Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Therapeutic Role of Phytophenol Gallic Acid for the Cure of COVID-19 Pathogenesis

Author(s): Kirti Baraskar*, Pratibha Thakur, Renu Shrivastava and Vinoy K. Shrivastava

Volume 23, Issue 4, 2023

Published on: 02 November, 2022

Page: [464 - 469] Pages: 6

DOI: 10.2174/1871530322666220829141401

Price: $65

Abstract

The SARS CoV-2 virus, the causative agent of COVID-19 uses the ACE-2 receptor of the host to penetrate and infect the cell, mainly in the pulmonary, renal, and cardiac tissues. The earlier reported Delta and the recent Omicron are the variants of concern. The mutations in the RBD region of spike protein are associated with increased RBD-ACE-2 receptor interaction. This binding affinity between spike protein and the receptor is greater in Omicron than in the Delta variant. Moreover, the Omicron variant has numerous hydrophobic amino acids in the RBD region of the spike protein, which maintain its structural integrity. Gallic acid is a phytophenol and shows high binding affinity toward the ACE-2 receptors, which may be helpful for better outcomes in the treatment of COVID-19 pathogenesis. In the present study, significant data were collected from different databases i.e., PubMed, Scopus, Science Direct, and Web of Science by using keywords like anti-oxidative, anti-inflammatory, and antimicrobial properties of gallic acid, in addition to receptor-based host cell interaction of SARS CoV-2 virus. The finding shows that gallic acid can reduce inflammation by attenuating NF-κB and MAPK signaling pathways to suppress the release of ICAM-1, a cell surface glycoprotein; various pro-inflammatory cytokines like TNF-α, IL 1-β, IL-6, IL-10, and chemokines like CCL-2,5, CXCL-8 along with tissue infiltration by immune cells. The purpose of this review is to highlight the therapeutic potential of gallic acid in COVID-19 pathogenesis based on its strong anti-oxidative, anti-inflammatory, and anti- microbial properties.

Keywords: Inflammation, antioxidative, immunomodulatory, COVID-19, cytokines, gallic acid.

Graphical Abstract
[1]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[2]
Khan, M.; Adil, S.F.; Alkhathlan, H.Z.; Tahir, M.N.; Saif, S.; Khan, M.; Khan, S.T. COVID-19: A global challenge with old history, epidemiology and progress so far. Molecules, 2020, 26(1), 39.
[http://dx.doi.org/10.3390/molecules26010039] [PMID: 33374759]
[3]
Khouchlaa, A.; Bouyahya, A. COVID-19 nephropathy: Probable mechanisms of kidney failure. J. Nephrol., 2020, 9(4), e35.
[4]
Luk, H.K.H.; Li, X.; Fung, J.; Lau, S.K.P.; Woo, P.C.Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect. Genet. Evol., 2019, 71, 21-30.
[http://dx.doi.org/10.1016/j.meegid.2019.03.001] [PMID: 30844511]
[5]
Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; Zhou, H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty, 2020, 9(1), 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[6]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[7]
Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed., 2020, 91(1), 157-160.
[PMID: 32191675]
[8]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[9]
Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. Clin. Immunol., 2020, 215, 108448.
[10]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[11]
Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and delta variant of SARS-CoV-2: A comparative computational study of spike protein. J. Med. Virol., 2021, 2021, 1-9.
[PMID: 34914115]
[12]
Kannan, S.; Sharma, K.; N.Spratt, A. S.Chand, H.; Byrareddy, N.S. Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. J. Autoimmun., 2022, 126(2022), 102779.
[13]
He, X.; Hong, W.; Pan, X.; Lu, G.; Wei, X. SARS‐CoV‐2 Omicron variant: Characteristics and prevention. MedComm, 2021, 2(4), 838-845.
[http://dx.doi.org/10.1002/mco2.110] [PMID: 34957469]
[14]
Barton, M.I.; MacGowan, S.A.; Kutuzov, M.A.; Dushek, O.; Barton, G.J.; van der Merwe, P.A. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife, 2021, 10, e70658.
[http://dx.doi.org/10.7554/eLife.70658] [PMID: 34435953]
[15]
Choubey, S.; Goyal, S.; Varughese, L.R.; Kumar, V.; Sharma, A.K.; Beniwal, V. Probing gallic acid for its broad spectrum applications. Mini Rev. Med. Chem., 2018, 18(15), 1283-1293.
[http://dx.doi.org/10.2174/1389557518666180330114010] [PMID: 29600764]
[16]
Gao, J.; Hu, J.; Hu, D.; Yang, X. A role of gallic acid in oxidative damage diseases: A comprehensive review. Nat. Prod. Commun., 2019, 14(8), 1934578X1987417.
[http://dx.doi.org/10.1177/1934578X19874174]
[17]
Thakur, P.; Shrivastava, R.; Shrivastava, V.K. Oxytocin as a potential adjuvant against COVID-19 infection. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(7), 1155-1162.
[http://dx.doi.org/10.2174/1871530320666200910114259] [PMID: 32914732]
[18]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[19]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[20]
Malha, L.; Mueller, F.B.; Pecker, M.S.; Mann, S.J.; August, P.; Feig, P.U. COVID-19 and the renin-angiotensin system. Kidney Int. Rep., 2020, 5(5), 563-565.
[21]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[22]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[23]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[24]
Micarelli, D.; Moccia, F.; Costantini, S.; Feriozzi, S. COVID-19 is a complex disease with wide spectrum of clinical patterns and an emerging problem for nephrologist. J. Nephropathol., 2020, 9(4), e33.
[http://dx.doi.org/10.34172/jnp.2020.33]
[25]
Liu, K.; Chen, Y.; Lin, R.; Han, K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J. Infect., 2020, 80(6), e14-e18.
[http://dx.doi.org/10.1016/j.jinf.2020.03.005] [PMID: 32171866]
[26]
El-Aziz, N.M.A.; Shehata, M.G.; Awad, O.M.E.; El-Sohaimy, S.A. Inhibition of COVID 19 RNA dependent RNA polymerase by natural bioactive compounds: Molecular docking analysis. Res. Sq., 2020, 80(6), E14-E18.
[27]
Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133(110985), 110985.
[http://dx.doi.org/10.1016/j.biopha.2020.110985] [PMID: 33212373]
[28]
Guo, L.; Cao, J.; Wei, T.; Li, J.; Feng, Y.; Wang, L.; Sun, Y.; Chai, Y. Gallic acid attenuates thymic involution in the d-galactose induced accelerated aging mice. Immunobiology, 2020, 225(1), 151870.
[http://dx.doi.org/10.1016/j.imbio.2019.11.005] [PMID: 31822433]
[29]
Kroes, B.; van den Berg, A.; Quarles van Ufford, H.; van Dijk, H.; Labadie, R. Anti-inflammatory activity of gallic acid. Planta Med., 1992, 58(6), 499-504.
[http://dx.doi.org/10.1055/s-2006-961535] [PMID: 1336604]
[30]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[31]
Goc, A.; Sumera, W.; Rath, M.; Niedzwiecki, A. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One, 2021, 16(6), e0253489.
[http://dx.doi.org/10.1371/journal.pone.0253489] [PMID: 34138966]
[32]
Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[33]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev., 2020, 19(6), 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[34]
Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med., 2020, 8(6), e46-e47.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[35]
Wu, D.; Yang, X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect., 2020, 53(3), 368-370.
[http://dx.doi.org/10.1016/j.jmii.2020.03.005] [PMID: 32205092]
[36]
Chen, H.; Ma, C-Y.; Xi Chen, Y.G.; Yang, C.; Jiang, H-Z.; Wang, X. The effect of rhein and gallic acid on the content of IL10, IL-1β and TNF-α in serum of rats with endotoxemia. J. Chem. Pharm. Res., 2014, 6(10), 296-299.
[37]
Kim, S.H.; Jun, C.D.; Suk, K.; Choi, B.J.; Lim, H.; Park, S.; Lee, S.H.; Shin, H.Y.; Kim, D.K.; Shin, T.Y. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci., 2006, 91(1), 123-131.
[http://dx.doi.org/10.1093/toxsci/kfj063] [PMID: 16322071]
[38]
Das, N.D.; Jung, K.H.; Park, J.H.; Mondol, M.A.M.; Shin, H.J.; Lee, H.S.; Park, K.S.; Choi, M.R.; Kim, K.S.; Kim, M.S.; Lee, S.R.; Chai, Y.G. Terminalia chebula extract acts as a potential NF-κB inhibitor in human lymphoblastic T cells. Phytother. Res., 2011, 25(6), 927-934.
[http://dx.doi.org/10.1002/ptr.3398] [PMID: 21509843]
[39]
Hsiang, C.Y.; Hseu, Y.C.; Chang, Y.C.; Kumar, K.J.S.; Ho, T.Y.; Yang, H.L. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem., 2013, 136(2), 426-434.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.009] [PMID: 23122080]
[40]
Liu, K.; Hu, S.; Chan, B.; Wat, E.; Lau, C.; Hon, K.; Fung, K.; Leung, P.; Hui, P.; Lam, C.; Wong, C. Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan Cortex (Danpi) and gallic acid. Molecules, 2013, 18(3), 2483-2500.
[http://dx.doi.org/10.3390/molecules18032483] [PMID: 23439564]
[41]
Yoon, C.H.; Chung, S.J.; Lee, S.W.; Park, Y.B.; Lee, S.K.; Park, M.C. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine, 2013, 80(3), 274-279.
[http://dx.doi.org/10.1016/j.jbspin.2012.08.010] [PMID: 23058179]
[42]
Jiang, D.; Zhang, M.; Zhang, Q.; Chen, Y.; Ma, W.; Wu, W.; Mu, X.; Chen, W. Influence of gallic acid on porcine neutrophils phosphodiesterase 4, IL-6, TNF-α and rat arthritis model. J. Integr. Agric., 2015, 14(4), 758-764.
[http://dx.doi.org/10.1016/S2095-3119(14)60824-8]
[43]
Hu, J.J.; Dubin, N.; Kurland, D.; Ma, B.L.; Roush, G.C. The effects of hydrogen peroxide on DNA repair activities. Mutat. Res. DNA Repair, 1995, 336(2), 193-201.
[http://dx.doi.org/10.1016/0921-8777(94)00054-A] [PMID: 7885389]
[44]
Subhashini, N.A.T.L. Antioxidant activity of Trigonella foenum graecum using various in vitro and ex vivo model. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 96-102.
[45]
Türker, F.S.; Doğan, A.; Ozan, G.; Kıbar, K.; Erışır, M. Change in free radical and antioxidant enzyme levels in the patients undergoing open heart surgery with cardiopulmonary bypass. Oxid. Med. Cell. Longev., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/1783728] [PMID: 28101295]
[46]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[47]
Liu, Q.; Gao, Y.; Ci, X. Role of Nrf2 and its activators in respiratory diseases. Oxid. Med. Cell. Longev., 2019, 2019(7090534), 1-17.
[http://dx.doi.org/10.1155/2019/7090534] [PMID: 30728889]
[48]
Rabbani, P.S.; Soares, M.A.; Hameedi, S.G.; Kadle, R.L.; Mubasher, A.; Kowzun, M.; Ceradini, D.J. Dysregulation of Nrf2/Keap1 redox pathway in diabetes affects multipotency of stromal cells. Diabetes, 2019, 68(1), 141-155.
[http://dx.doi.org/10.2337/db18-0232] [PMID: 30352880]
[49]
Schmidlin, C.J.; Dodson, M.B.; Madhavan, L.; Zhang, D.D. Redox regulation by NRF2 in aging and disease. Free Radic. Biol. Med., 2019, 134, 702-707.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.016] [PMID: 30654017]
[50]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[51]
Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; Pan, H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol., 2020, 11, 580593.
[http://dx.doi.org/10.3389/fimmu.2020.580593] [PMID: 33365024]
[52]
Yen, G-C.; Duh, P.D.; Tsai, H-L. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem., 2002, 79(3), 307-313.
[http://dx.doi.org/10.1016/S0308-8146(02)00145-0]
[53]
Pasanphan, W.; Chirachanchai, S. Conjugation of gallic acid onto chitosan: An approach for green and water-based antioxidant. Carbohydr. Polym., 2008, 72(1), 169-177.
[http://dx.doi.org/10.1016/j.carbpol.2007.08.002]
[54]
Senevirathne, M.; Jeon, Y.J.; Kim, Y.T.; Park, P.J.; Jung, W.K.; Ahn, C.B.; Je, J.Y. Prevention of oxidative stress in Chang liver cells by gallic acid-grafted-chitosans. Carbohydr. Polym., 2012, 87(1), 876-880.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.080] [PMID: 34663049]
[55]
Ojeaburu, S.I.; Oriakhi, K. Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats. Toxicol. Rep., 2021, 8, 177-185.
[http://dx.doi.org/10.1016/j.toxrep.2021.01.001] [PMID: 33489777]
[56]
Valdivia, V.B.; Colín, M.F.; Rojas-Franco, P.; Chao-Vazquez, A. Gallic acid prevents the oxidative and endoplasmic reticulum stresses in the hippocampus of adult-onset hypothyroid rats. Front. Pharmacol., 2021, 12, 671614.
[57]
Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int., 2006, 48(4), 263-274.
[http://dx.doi.org/10.1016/j.neuint.2005.10.010] [PMID: 16343693]
[58]
Ferk, F.; Chakraborty, A.; Jäger, W.; Kundi, M.; Bichler, J.; Mišík, M.; Wagner, K.H.; Grasl-Kraupp, B.; Sagmeister, S.; Haidinger, G.; Hoelzl, C.; Nersesyan, A.; Dušinská, M.; Simić, T.; Knasmüller, S. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments. Mutat. Res., 2011, 715(1-2), 61-71.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.07.010] [PMID: 21827773]
[59]
Lu, J.; Wang, Z.; Ren, M.; Huang, G.; Fang, B.; Bu, X.; Liu, Y.; Guan, S. Antibacterial effect of gallic acid against Aeromonas hydrophila and Aeromonas sobria through damaging membrane integrity. Curr. Pharm. Biotechnol., 2016, 17(13), 1153-1158.
[http://dx.doi.org/10.2174/1389201017666161022235759] [PMID: 27774889]
[60]
Meshram, G.; Patil, B.; Yadav, S.; Shinde, D. Isolation and characterization of gallic acid from terminalia bellerica and its effect on carbohydrate regulatory system in vitro. Int. J. Res. Ayurveda Pharm., 2011, 2(2), 559-562.
[61]
Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist., 2013, 19(4), 256-265.
[http://dx.doi.org/10.1089/mdr.2012.0244] [PMID: 23480526]
[62]
Lee, D.S.; Je, J.Y. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J. Agric. Food Chem., 2013, 61(26), 6574-6579.
[http://dx.doi.org/10.1021/jf401254g] [PMID: 23635088]
[63]
Pereira Rangel, L.; Fritzen, M.; Yunes, R.A.; Leal, P.C.; Creczynski-Pasa, T.B.; Ferreira-Pereira, A. Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p. FEMS Yeast Res., 2010, 10(3), 244-251.
[http://dx.doi.org/10.1111/j.1567-1364.2009.00603.x] [PMID: 20132313]
[64]
Choi, H.J.; Song, J.H.; Bhatt, L.R.; Baek, S.H. Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity. Phytother. Res., 2010, 24(9), 1292-1296.
[http://dx.doi.org/10.1002/ptr.3101] [PMID: 20104501]
[65]
Kratz, J.M.; Andrighetti-Fröhner, C.R.; Kolling, D.J.; Leal, P.C.; Cirne-Santos, C.C.; Yunes, R.A.; Nunes, R.J.; Trybala, E.; Bergström, T.; Frugulhetti, I.C.P.P.; Barardi, C.R.M.; Simões, C.M.O. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem. Inst. Oswaldo Cruz, 2008, 103(5), 437-442.
[http://dx.doi.org/10.1590/S0074-02762008000500005] [PMID: 18797755]
[66]
Nutan, M.M. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J. Med. Res., 2013, 137(3), 540-548.
[67]
You, H.L.; Huang, C.C.; Chen, C.J.; Chang, C.C.; Liao, P.L.; Huang, S.T. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid. J. Chin. Med. Assoc., 2018, 81(5), 458-468.
[http://dx.doi.org/10.1016/j.jcma.2017.11.007] [PMID: 29287704]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy