Research Article

基于DeepGENE的CAV和CAVIN家族基因在急性肺损伤中的作用机制

卷 23, 期 1, 2023

发表于: 21 September, 2022

页: [72 - 80] 页: 9

弟呕挨: 10.2174/1566523222666220829140649

价格: $65

摘要

背景:急性肺损伤(ALI)的病死率高达40%~60%。虽然脓毒症、外伤、肺炎、烧伤、输血、体外循环、胰腺炎等多种因素均可诱发ALI,但具有这些危险因素的患者最终会发展为ALI。ALI的发病率不高,ALI患者的转归各不相同,提示与个体间的遗传差异有关。在之前的研究中,我们发现了cavin-2在肺功能中的多种功能。此外,许多其他研究表明,CAV1是肺损伤的关键调节因子。由于cavin-2和CAV1之间的密切关系,我们怀疑cavin-2也与ALI有关。此外,我们还好奇CAV家族和cavin家族基因在ALI中的作用。 方法:为了揭示CAV和CAVIN家族基因在ALI中的作用机制,我们提出DeepGENE预测CAV和CAVIN家族基因是否与ALI相关。该方法构建了基因相互作用网络,提取了84个组织中的基因表达。我们将这些特征分为两组,并使用两个网络编码器对特征进行编码和学习。 结果:与DNN、GBDT、RF和KNN相比,DeepGENE的AUC分别提高了7.89%、16.84%、20.19%和32.01%。AUPR得分分别提高了8.05%、15.58%、22.56%和23.34%。DeepGENE显示CAVIN-1、CAVIN-2、CAVIN-3和CAV2与ALI相关。 结论:DeepGENE是一种可靠的急性肺损伤相关基因鉴定方法。多个CAV和CAVIN家族基因通过多种途径和基因功能与急性肺损伤相关基因相关。

关键词: CAV家族基因,CAVIN家族基因,急性肺损伤,深度学习,基因表达,基因网络。

« Previous
图形摘要
[1]
Christiani DC. Vaping-induced acute lung injury. Mass Medical Soc 2020; 382: 960-2.
[2]
Fujishima S, Gando S, Daizoh S, et al. Infection site is predictive of outcome in acute lung injury associated with severe sepsis and septic shock. Respirology 2016; 21(5): 898-904.
[http://dx.doi.org/10.1111/resp.12769] [PMID: 27028604]
[3]
Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi PS, Thimmulappa RK. MicroRNA regulation of acute lung injury and acute respiratory distress syndrome. J Cell Physiol 2016; 231(10): 2097-106.
[http://dx.doi.org/10.1002/jcp.25316] [PMID: 26790856]
[4]
Cui L, Zheng D, Lee YH, et al. Metabolomics investigation reveals metabolite mediators associated with acute lung injury and repair in a murine model of influenza pneumonia. Sci Rep 2016; 6(1): 26076.
[http://dx.doi.org/10.1038/srep26076] [PMID: 27188343]
[5]
Komiya K, Akaba T, Kozaki Y, Kadota J, Rubin BK. A systematic review of diagnostic methods to differentiate acute lung injury/acute respiratory distress syndrome from cardiogenic pulmonary edema. Crit Care 2017; 21(1): 228.
[http://dx.doi.org/10.1186/s13054-017-1809-8] [PMID: 28841896]
[6]
Cao Y, Lyu Y, Tang J, Li Y. MicroRNAs: Novel regulatory molecules in acute lung injury/acute respiratory distress syndrome. Biomed Rep 2016; 4(5): 523-7.
[http://dx.doi.org/10.3892/br.2016.620] [PMID: 27123242]
[7]
Semple JW, Rebetz J, Kapur R. Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood 2019; 133(17): 1840-53.
[http://dx.doi.org/10.1182/blood-2018-10-860809] [PMID: 30808638]
[8]
Lo Coco G, Melchiori F, Oieni V, et al. Group treatment for substance use disorder in adults: A systematic review and meta-analysis of randomized-controlled trials. J Subst Abuse Treat 2019; 99: 104-16.
[http://dx.doi.org/10.1016/j.jsat.2019.01.016] [PMID: 30797382]
[9]
Zhao T, Hu Y, Zang T, Cheng L. MRTFB regulates the expression of NOMO1 in colon. Proc Natl Acad Sci USA 2020; 117(14): 7568-9.
[http://dx.doi.org/10.1073/pnas.2000499117] [PMID: 32184333]
[10]
Zhao T, Lyu S, Lu G, et al. SC2disease: A manually curated database of single-cell transcriptome for human diseases. Nucleic Acids Res 2021; 49(D1): D1413-9.
[http://dx.doi.org/10.1093/nar/gkaa838] [PMID: 33010177]
[11]
Cheng N, Chen C, Li C, Huang J. Inferring cell-type-specific genes of lung cancer based on deep learning. Curr Gene Ther 2022.
[http://dx.doi.org/10.2174/1566523222666220324110914]
[12]
Zhao T, Liu J, Zeng X, et al. Prediction and collection of protein-metabolite interactions. Brief Bioinform 2021; 22(5): bbab014.
[http://dx.doi.org/10.1093/bib/bbab014] [PMID: 33554247]
[13]
Reghunathan R, Jayapal M, Hsu LY, et al. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol 2005; 6(1): 2.
[http://dx.doi.org/10.1186/1471-2172-6-2] [PMID: 15655079]
[14]
Yu Y, Jiang P, Sun P, Su N, Lin F. Pulmonary coagulation and fibrinolysis abnormalities that favor fibrin deposition in the lungs of mouse antibody-mediated transfusion-related acute lung injury. Mol Med Rep 2021; 24(2): 601.
[http://dx.doi.org/10.3892/mmr.2021.12239] [PMID: 34165170]
[15]
Nagase T, Uozumi N, Ishii S, et al. Acute lung injury by sepsis and acid aspiration: A key role for cytosolic phospholipase A2. Nat Immunol 2000; 1(1): 42-6.
[http://dx.doi.org/10.1038/76897] [PMID: 10881173]
[16]
Gong MN, Zhou W, Williams PL, et al. −308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J 2005; 26(3): 382-9.
[http://dx.doi.org/10.1183/09031936.05.00000505] [PMID: 16135717]
[17]
Flores C, Ma SF, Maresso K, Wade MS, Villar J, Garcia JGN. IL6 gene-wide haplotype is associated with susceptibility to acute lung injury. Transl Res 2008; 152(1): 11-7.
[http://dx.doi.org/10.1016/j.trsl.2008.05.006] [PMID: 18593632]
[18]
Hildebrand F, Stuhrmann M, van Griensven M, et al. Association of IL-8-251A/T polymorphism with incidence of Acute Respiratory Distress Syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine 2007; 37(3): 192-9.
[http://dx.doi.org/10.1016/j.cyto.2007.03.008] [PMID: 17498967]
[19]
Gong MN, Thompson BT, Williams PL, et al. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur Respir J 2006; 27(4): 674-81.
[http://dx.doi.org/10.1183/09031936.06.00046405] [PMID: 16585075]
[20]
Schroeder O, Schulte KM, Schroeder J, Ekkernkamp A, Laun RA. The -1082 interleukin-10 polymorphism is associated with acute respiratory failure after major trauma: A prospective cohort study. Surgery 2008; 143(2): 233-42.
[http://dx.doi.org/10.1016/j.surg.2007.07.040] [PMID: 18242340]
[21]
Youya Wang, Zhifeng Ning, Xuefeng Zhou. Neuregulin1 acts as a suppressor in human lung adenocarcinoma via AKT and ERK1/2 pathway. J Thorac Dis 2018; 10(6): 3166-79.
[http://dx.doi.org/10.21037/jtd.2018.05.175]
[22]
Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2016; gkw943.
[PMID: 27924018]
[23]
Wu C, Orozco C, Boyer J, et al. BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10(11): R130.
[http://dx.doi.org/10.1186/gb-2009-10-11-r130] [PMID: 19919682]
[24]
Kreisel D, Sugimoto S, Tietjens J, et al. Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis. J Clin Invest 2011; 121(1): 265-76.
[http://dx.doi.org/10.1172/JCI42596] [PMID: 21157041]
[25]
Price WA, Moats-Staats BM, Stiles AD. Pro- and anti-inflammatory cytokines regulate insulin-like growth factor binding protein production by fetal rat lung fibroblasts. Am J Respir Cell Mol Biol 2002; 26(3): 283-9.
[http://dx.doi.org/10.1165/ajrcmb.26.3.4601] [PMID: 11867336]
[26]
Li C, Huang J, Tang H, Liu B, Zhou X. Revealing cavin-2 gene function in lung based on multi-omics data analysis method. Front Cell Dev Biol 2022; 9: 827108.
[http://dx.doi.org/10.3389/fcell.2021.827108] [PMID: 35174175]
[27]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[28]
Wang W, Chen N, Ren D, et al. Enhancing extracellular adenosine levels restores barrier function in acute lung injury through expression of focal adhesion proteins. Front Mol Biosci 2021; 8: 636678.
[http://dx.doi.org/10.3389/fmolb.2021.636678] [PMID: 33778007]
[29]
Patel A, Sangle GV, Trivedi J, et al. Levonadifloxacin, a novel benzoquinolizine fluoroquinolone, modulates lipopolysaccharide-induced inflammatory responses in human whole-blood assay and murine acute lung injury model. Antimicrob Agents Chemother 2020; 64(5): e00084-20.
[http://dx.doi.org/10.1128/AAC.00084-20] [PMID: 32152077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy