; Ranjbar, S.; Nambu, A.; Bavari, S.; Soloveva, V.; Sadukhan, S.; Cassell, G.H.; Geisbert, T.W.; Hur, S.; Goldfeld, A.E. The FDA-approved oral drug nitazoxanide amplifies host antiviral responses and inhibits Ebola virus. iScience, 2019, 19, 1279-1290.
[http://dx.doi.org/10.1016/j.isci.2019.07.003] [PMID: 31402258]
[144]
Martinez, O.; Ngu, M.K.E.; Warneke, P. Transduction of retinoic acid-inducible gene 1 by Ebola virus-like particles enhances antigen-presentation. 2019.
[145]
Bixler, S.L.; Duplantier, A.J.; Bavari, S. Discovering drugs for the treatment of Ebola virus. Curr. Treat. Options Infect. Dis., 2017, 9(3), 299-317.
[http://dx.doi.org/10.1007/s40506-017-0130-z] [PMID: 28890666]
[146]
Edwards, M.R.; Basler, C.F. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr. Opin. Virol., 2019, 35, 42-56.
[http://dx.doi.org/10.1016/j.coviro.2019.03.001] [PMID: 31003196]
[147]
Skariyachan, S.; Acharya, A.B.; Subramaniyan, S.; Babu, S.; Kulkarni, S.; Narayanappa, R. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: An in vitro and in silico investigation. J. Biomol. Struct. Dyn., 2016, 34(9), 1865-1883.
[http://dx.doi.org/10.1080/07391102.2015.1094412] [PMID: 26577929]
[148]
Barrientos, L.G.; O’Keefe, B.R.; Bray, M.; Sanchez, A.; Gronenborn, A.M.; Boyd, M.R. Cyanovirin-N binds to the viral surface glycoprotein, GP1, 2 and inhibits infectivity of Ebola virus. Antiviral Res., 2003, 58(1), 47-56.
[http://dx.doi.org/10.1016/S0166-3542(02)00183-3] [PMID: 12719006]
[149]
Garrison, A.R.; Giomarelli, B.G.; Lear-Rooney, C.M.; Saucedo, C.J.; Yellayi, S.; Krumpe, L.R.; Rose, M.; Paragas, J.; Bray, M.; Olinger, G.G., Jr; McMahon, J.B.; Huggins, J.; O’Keefe, B.R. The cyanobacterial lectin scytovirin displays potent in vitro and in vivo activity against Zaire Ebola virus. Antiviral Res., 2014, 112, 1-7.
[http://dx.doi.org/10.1016/j.antiviral.2014.09.012] [PMID: 25265598]
[150]
Kashman, Y.; Groweiss, A.; Shmueli, U. Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett., 1980, 21, 3629-3632.
[http://dx.doi.org/10.1016/0040-4039(80)80255-3]
[151]
Yonezawa, A.; Cavrois, M.; Greene, W.C. Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: Involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. J. Virol., 2005, 79(2), 918-926.
[http://dx.doi.org/10.1128/JVI.79.2.918-926.2005] [PMID: 15613320]
[152]
Khanfar, M.A.; Youssef, D.T.; El Sayed, K.A. Semisynthetic latrunculin derivatives as inhibitors of metastatic breast cancer: Biological evaluations, preliminary structure-activity relationship and molecular modeling studies. ChemMedChem, 2010, 5(2), 274-285.
[http://dx.doi.org/10.1002/cmdc.200900430] [PMID: 20043312]
[153]
Crews, P.; Manes, L.V.; Boehler, M. Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis SP. Tetrahedron Lett., 1986, 27, 2797-2800.
[http://dx.doi.org/10.1016/S0040-4039(00)84645-6]
[154]
Kretz, R.; Wendt, L.; Wongkanoun, S.; Luangsa-Ard, J.J.; Surup, F.; Helaly, S.E.; Noumeur, S.R.; Stadler, M.; Stradal, T.E.B. The effect of cytochalasans on the actin cytoskeleton of eukaryotic cells and preliminary structure⁻activity relationships. Biomolecules, 2019, 9(2), E73.
[http://dx.doi.org/10.3390/biom9020073] [PMID: 30791504]
[155]
Aldridge, D.; Armstrong, J.; Speake, R.; Turner, W. The cytochalasins, a new class of biologically active mould metabolites. Chem. Commun. (Camb.), 1967, 26-27.
[156]
Wang, M-Y.; Zhao, R.; Gao, L-J.; Gao, X-F.; Wang, D-P.; Cao, JM. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front. Cell. Infect. Microbiol., 2020, 10, 587269.
[http://dx.doi.org/10.3389/fcimb.2020.587269] [PMID: 33324574]
[157]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[158]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181, 271-280.
[159]
Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.v.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[160]
Harapan, H.; Fajar, J.K.; Supriono, S.; Soegiarto, G.; Wulandari, L.; Seratin, F.; Prayudi, N.G.; Dewi, D.P.; Monica Elsina, M.T.; Atamou, L. The prevalence, predictors and outcomes of acute liver injury among patients with COVID-19: A systematic review and meta-analysis. Rev. Med. Virol., 2021, 2021, e2304.
[http://dx.doi.org/10.1002/rmv.2304] [PMID: 34643006]
[161]
Mutiawati, E.; Fahriani, M.; Mamada, S.S.; Fajar, J.K.; Frediansyah, A.; Maliga, H.A.; Ilmawan, M.; Emran, T.B.; Ophinni, Y.; Ichsan, I.; Musadir, N.; Rabaan, A.A.; Dhama, K.; Syahrul, S.; Nainu, F.; Harapan, H. Anosmia and dysgeusia in SARS-CoV-2 infection: Incidence and effects on COVID-19 severity and mortality, and the possible pathobiology mechanisms - A systematic review and meta-analysis. F1000 Res., 2021, 10, 40.
[http://dx.doi.org/10.12688/f1000research.28393.1] [PMID: 33824716]
[162]
Syahrul, S.; Maliga, H.A.; Ilmawan, M.; Fahriani, M.; Mamada, S.S.; Fajar, J.K.; Frediansyah, A.; Syahrul, F.N.; Imran, I.; Haris, S.; Rambe, A.S.; Emran, T.B.; Rabaan, A.A.; Tiwari, R.; Dhama, K.; Nainu, F.; Mutiawati, E.; Harapan, H. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: Incidence, risk factors, and pathogenesis - A systematic review and meta-analysis. F1000 Res., 2021, 10, 34.
[http://dx.doi.org/10.12688/f1000research.42308.1] [PMID: 33708378]
[163]
Fajar, J.K.; Ilmawan, M.; Mamada, S.S.; Mutiawati, E.; Husnah, M.; Yusuf, H.; Nainu, F.; Sirinam, S.; Keam, S.; Ophinni, Y. Global prevalence of persistent neuromuscular symptoms and the possible pathomechanisms in COVID-19 recovered individuals: A systematic review and meta-analysis. Narra J., 2021, 1(3), 1.
[164]
Su, H.; Xu, Y.; Jiang, H. Drug discovery and development targeting the life cycle of SARS-CoV-2. Fundamental Res., 2021, 1(2), 151-165.
[http://dx.doi.org/10.1016/j.fmre.2021.01.013]
[165]
Poduri, R.; Joshi, G.; Jagadeesh, G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of COVID-19. Cell. Signal., 2020, 74, 109721.
[http://dx.doi.org/10.1016/j.cellsig.2020.109721] [PMID: 32711111]
[166]
Regenhardt, R.W.; Bennion, D.M.; Sumners, C. Cerebroprotective action of angiotensin peptides in stroke. Clin. Sci. (Lond.), 2014, 126(3), 195-205.
[http://dx.doi.org/10.1042/CS20130324] [PMID: 24102099]
[167]
Wang, H.; Tang, X.; Fan, H.; Luo, Y.; Song, Y.; Xu, Y.; Chen, Y. Potential mechanisms of hemorrhagic stroke in elderly COVID-19 patients. Aging (Albany NY), 2020, 12(11), 10022-10034.
[http://dx.doi.org/10.18632/aging.103335] [PMID: 32527987]
[168]
Bihl, J.C.; Zhang, C.; Zhao, Y.; Xiao, X.; Ma, X.; Chen, Y.; Chen, S.; Zhao, B.; Chen, Y. Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway. Vascul. Pharmacol., 2015, 73, 115-123.
[http://dx.doi.org/10.1016/j.vph.2015.08.007] [PMID: 26264508]
[169]
Song, P.; Li, W.; Xie, J.; Hou, Y.; You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta, 2020, 509, 280-287.
[http://dx.doi.org/10.1016/j.cca.2020.06.017] [PMID: 32531256]
[170]
Miao, Y.; Fan, L.; Li, J-Y. Potential treatments for COVID-19 related cytokine storm-beyond corticosteroids. Front. Immunol., 2020, 11, 1445.
[http://dx.doi.org/10.3389/fimmu.2020.01445] [PMID: 32612616]
[171]
Tsuge, M.; Yasui, K.; Ichiyawa, T.; Saito, Y.; Nagaoka, Y.; Yashiro, M.; Yamashita, N.; Morishima, T. Increase of tumor necrosis factor-α in the blood induces early activation of matrix metalloproteinase-9 in the brain. Microbiol. Immunol., 2010, 54(7), 417-424.
[http://dx.doi.org/10.1111/j.1348-0421.2010.00226.x] [PMID: 20618688]
[172]
Mountain, D.J.; Singh, M.; Menon, B.; Singh, K. Interleukin-1β increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: Role of PKCalpha/β1 and MAPKs. Am. J. Physiol. Cell Physiol., 2007, 292(2), C867-C875.
[http://dx.doi.org/10.1152/ajpcell.00161.2006] [PMID: 16987994]
[173]
Ju, X.; Ijaz, T.; Sun, H.; Lejeune, W.; Vargas, G.; Shilagard, T.; Recinos, A., III; Milewicz, D.M.; Brasier, A.R.; Tilton, R.G. IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome. J. Am. Heart Assoc., 2014, 3(1), e000476.
[http://dx.doi.org/10.1161/JAHA.113.000476] [PMID: 24449804]
[174]
Voirin, A-C.; Perek, N.; Roche, F. Inflammatory stress induced by a combination of cytokines (IL-6, IL-17, TNF-α) leads to a loss of integrity on bEnd.3 endothelial cells in vitro BBB model. Brain Res., 2020, 1730, 146647.
[http://dx.doi.org/10.1016/j.brainres.2020.146647] [PMID: 31911168]
[175]
Cohen, S.S.; Min, M.; Cummings, E.E.; Chen, X.; Sadowska, G.B.; Sharma, S.; Stonestreet, B.S. Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. Neuroimmunomodulation, 2013, 20(5), 264-273.
[http://dx.doi.org/10.1159/000350470] [PMID: 23867217]
[176]
Rochfort, K.D.; Collins, L.E.; Murphy, R.P.; Cummins, P.M. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: Consequences for interendothelial adherens and tight junctions. PLoS One, 2014, 9(7), e101815.
[http://dx.doi.org/10.1371/journal.pone.0101815] [PMID: 24992685]
[177]
Ozaki, H.; Ishii, K.; Horiuchi, H.; Arai, H.; Kawamoto, T.; Okawa, K.; Iwamatsu, A.; Kita, T. Cutting edge: combined treatment of TNF-α and IFN-γ causes redistribution of junctional adhesion molecule in human endothelial cells. J. Immunol., 1999, 163(2), 553-557.
[PMID: 10395639]
[178]
Conti, P.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Kritas, S.K.; Frydas, I.; Younes, A.; Ronconi, G. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: A promising inhibitory strategy. J. Biol. Regul. Homeost. Agents, 2020, 34(6), 1971-1975.
[PMID: 33016027]
[179]
Mutiawati, E.; Syahrul, S.; Fahriani, M.; Fajar, J.K.; Mamada, S.S.; Maliga, H.A.; Samsu, N.; Ilmawan, M.; Purnamasari, Y.; Asmiragani, A.A.; Ichsan, I.; Emran, T.B.; Rabaan, A.A.; Masyeni, S.; Nainu, F.; Harapan, H. Global prevalence and pathogenesis of headache in COVID-19: A systematic review and meta-analysis. F1000 Res., 2020, 9, 1316.
[http://dx.doi.org/10.12688/f1000research.27334.1] [PMID: 33953911]
[180]
Yusuf, F.; Fahriani, M.; Mamada, S.S.; Frediansyah, A.; Abubakar, A.; Maghfirah, D.; Fajar, J.K.; Maliga, H.A.; Ilmawan, M.; Emran, T.B.; Ophinni, Y.; Innayah, M.R.; Masyeni, S.; Ghouth, A.S.B.; Yusuf, H.; Dhama, K.; Nainu, F.; Harapan, H. Global prevalence of prolonged gastrointestinal symptoms in COVID-19 survivors and potential pathogenesis: A systematic review and meta-analysis. F1000 Res., 2021, 10, 301.
[http://dx.doi.org/10.12688/f1000research.52216.1] [PMID: 34131481]
[181]
Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 2018, 14(11), 1483-1496.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[182]
Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens., 2007, 21(1), 20-27.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[183]
Aydemir, M.N.; Aydemir, H.B.; Korkmaz, E.M.; Budak, M.; Cekin, N.; Pinarbasi, E. Computationally predicted SARS-COV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways. Gene Rep., 2021, 22, 101012.
[http://dx.doi.org/10.1016/j.genrep.2020.101012] [PMID: 33398248]
[184]
O’Keefe, B.R.; Giomarelli, B.; Barnard, D.L.; Shenoy, S.R.; Chan, P.K.; McMahon, J.B.; Palmer, K.E.; Barnett, B.W.; Meyerholz, D.K.; Wohlford-Lenane, C.L.; McCray, P.B., Jr Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol., 2010, 84(5), 2511-2521.
[http://dx.doi.org/10.1128/JVI.02322-09] [PMID: 20032190]
[185]
Müller, W.E.G.; Neufurth, M.; Schepler, H.; Wang, S.; Tolba, E.; Schröder, H.C.; Wang, X. The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor. Biomater. Sci., 2020, 8(23), 6603-6610.
[http://dx.doi.org/10.1039/D0BM01244K] [PMID: 33231598]
[186]
Neufurth, M.; Wang, X.; Tolba, E.; Lieberwirth, I.; Wang, S.; Schröder, H.C.; Müller, W.E.G. The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem. Pharmacol., 2020, 182, 114215.
[http://dx.doi.org/10.1016/j.bcp.2020.114215] [PMID: 32905794]
[187]
Song, S.; Peng, H.; Wang, Q.; Liu, Z.; Dong, X.; Wen, C.; Ai, C.; Zhang, Y.; Wang, Z.; Zhu, B. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct., 2020, 11(9), 7415-7420.
[http://dx.doi.org/10.1039/D0FO02017F] [PMID: 32966484]
[188]
Petit, L.; Vernès, L.; Cadoret, J.P. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. J. Appl. Phycol., 2021, 33(3), 1579-1602.
[http://dx.doi.org/10.1007/s10811-021-02372-9] [PMID: 33776210]
[189]
Quimque, M.T.J.; Notarte, K.I.R.; Fernandez, R.A.T.; Mendoza, M.A.O.; Liman, R.A.D.; Lim, J.A.K.; Pilapil, L.A.E.; Ong, J.K.H.; Pastrana, A.M.; Khan, A.; Wei, D.Q.; Macabeo, A.P.G. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J. Biomol. Struct. Dyn., 2021, 39(12), 4316-4333.
[http://dx.doi.org/10.1080/07391102.2020.1776639] [PMID: 32476574]
[190]
Syahputra, G.; Gustini, N.; Bustanussalam, B.; Hapsari, Y.; Sari, M.P.; Ardiansyah, A.; Bayu, A.; Putra, M.Y. Molecular docking of secondary metabolites from Indonesian marine and terrestrial organisms targeting SARS-CoV-2 ACE-2, M pro, and PL pro receptors. Pharmacia, 2021, 2021, e68432.
[http://dx.doi.org/10.3897/pharmacia.68.e68432]
[191]
Ghosh, S.; Das, S.; Ahmad, I.; Patel, H. In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 M(pro). J. Indian Chem. Soc., 2021, 98, 100272-100272.
[http://dx.doi.org/10.1016/j.jics.2021.100272]
[192]
Abdelrheem, D.A.; Ahmed, S.A.; Abd El-Mageed, H.R.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: Insights from molecular docking analysis and molecular dynamic simulation. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2020, 55(11), 1373-1386.
[http://dx.doi.org/10.1080/10934529.2020.1826192] [PMID: 32998618]
[193]
Ahmed, S.A.; Abdelrheem, D.A.; El-Mageed, H.R.A.; Mohamed, H.S.; Rahman, A.A.; Elsayed, K.N.M.; Ahmed, S.A. Destabilizing the structural integrity of COVID-19 by caulerpin and its derivatives along with some antiviral drugs: An in silico approaches for a combination therapy. Struct. Chem., 2020, 31(6), 1-22.
[http://dx.doi.org/10.1007/s11224-020-01586-w] [PMID: 32837118]
[194]
Vijayaraj, R.; Altaff, K.; Rosita, A.S.; Ramadevi, S.; Revathy, J. Bioactive compounds from marine resources against novel corona virus (2019-nCoV): In silico study for corona viral drug. Nat. Prod. Res., 2021, 35(23), 5525-5529.
[http://dx.doi.org/10.1080/14786419.2020.1791115] [PMID: 32643410]
[195]
Surti, M.; Patel, M.; Adnan, M.; Moin, A.; Ashraf, S.A.; Siddiqui, A.J.; Snoussi, M.; Deshpande, S.; Reddy, M.N. Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: Designing, docking and molecular dynamics simulation study. RSC Advances, 2020, 10(62), 37707-37720.
[http://dx.doi.org/10.1039/D0RA06379G] [PMID: 35515150]
[196]
Sepay, N.; Sekar, A.; Halder, U.C.; Alarifi, A.; Afzal, M. Anti-COVID-19 terpenoid from marine sources: A docking, admet and molecular dynamics study. J. Mol. Struct., 2021, 1228, 129433.
[http://dx.doi.org/10.1016/j.molstruc.2020.129433] [PMID: 33071352]
[197]
Li, Y.; Ye, D.; Chen, X.; Lu, X.; Shao, Z.; Zhang, H.; Che, Y. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J. Nat. Prod., 2009, 72(5), 912-916.
[http://dx.doi.org/10.1021/np900116m] [PMID: 19326880]
[198]
Sahoo, A.; Fuloria, S.; Swain, S.S.; Panda, S.K.; Sekar, M.; Subramaniyan, V.; Panda, M.; Jena, A.K.; Sathasivam, K.V.; Fuloria, N.K. Potential of marine terpenoids against SARS-CoV-2: An in silico drug development approach. Biomedicines, 2021, 9(11), 1505.
[http://dx.doi.org/10.3390/biomedicines9111505] [PMID: 34829734]
[199]
Minagawa, K.; Kouzuki, S.; Yoshimoto, J.; Kawamura, Y.; Tani, H.; Iwata, T.; Terui, Y.; Nakai, H.; Yagi, S.; Hattori, N.; Fujiwara, T.; Kamigauchi, T. Stachyflin and acetylstachyflin, novel antiinfluenza A virus substances, produced by Stachybotrys sp. RF-7260. I. Isolation, structure elucidation and biological activities. J. Antibiot. (Tokyo), 2002, 55(2), 155-164.
[http://dx.doi.org/10.7164/antibiotics.55.155] [PMID: 12002997]
[200]
El-Demerdash, A.; Metwaly, A.M.; Hassan, A.; Abd El-Aziz, T.M.; Elkaeed, E.B.; Eissa, I.H.; Arafa, R.K.; Stockand, J.D. Comprehensive virtual screening of the antiviral potentialities of marine polycyclic guanidine alkaloids against SARS-CoV-2 (COVID-19). Biomolecules, 2021, 11(3), 460.
[http://dx.doi.org/10.3390/biom11030460] [PMID: 33808721]
[201]
Zahran, E.M.; Albohy, A.; Khalil, A.; Ibrahim, A.H.; Ahmed, H.A.; El-Hossary, E.M.; Bringmann, G.; Abdelmohsen, U.R. Bioactivity potential of marine natural products from scleractinia-associated microbes and in silico anti-SARS-COV-2 evaluation. Mar. Drugs, 2020, 18(12), E645.
[http://dx.doi.org/10.3390/md18120645] [PMID: 33339096]
[202]
Ding, L.; Münch, J.; Goerls, H.; Maier, A.; Fiebig, H.H.; Lin, W.H.; Hertweck, C. Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg. Med. Chem. Lett., 2010, 20(22), 6685-6687.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.010] [PMID: 20880706]
[203]
Maier, M.S.; Roccatagliata, A.J.; Kuriss, A.; Chludil, H.; Seldes, A.M.; Pujol, C.A.; Damonte, E.B. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J. Nat. Prod., 2001, 64(6), 732-736.
[http://dx.doi.org/10.1021/np000584i] [PMID: 11421733]
[204]
Sakemi, S.; Higa, T.; Jefford, C.W.; Bernardinelli, G. Venustatriol. A new, anti-viral, triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett., 1986, 27, 4287-4290.
[http://dx.doi.org/10.1016/S0040-4039(00)94254-0]
[205]
Hans, N.; Malik, A.; Naik, S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep., 2021, 13, 100623.
[http://dx.doi.org/10.1016/j.biteb.2020.100623] [PMID: 33521606]
[206]
Amornrut, C.; Toida, T.; Imanari, T.; Woo, E-R.; Park, H.; Linhardt, R.; Wu, S.J.; Kim, Y.S. A new sulfated β-galactan from clams with anti-HIV activity. Carbohydr. Res., 1999, 321(1-2), 121-127.
[http://dx.doi.org/10.1016/S0008-6215(99)00188-3] [PMID: 10612006]
[207]
Sanniyasi, E.; Venkatasubramanian, G.; Anbalagan, M.M.; Raj, P.P.; Gopal, R.K. In vitro anti-HIV-1 activity of the bioactive compound extracted and purified from two different marine macroalgae (seaweeds) (Dictyota bartayesiana J.V. Lamouroux and Turbinaria decurrens Bory). Sci. Rep., 2019, 9(1), 12185.
[http://dx.doi.org/10.1038/s41598-019-47917-8] [PMID: 31434919]
[208]
Kwon, P.S.; Oh, H.; Kwon, S.J.; Jin, W.; Zhang, F.; Fraser, K.; Hong, J.J.; Linhardt, R.J.; Dordick, J.S. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 50.
[http://dx.doi.org/10.1038/s41421-020-00192-8] [PMID: 32714563]
[209]
Salih, A.E.M.; Thissera, B.; Yaseen, M.; Hassane, A.S.I.; El-Seedi, H.R.; Sayed, A.M.; Rateb, M.E. Marine sulfated polysaccharides as promising antiviral agents: A comprehensive report and modeling study focusing on SARS CoV-2. Mar. Drugs, 2021, 19(8), 406.
[http://dx.doi.org/10.3390/md19080406] [PMID: 34436245]
[210]
Ponce, N.M.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydr. Res., 2003, 338(2), 153-165.
[http://dx.doi.org/10.1016/S0008-6215(02)00403-2] [PMID: 12526839]
[211]
Bergefall, K.; Trybala, E.; Johansson, M.; Uyama, T.; Naito, S.; Yamada, S.; Kitagawa, H.; Sugahara, K.; Bergström, T. Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J. Biol. Chem., 2005, 280(37), 32193-32199.
[http://dx.doi.org/10.1074/jbc.M503645200] [PMID: 16027159]
[212]
Banfield, B.W.; Leduc, Y.; Esford, L.; Visalli, R.J.; Brandt, C.R.; Tufaro, F. Evidence for an interaction of herpes simplex virus with chondroitin sulfate proteoglycans during infection. Virology, 1995, 208(2), 531-539.
[http://dx.doi.org/10.1006/viro.1995.1184] [PMID: 7747425]
[213]
Marchetti, M.; Trybala, E.; Superti, F.; Johansson, M.; Bergström, T. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans. Virology, 2004, 318(1), 405-413.
[http://dx.doi.org/10.1016/j.virol.2003.09.029] [PMID: 14972565]
[214]
Nyberg, K.; Ekblad, M.; Bergström, T.; Freeman, C.; Parish, C.R.; Ferro, V.; Trybala, E. The low molecular weight heparan sulfatemimetic, PI-88, inhibits cell-to-cell spread of herpes simplex virus. Antiviral Res., 2004, 63(1), 15-24.
[http://dx.doi.org/10.1016/j.antiviral.2004.01.001] [PMID: 15196816]
[215]
Lee, J-B.; Srisomporn, P.; Hayashi, K.; Tanaka, T.; Sankawa, U.; Hayashi, T. Effects of structural modification of calcium spirulan, a sulfated polysaccharide from Spirulina platensis, on antiviral activity. Chem. Pharm. Bull. (Tokyo), 2001, 49(1), 108-110.
[http://dx.doi.org/10.1248/cpb.49.108] [PMID: 11201213]
[216]
Katsuraya, K.; Ikushima, N.; Takahashi, N.; Shoji, T.; Nakashima, H.; Yamamoto, N.; Yoshida, T.; Uryu, T. Synthesis of sulfated alkyl malto- and laminara-oligosaccharides with potent inhibitory effects on AIDS virus infection. Carbohydr. Res., 1994, 260(1), 51-61.
[http://dx.doi.org/10.1016/0008-6215(94)80021-9] [PMID: 8062289]
[217]
Katsuraya, K.; Nakashima, H.; Yamamoto, N.; Uryu, T. Synthesis of sulfated oligosaccharide glycosides having high anti-HIV activity and the relationship between activity and chemical structure. Carbohydr. Res., 1999, 315(3-4), 234-242.
[http://dx.doi.org/10.1016/S0008-6215(98)00315-2] [PMID: 10399296]
[218]
Sepúlveda-Crespo, D.; Ceña-Díez, R.; Jiménez, J.L.; Ángeles Muñoz-Fernández, M. Mechanistic studies of viral entry: An overview of dendrimer-based microbicides as entry inhibitors against both hiv and hsv-2 overlapped infections. Med. Res. Rev., 2017, 37(1), 149-179.
[http://dx.doi.org/10.1002/med.21405] [PMID: 27518199]
[219]
Wang, W.; Wang, S-X.; Guan, H-S. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar. Drugs, 2012, 10(12), 2795-2816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[220]
Mercer, J.; Schelhaas, M.; Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem., 2010, 79, 803-833.
[http://dx.doi.org/10.1146/annurev-biochem-060208-104626] [PMID: 20196649]
[221]
Queiroz, K.C.; Medeiros, V.P.; Queiroz, L.S.; Abreu, L.R.; Rocha, H.A.; Ferreira, C.V.; Jucá, M.B.; Aoyama, H.; Leite, E.L. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed. Pharmacother., 2008, 62(5), 303-307.
[http://dx.doi.org/10.1016/j.biopha.2008.03.006] [PMID: 18455359]
[222]
Venkatesan, J.; Keekan, K.K.; Anil, S.; Bhatnagar, I.; Kim, S-K. Phlorotannins. In: Encyclopedia of food chemistry; Elsevier, 2019; p. 515.
[223]
Shibata, T.; Kawaguchi, S.; Hama, Y.; Inagaki, M.; Yamaguchi, K.; Nakamura, T. Local and chemical distribution of phlorotannins in brown algae. J. Appl. Phycol., 2004, 16, 291-296.
[http://dx.doi.org/10.1023/B:JAPH.0000047781.24993.0a]
[224]
Shrestha, S.; Zhang, W.; Smid, S.D. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Biosci., 2021, 39, 100832.
[http://dx.doi.org/10.1016/j.fbio.2020.100832]
[225]
Eom, S-H.; Moon, S-Y.; Lee, D-S.; Kim, H-J.; Park, K.; Lee, EW.; Kim, T.H.; Chung, Y-H.; Lee, M-S.; Kim, Y-M. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae, 2015, 30, 241-246.
[http://dx.doi.org/10.4490/algae.2015.30.3.241]
[226]
Kwon, H-J.; Ryu, Y.B.; Kim, Y-M.; Song, N.; Kim, C.Y.; Rho, M-C.; Jeong, J-H.; Cho, K-O.; Lee, W.S.; Park, S-J. In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg. Med. Chem., 2013, 21(15), 4706-4713.
[http://dx.doi.org/10.1016/j.bmc.2013.04.085] [PMID: 23746631]
[227]
Park, J-Y.; Kim, J.H.; Kwon, J.M.; Kwon, H-J.; Jeong, H.J.; Kim, Y.M.; Kim, D.; Lee, W.S.; Ryu, Y.B. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg. Med. Chem., 2013, 21(13), 3730-3737.
[http://dx.doi.org/10.1016/j.bmc.2013.04.026] [PMID: 23647823]
[228]
Cho, H.M.; Doan, T.P.; Ha, T.K.Q.; Kim, H.W.; Lee, B.W.; Pham, H.T.T.; Cho, T.O.; Oh, W.K. Dereplication by High-Performance Liquid Chromatography (HPLC) with quadrupole-time-of-flight mass spectroscopy (qTOF-MS) and antiviral activities of phlorotannins from Ecklonia cava. Mar. Drugs, 2019, 17(3), 149.
[http://dx.doi.org/10.3390/md17030149] [PMID: 30836593]
[229]
Langarizadeh, M.A.; Abiri, A.; Ghasemshirazi, S.; Foroutan, N.; Khodadadi, A.; Faghih-Mirzaei, E. Phlorotannins as HIV Vpu inhibitors, an in silico virtual screening study of marine natural products. Biotechnol. Appl. Biochem., 2021, 68(4), 918-926.
[http://dx.doi.org/10.1002/bab.2014] [PMID: 32860447]
[230]
Wardana, A.P.; Aminah, N.S.; Rosyda, M.; Abdjan, M.I.; Kristanti, A.N.; Tun, K.N.W.; Choudhary, M.I.; Takaya, Y. Potential of diterpene compounds as antivirals, a review. Heliyon, 2021, 7(8), e07777.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07777] [PMID: 34405122]
[231]
Cirne-Santos, C.C.; Teixeira, V.L.; Castello-Branco, L.R.; Frugulhetti, I.C.; Bou-Habib, D.C. Inhibition of HIV-1 replication in human primary cells by a dolabellane diterpene isolated from the marine algae Dictyota pfaffii. Planta Med., 2006, 72(4), 295-299.
[http://dx.doi.org/10.1055/s-2005-916209] [PMID: 16557468]
[232]
Hwang, H-J.; Han, J-W.; Jeon, H.; Cho, K.; Kim, J.H.; Lee, D-S.; Han, J.W. Characterization of a novel mannose-binding lectin with antiviral activities from red alga, Grateloupia chiangii. Biomolecules, 2020, 10(2), 333.
[http://dx.doi.org/10.3390/biom10020333] [PMID: 32092955]
[233]
Alexandre, K.B.; Gray, E.S.; Lambson, B.E.; Moore, P.L.; Choge, I.A.; Mlisana, K.; Karim, S.S.A.; McMahon, J.; O’Keefe, B.; Chikwamba, R.; Morris, L. Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins, Griffithsin, Cyanovirin-N and Scytovirin. Virology, 2010, 402(1), 187-196.
[http://dx.doi.org/10.1016/j.virol.2010.03.021] [PMID: 20392471]
[234]
Molchanova, V.; Chikalovets, I.; Chernikov, O.; Belogortseva, N.; Li, W.; Wang, J-H.; Yang, D-Y.O.; Zheng, Y-T.; Lukyanov, P. A new lectin from the sea worm Serpula vermicularis: Isolation, characterization and anti-HIV activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2007, 145(2), 184-193.
[http://dx.doi.org/10.1016/j.cbpc.2006.11.012] [PMID: 17258940]
[235]
Sato, T.; Hori, K. Cloning, expression, and characterization of a novel anti-HIV lectin from the cultured cyanobacterium, Oscillatoria agardhii. Fish. Sci., 2009, 75, 743-753.
[http://dx.doi.org/10.1007/s12562-009-0074-4]
[236]
Moulaei, T.; Shenoy, S.R.; Giomarelli, B.; Thomas, C.; McMahon, J.B.; Dauter, Z.; O’Keefe, B.R.; Wlodawer, A. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity. Structure, 2010, 18(9), 1104-1115.
[http://dx.doi.org/10.1016/j.str.2010.05.016] [PMID: 20826337]
[237]
Moulaei, T.; Botos, I.; Ziółkowska, N.E.; Bokesch, H.R.; Krumpe, L.R.; McKee, T.C.; O’Keefe, B.R.; Dauter, Z.; Wlodawer, A. Atomic-resolution crystal structure of the antiviral lectin scytovirin. Protein Sci., 2007, 16(12), 2756-2760.
[http://dx.doi.org/10.1110/ps.073157507] [PMID: 17965185]
[238]
Bolmstedt, A.J.; O’Keefe, B.R.; Shenoy, S.R.; McMahon, J.B.; Boyd, M.R. Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. Mol. Pharmacol., 2001, 59(5), 949-954.
[http://dx.doi.org/10.1124/mol.59.5.949] [PMID: 11306674]
[239]
Bewley, C.A.; Otero-Quintero, S. The potent anti-HIV protein cyanovirin-N contains two novel carbohydrate binding sites that selectively bind to Man(8) D1D3 and Man(9) with nanomolar affinity: Implications for binding to the HIV envelope protein gp120. J. Am. Chem. Soc., 2001, 123(17), 3892-3902.
[http://dx.doi.org/10.1021/ja004040e] [PMID: 11457139]
[240]
Riccio, G.; Ruocco, N.; Mutalipassi, M.; Costantini, M.; Zupo, V.; Coppola, D.; de Pascale, D.; Lauritano, C. Ten-year research update review: Antiviral activities from marine organisms. Biomolecules, 2020, 10(7), 1007.
[http://dx.doi.org/10.3390/biom10071007] [PMID: 32645994]
[241]
Mohammed, M.M.; Hamdy, A-H.A.; El-Fiky, N.M.; Mettwally, W.S.; El-Beih, A.A.; Kobayashi, N. Anti-influenza A virus activity of a new dihydrochalcone diglycoside isolated from the Egyptian seagrass Thalassodendron ciliatum (Forsk.) den Hartog. Nat. Prod. Res., 2014, 28(6), 377-382.
[http://dx.doi.org/10.1080/14786419.2013.869694] [PMID: 24443884]
[242]
Fesen, M.R.; Kohn, K.W.; Leteurtre, F.; Pommier, Y. Inhibitors of human immunodeficiency virus integrase. Proc. Natl. Acad. Sci. USA, 1993, 90(6), 2399-2403.
[http://dx.doi.org/10.1073/pnas.90.6.2399] [PMID: 8460151]
[243]
Fesen, M.R.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, K.W. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem. Pharmacol., 1994, 48(3), 595-608.
[http://dx.doi.org/10.1016/0006-2952(94)90291-7] [PMID: 7520698]
[244]
Sosa-Hernández, J.E.; Escobedo-Avellaneda, Z.; Iqbal, H.M.N.; Welti-Chanes, J. State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules, 2018, 23(11), E2953.
[http://dx.doi.org/10.3390/molecules23112953] [PMID: 30424551]
[245]
Getachew, A.T.; Jacobsen, C.; Holdt, S.L. Emerging technologies for the extraction of marine phenolics: Opportunities and challenges. Mar. Drugs, 2020, 18(8), E389.
[http://dx.doi.org/10.3390/md18080389] [PMID: 32726930]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy