[12]
Suzuki, M.; Koyama, H.; Ishii, H.; Kato, K. Ögren, M.; Doi, H. Green Process of Three-Component Prostaglandin Synthesis and Rapid 11c Labelings for Short-Lived Pet Tracers; IntechOpen: London 2018.
[28]
Mettler, F.A.; Guiberteau, M.J. Essentials of Nuclear Medicine and Molecular Imaging E-Book, 7th ed; Elsevier Health Sciences, 2018.
[56]
Kristensen, K. Nørbygaard, E. Safety and Efficacy of Radiopharmaceuticals; Martinus Nijhoff; Kluwer: Boston, 2012.
[69]
Chahal, V.; Nirwan, S.; Kakkar, R. Combined approach of homology modelling, molecular dynamics, and docking: Computer aided drug discovery. Phys. Sci. Rev., 2019, 4, 20190066.
[87]
Wei, H.; Luo, S.; Liu, G.; Yang, Y.; Jiang, S. Study of QSAR for 153 Sm complexes as bone seeking agent. J. Nucl. Radiochem., 2003, 25(2), 81-85.
[109]
Belyanin, M.L.; Stepanova, E.V.; Minin, S.M.; Lyshmanov, Y.B.; Filimonov, V.D. Methods of synthesis of radiopharmaceuticals based on fatty acids marked with 99mTc and perspectives of their application. Adv. Mat. Res., 2015, 1084, 400-405.
[119]
Nabati, M.; Sabahnoo, H.; Bodaghi, N.V. Molecular structure determination and stability parameters study of Tc-99m-MDP (Technetium 99m Methylene Diphosphonate) cold kit and analysis of its binding to osteocalcin receptor as a bone scan agent. Chem. Methodol., 2020, 4(3), 297-310.
[120]
Nabati, M. Insight into the stability, reactivity, structural and spectral properties of the anti, syn-endo and syn-exo isomers of bis(N-ethoxy-N-ethyl-dithiocarbamato)nitrido technetium-99m Tc-99m-N(NOEt)(2). Radiopharmaceutical. Chem. Methodol., 2018, 2(3), 223-238.
[124]
Jang, K.S.; Lee, S.S.; Oh, Y.H.; Lee, S.H.; Kim, S.E.; Kim, D.W. Control of reactivity and selectivity of guanidinyliodonium salts toward F-18-labeling by monitoring of protecting groups: Experiment and theory. J. Fluor. Chem., 2019, 227, 109387.
[165]
Chong, H.S.; Chen, Y.W.; Kang, C.S.; Sin, I.; Zhang, S.Y.; Wang, H.X. Pyridine-containing octadentate ligand NE3TA-PY for formation of neutral complex with Lu-177(III) and Y-90(III) for radiopharmaceutical applications: Synthesis, DFT calculation, radiolabeling, and in vitro complex stability. J. Inorg. Biochem., 2021, 221, 111436.
[204]
Kontoyianni, M. Docking and virtual screening in drug discovery. Methods Mol. Biol., 2017, 1647, 255-266.
[225]
Şahin, A.; Şentürk, M.; Salmas, R.E.; Durdagi, S.; Ayan, A.; Karagölge,
A. Investigation of inhibition of human glucose 6-phosphate
dehydrogenase by some 99mTc chelators by in silico and in vitro
methods. J Enz. Inhib. Med. Chem., 2016, 31(1), 141-147.
[227]
Tiwari, A.K.; Rathore, V.S.; Sinha, D.; Datta, A.; Sehgal, N.; Chuttani, K. Synthesis, radiolabelling and initial biological characterisation of F-18-labelled xanthine derivatives for PET imaging of Eph receptors. Org. Biomol. Chem., 2012, 18(16), 3104-3116.
[255]
Pedersen, K.S.; Baun, C.; Nielsen, K.M.; Thisgaard, H.; Jensen, A.I.; Zhuravlev, F. Design, synthesis, computational, and preclinical evaluation of Ti-nat/Ti-45-labeled urea-based glutamate PSMA ligand. Molecules, 2020, 25(5), 1104.
[286]
Fantoni, E.R.; Dal Ben, D.; Falzoni, S.; Di Virgilio, F.; Lovestone, S.; Gee, A. Design, synthesis and evaluation in an LPS rodent model of neuroinflammation of a novel 18 F-labelled PET tracer targeting P2X7. Eur. J. Nucl. Med. Mol. Imag Res., 2017, 7(1), 1-12.
[304]
Hsieh, C.J.; Riad, A.; Lee, J.Y.; Sahlholm, K.; Xu, K.Y.; Luedtke, R.R. Interaction of ligands for PET with the dopamine D3 receptor: In silico and in vitro methods. Biomol., 2021, 11(4), 529.
[331]
Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neur. Comp. App., 2020, 32, 12363-12379.
[343]
Wang, T.; Lei, Y.; Fu, Y.; Curran, W.J.; Liu, T.; Yang, X Machine learning in quantitative PET imaging arXiv:200106597, 2020.
[345]
Vicente, A.M.G. Galán, M.J.T.; Pardo, F.J.P.; Amo-Salas, M.; Marín, B.M.; Muñoz, S.N. Increasing the confidence of 18F-Florbetaben PET interpretations: Machine learning quantitative approximation. Rev. Españ. Med. Nucl. Imag. Mol., 2021, 41(3), 153-163.
[348]
Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Mater., 2017, 3(3), 159-177.
[353]
Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M. ZINC20 - A free ultralarge scale chemical database
for ligand discovery. J. Chem. Inf. Mod., 2020.
[359]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; John Wiley & Sons: Weinheim, 2008.
[360]
Seko, A.; Togo, A.; Tanaka, I. Descriptors for machine learning of
materials data. In: Tanaka, I.; Ed. Nanoinformatics; Springer: Singapore,
2018; pp. 3-23.
[367]
Kubinyi, H. Comparative molecular field analysis (CoMFA). Encyc. Comp. Chem., 1998, 1, 448-460.
[369]
Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon software: An easy approach to molecular descriptor calculations. MATCH Commun. Math. Comput. Chem., 2006, 56(2), 237-248.
[383]
Roy, K.; Das, R.N.; Ambure, P.; Aher, R.B. Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom. Intell. Lab. Syst., 2016, 152, 18-33.
[388]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR models strategies and importance. Int. J. Drug Des. Discov., 2011, 3, 511-519.
[401]
Salahinejad, M.; Zolfonoun, E. Modeling of radiometal complexation formation with bifunctional coupling agents using ligand metal interaction profile. Int. J. Quant. Struct. Prop. Relat., 2017, 2(1), 95-105.
[434]
Seidel, T.; Bryant, S.D.; Ibis, G.; Poli, G.; Langer, T. 3D pharmacophore modeling techniques in computer aided molecular design using LigandScout. Tut. Cheminf., 2017, 281, 279-309.
[452]
Walker, J.D.; Newman, M.C.; Enache, M. Fundamental QSARs for Metal Ions; CRC Press: Boca Raton, 2019.
[455]
Palermo, G.; Spinello, A.; Saha, A.; Magistrato, A. Frontiers of metal-coordinating drug design. Expert Opin. Drug Discov., 2021, 16(5), 497-511.