Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Isorhamnetin: A Novel Natural Product Beneficial for Cardiovascular Disease

Author(s): Wen-Qing Li, Jing Li, Wen-Xiu Liu, Liu-Jun Wu, Jun-Yuan Qin, Zi-Wei Lin, Xin-Yu Liu, Shi-Yan Luo, Qing-Hua Wu*, Xiao-Fang Xie* and Cheng Peng*

Volume 28, Issue 31, 2022

Published on: 06 September, 2022

Page: [2569 - 2582] Pages: 14

DOI: 10.2174/1381612828666220829113132

Price: $65

Abstract

Cardiovascular disease (CVD) has become a severe threat to human beings with increasing morbidity and mortality. Isorhamnetin (Iso) shows multiple bioactivities, especially in the cardiovascular system. A literature retrieval strategy was conducted in databases of PubMed, GeenMedical, Sci-Hub, Web of Science, China National Knowledge Infrastructure (CNKI), and Baidu Scholar, with keywords defined as: “Isorhamnetin”, “cardiovascular diseases”, “pharmacological effects”, “phytochemistry”, “pharmacokinetics”, “clinical application” and “toxicity”. The language is restricted to Chinese and English, and publish date ranges from January, 2011 to September, 2021. So far, Iso has been isolated and identified from several natural medicines, including Hippophae rhamnoides L., Ginkgo biloba L. and Typha angustifolia L., etc. The effects of Iso on CVD are pharmacological, including anti-atherosclerosis, reducing blood fat, anti-inflammation, antioxidation, endothelial protection, antithrombosis, antiplatelet aggregation, myocardial protection, and anti-hypertension. Iso could inhibit the activities of CYPs in liver microsomes and suppress hepatocyte injury in vitro. However, no toxicity was observed in vivo. Taken together, Iso has a wide range of positive effects on CVD with safe and multiple pharmacological activities on the cardiovascular system and may be an ideal candidate drug for the prevention and treatment of CVD. Therefore, further studies, especially on its clinic use, need to be conducted. The present review summarizes the recent progress in phytochemistry, pharmacology, and mechanisms of action and provides a reference for future studies on Iso.

Keywords: Isorhamnetin, cardiovascular disease, phytopharmacology, pharmacokinetics, pharmacological effects, traditional application, toxicity.

[1]
Krist AH, Davidson KW, Mangione CM, et al. Behavioral counseling interventions to promote a healthy diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors. JAMA 2020; 324(20): 2069-75.
[http://dx.doi.org/10.1001/jama.2020.21749] [PMID: 33231670]
[2]
Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des 2019; 25(38): 4063-84.
[http://dx.doi.org/10.2174/1381612825666190925163827] [PMID: 31553287]
[3]
Andersson C, Vasan RS. Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol 2018; 15(4): 230-40.
[http://dx.doi.org/10.1038/nrcardio.2017.154] [PMID: 29022571]
[4]
Narayan V, Thompson EW, Demissei B, Ho JE, Januzzi JL Jr, Ky B. Mechanistic biomarkers informative of both cancer and cardiovascular disease. J Am Coll Cardiol 2020; 75(21): 2726-37.
[http://dx.doi.org/10.1016/j.jacc.2020.03.067] [PMID: 32466889]
[5]
Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat Rev Cardiol 2019; 16(4): 203-12.
[http://dx.doi.org/10.1038/s41569-018-0119-4] [PMID: 30467329]
[6]
Zhao C, Li S, Zhang J, et al. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216: 107698.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107698] [PMID: 33039419]
[7]
Eisvand F, Razavi BM, Hosseinzadeh H. The effects of Ginkgo biloba on metabolic syndrome: A review. Phytother Res 2020; 34(8): 1798-811.
[http://dx.doi.org/10.1002/ptr.6646] [PMID: 32097990]
[8]
Luo Y, Sun G, Dong X, et al. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One 2015; 10(3): e0120259.
[http://dx.doi.org/10.1371/journal.pone.0120259] [PMID: 25799286]
[9]
Gong G, Guan YY, Zhang ZL, et al. Isorhamnetin: A review of pharmacological effects. Biomed Pharmacother 2020; 128: 110301.
[http://dx.doi.org/10.1016/j.biopha.2020.110301] [PMID: 32502837]
[10]
Ciesarová Z, Murkovic M, Cejpek K, et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res Int 2020; 133: 109170.
[http://dx.doi.org/10.1016/j.foodres.2020.109170] [PMID: 32466930]
[11]
Pundir S, Garg P, Dviwedi A, et al. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review. J Ethnopharmacol 2021; 266: 113434.
[http://dx.doi.org/10.1016/j.jep.2020.113434] [PMID: 33017636]
[12]
Liu XG, Lu X, Gao W, et al. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39(3): 474-511.
[http://dx.doi.org/10.1039/d1np00026h] [PMID: 34581387]
[13]
Liu XG, Wu SQ, Li P, Yang H. Advancement in the chemical analysis and quality control of flavonoid in Ginkgo biloba. J Pharm Biomed Anal 2015; 113: 212-25.
[http://dx.doi.org/10.1016/j.jpba.2015.03.006] [PMID: 25812435]
[14]
Tkacz K, Wojdyło A, Turkiewicz IP, Ferreres F, Moreno DA, Nowicka P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophae rhamnoides L. cultivars. Food Chem 2020; 309: 125766.
[http://dx.doi.org/10.1016/j.foodchem.2019.125766] [PMID: 31718836]
[15]
Liu L, Wang Y, Zhang J, Wang S. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. J Pharm Biomed Anal 2021; 193: 113704.
[http://dx.doi.org/10.1016/j.jpba.2020.113704] [PMID: 33157480]
[16]
Chen P, Cao Y, Bao B, Zhang L, Ding A. Antioxidant capacity of Typha angustifolia extracts and two active flavonoids. Pharm Biol 2017; 55(1): 1283-8.
[http://dx.doi.org/10.1080/13880209.2017.1300818] [PMID: 28274161]
[17]
Quesada-Romero L, Fernández-Galleguillos C, Bergmann J, et al. Phenolic fingerprinting, antioxidant, and deterrent potentials of Persicaria maculosa extracts. Molecules 2020; 25(13): 3054.
[http://dx.doi.org/10.3390/molecules25133054] [PMID: 32635342]
[18]
Szopa A, Dziurka M, Granica S, et al. Schisandra rubriflora plant material and in vitro microshoot cultures as rich sources of natural phenolic antioxidants. Antioxidants 2020; 9(6): 488.
[http://dx.doi.org/10.3390/antiox9060488] [PMID: 32512744]
[19]
Farag M, El Fishawy A, El-Toumy S, Amer K, Mansour A, Taha H. Antihepatotoxic effect and metabolite profiling of Panicum turgidum extract via UPLC-qTOF-MS. Pharmacogn Mag 2016; 12(47)(Suppl. 4): 446.
[http://dx.doi.org/10.4103/0973-1296.191455] [PMID: 27761073]
[20]
Abu-Reidah IM, Gil-Izquierdo Á, Medina S, Ferreres F. Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix dactylifera L.) by using HPLC-DAD-ESI/MSn. Food Res Int 2017; 100(Pt 3): 494-500.
[http://dx.doi.org/10.1016/j.foodres.2016.10.018] [PMID: 28964373]
[21]
Elgazar AA, Selim NM, Abdel-Hamid NM, El-Magd MA, El Hefnawy HM. Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies. Phytother Res 2018; 32(7): 1273-88.
[http://dx.doi.org/10.1002/ptr.6056] [PMID: 29468851]
[22]
Sait S, Hamri-Zeghichi S, Boulekbache-Makhlouf L, et al. HPLC-UV/DAD and ESI-MSn analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam. J Pharm Biomed Anal 2015; 111: 231-40.
[http://dx.doi.org/10.1016/j.jpba.2015.03.027] [PMID: 25910047]
[23]
He J, Feng Y, Ouyang H, et al. A sensitive LC–MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves. J Pharm Biomed Anal 2013; 84: 189-95.
[http://dx.doi.org/10.1016/j.jpba.2013.06.019] [PMID: 23850933]
[24]
Fu C, Yu P, Wang M, Qiu F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem 2020; 312: 126070.
[http://dx.doi.org/10.1016/j.foodchem.2019.126070] [PMID: 31911352]
[25]
Liu JL, Li LY, He GH. Optimization of microwave-assisted extraction conditions for five major bioactive compounds from flos sophorae immaturus (Cultivars of Sophora japonica L.) using response surface methodology. Molecules 2016; 21(3): 296.
[http://dx.doi.org/10.3390/molecules21030296] [PMID: 26950107]
[26]
Zhang XF, Chen J, Yang JL, Shi YP. UPLC-MS/MS analysis for antioxidant components of Lycii Fructus based on spectrum-effect relationship. Talanta 2018; 180: 389-95.
[http://dx.doi.org/10.1016/j.talanta.2017.12.078] [PMID: 29332828]
[27]
Ye S, Shao Q, Zhang A. Anoectochilus roxburghii: A review of its phytochemistry, pharmacology, and clinical applications. J Ethnopharmacol 2017; 209: 184-202.
[http://dx.doi.org/10.1016/j.jep.2017.07.032] [PMID: 28755972]
[28]
Duan K, Yuan Z, Guo W, et al. LC–MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J Ethnopharmacol 2011; 135(2): 201-8.
[http://dx.doi.org/10.1016/j.jep.2011.01.002] [PMID: 21220003]
[29]
Li Y, Guo S, Zhu Y, et al. Flowers of Astragalus membranaceus var. mongholicus as a novel high potential by-product: Phytochemical characterization and antioxidant activity. Molecules 2019; 24(3): 434.
[http://dx.doi.org/10.3390/molecules24030434] [PMID: 30691074]
[30]
Bai Y, Li J, Liu W, et al. Pharmacokinetic of 5 components after oral administration of Fructus Forsythiae by HPLC-MS/MS and the effects of harvest time and administration times. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 993-994: 36-46.
[http://dx.doi.org/10.1016/j.jchromb.2015.04.041] [PMID: 25984964]
[31]
Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules 2012; 17(8): 9697-715.
[http://dx.doi.org/10.3390/molecules17089697] [PMID: 22890173]
[32]
Hajimehdipoor H. kondori BM, Amin GR, Adib N, Rastegar H, Shekarchi M. Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscuta chinensis Lam. by ultra-violet detection. Daru 2012; 20(1): 57.
[http://dx.doi.org/10.1186/2008-2231-20-57] [PMID: 23352257]
[33]
Yang D, Wang S, Huang X, et al. Pharmacokinetic comparison of 15 active compositions in rat plasma after oral administration of raw and honey‐processed Aster tataricus extracts. J Sep Sci 2021; 44(4): 908-21.
[http://dx.doi.org/10.1002/jssc.202001020] [PMID: 33289282]
[34]
Xin L, Liu XH, Yang J, et al. The intestinal absorption properties of flavonoids in Hippophaë rhamnoides extracts by an in situ single-pass intestinal perfusion model. J Asian Nat Prod Res 2019; 21(1): 62-75.
[http://dx.doi.org/10.1080/10286020.2017.1396976] [PMID: 29126363]
[35]
Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int J Pharm 2019; 570: 118642.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118642] [PMID: 31446024]
[36]
Duan J, Dang Y, Meng H, et al. A comparison of the pharmacokinetics of three different preparations of total flavones of Hippophae rhamnoides in beagle dogs after oral administration. Eur J Drug Metab Pharmacokinet 2016; 41(3): 239-49.
[http://dx.doi.org/10.1007/s13318-015-0254-9] [PMID: 25613316]
[37]
Wang X, Zhao X, Gu L, et al. Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC–MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954: 1-10.
[http://dx.doi.org/10.1016/j.jchromb.2014.01.042] [PMID: 24566333]
[38]
Xie Y, Luo H, Duan J, et al. Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L. Fitoterapia 2014; 93: 216-25.
[http://dx.doi.org/10.1016/j.fitote.2014.01.013] [PMID: 24462958]
[39]
Zhao G, Duan J, Xie Y, et al. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L. Drug Dev Ind Pharm 2013; 39(7): 1037-45.
[http://dx.doi.org/10.3109/03639045.2012.699066] [PMID: 22757776]
[40]
Wang H, Cui Y, Fu Q, et al. A phospholipid complex to improve the oral bioavailability of flavonoids. Drug Dev Ind Pharm 2015; 41(10): 1693-703.
[http://dx.doi.org/10.3109/03639045.2014.991402] [PMID: 25496311]
[41]
Chen Z, Sun J, Chen H, et al. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia 2010; 81(8): 1045-52.
[http://dx.doi.org/10.1016/j.fitote.2010.06.028] [PMID: 20603197]
[42]
Tian R, Wang H, Xiao Y, et al. Fabrication of nanosuspensions to improve the oral bioavailability of total flavones from Hippophae rhamnoides L. and their comparison with an inclusion complex. AAPS PharmSciTech 2020; 21(7): 249.
[http://dx.doi.org/10.1208/s12249-020-01788-9] [PMID: 32875458]
[43]
Wang W, Kang Q, Liu N, et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion. Fitoterapia 2015; 102: 189-97.
[http://dx.doi.org/10.1016/j.fitote.2014.10.004] [PMID: 25446043]
[44]
Lin Q, Li Y, Tan XM, Yao XC. Simultaneous determination of formononetin, calycosin and isorhamnetin from Astragalus mongholicus in rat plasma by LC-MS/MS and application to pharmacokinetic study. Zhong Yao Cai 2013; 36(4): 589-93.
[PMID: 24134007]
[45]
Guan H, Qian D, Ren H, et al. Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats. J Ethnopharmacol 2014; 155(1): 758-68.
[http://dx.doi.org/10.1016/j.jep.2014.06.022] [PMID: 24953034]
[46]
Wang T, Xiao J, Hou H, et al. Development of an ultra-fast liquid chromatography–tandem mass spectrometry method for simultaneous determination of seven flavonoids in rat plasma: Application to a comparative pharmacokinetic investigation of Ginkgo biloba extract and single pure ginkgo flavonoids after oral administration. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060: 173-81.
[http://dx.doi.org/10.1016/j.jchromb.2017.05.021] [PMID: 28622621]
[47]
Wang W, Liu N, Kang Q, et al. Simultaneous determination by UPLC-MS/MS of seven bioactive compounds in rat plasma after oral administration of Ginkgo biloba tablets: Application to a pharmacokinetic study. J Zhejiang Univ Sci B 2014; 15(11): 929-39.
[http://dx.doi.org/10.1631/jzus.B1400035] [PMID: 25367786]
[48]
Li Z, Tian S, Wu Z, et al. Pharmacokinetic herb-disease-drug interactions: Effect of Ginkgo biloba extract on the pharmacokinetics of pitavastatin, a substrate of Oatp1b2, in rats with non-alcoholic fatty liver disease. J Ethnopharmacol 2021; 280: 114469.
[http://dx.doi.org/10.1016/j.jep.2021.114469] [PMID: 34329714]
[49]
Choi MS, Kim JK, Kim DH, Yoo HH. Effects of gut microbiota on the bioavailability of bioactive compounds from Ginkgo leaf extracts. Metabolites 2019; 9(7): 132.
[http://dx.doi.org/10.3390/metabo9070132] [PMID: 31284440]
[50]
Wei BB, Chen ZX, Liu MY, Wei MJ. Development of a UPLC-MS/MS method for simultaneous determination of six flavonoids in rat plasma after administration of maydis stigma extract and its application to a comparative pharmacokinetic study in normal and diabetic rats. Molecules 2017; 22(8): 1267.
[http://dx.doi.org/10.3390/molecules22081267] [PMID: 28758910]
[51]
Li G, Zeng X, Xie Y, et al. Pharmacokinetic properties of isorhamnetin, kaempferol and quercetin after oral gavage of total flavones of Hippophae rhamnoides L. in rats using a UPLC–MS method. Fitoterapia 2012; 83(1): 182-91.
[http://dx.doi.org/10.1016/j.fitote.2011.10.012] [PMID: 22056665]
[52]
Liu Y, Yang J, Tuo YL, et al. Determination of plasma concentration of quercetin, kaempferid and isorhamnetin in Hippophae rhamnoides extract by HPLC-MS/MS and pharmacokinetics in rats. Zhongguo Zhongyao Zazhi 2015; 40(19): 3859-65.
[PMID: 26975114]
[53]
Xiao Y, Xin L, Li L, et al. Quercetin and kaempferol increase the intestinal absorption of isorhamnetin coexisting in Elaeagnus rhamnoides (L.) A. Nelson (Elaeagnaceae) extracts via regulating multidrug resistance-associated protein 2. Phytomedicine 2019; 53: 154-62.
[http://dx.doi.org/10.1016/j.phymed.2018.09.028] [PMID: 30668394]
[54]
Chen Q, Lv J, Yang W, et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9(22): 6424-42.
[http://dx.doi.org/10.7150/thno.35528] [PMID: 31588227]
[55]
Bhatt DL, Steg PG, Ohman EM, et al. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 2006; 295(2): 180-9.
[http://dx.doi.org/10.1001/jama.295.2.180] [PMID: 16403930]
[56]
Liu C, Huang Y. Chinese herbal medicine on cardiovascular diseases and the mechanisms of action. Front Pharmacol 2016; 7: 469.
[http://dx.doi.org/10.3389/fphar.2016.00469] [PMID: 27990122]
[57]
Wang C, Nan X, Pei S, et al. Salidroside and isorhamnetin attenuate urotensin II-induced inflammatory response in vivo and in vitro: Involvement in regulating the RhoA/ROCK II pathway. Oncol Lett 2021; 21(4): 292.
[http://dx.doi.org/10.3892/ol.2021.12553] [PMID: 33732368]
[58]
Zhai J, Ren Z, Wang Y, et al. Traditional Chinese patent medicine Zhixiong Capsule (ZXC) alleviated formed atherosclerotic plaque in rat thoracic artery and the mechanism investigation including blood-dissolved-component-based network pharmacology analysis and biochemical validation. J Ethnopharmacol 2020; 254: 112523.
[59]
Wang X, Zhang R, Gu L, et al. Cell-based screening identifies the active ingredients from Traditional Chinese Medicine formula Shixiao San as the inhibitors of atherosclerotic endothelial dysfunction. PLoS One 2015; 10(2): e0116601.
[http://dx.doi.org/10.1371/journal.pone.0116601] [PMID: 25699522]
[60]
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-e-Silva O. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int J Mol Sci 2019; 20(20): 5034.
[http://dx.doi.org/10.3390/ijms20205034] [PMID: 31614478]
[61]
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117: 76-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.024] [PMID: 29373843]
[62]
Wu Y, Liu H, Wang X. Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury. Life Sci 2021; 264: 118628.
[http://dx.doi.org/10.1016/j.lfs.2020.118628] [PMID: 33131670]
[63]
Xu Y, Tang C, Tan S, Duan J, Tian H, Yang Y. Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cell Mol Med 2020; 24(11): 6253-62.
[http://dx.doi.org/10.1111/jcmm.15267] [PMID: 32307912]
[64]
Zhang N, Pei F, Wei H, et al. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury. Exp Toxicol Pathol 2011; 63(1-2): 33-8.
[http://dx.doi.org/10.1016/j.etp.2009.09.005] [PMID: 19815400]
[65]
Zhao TT, Yang TL, Gong L, Wu P. Isorhamnetin protects against hypoxia/reoxygenation-induced injure by attenuating apoptosis and oxidative stress in H9c2 cardiomyocytes. Gene 2018; 666: 92-9.
[http://dx.doi.org/10.1016/j.gene.2018.05.009] [PMID: 29730426]
[66]
Huang L, He H, Liu Z, Liu D, Yin D, He M. Protective effects of isorhamnetin on cardiomyocytes against anoxia/reoxygenation-induced injury is mediated by SIRT1. J Cardiovasc Pharmacol 2016; 67(6): 526-37.
[http://dx.doi.org/10.1097/FJC.0000000000000376] [PMID: 26859194]
[67]
Sun B, Sun GB, Xiao J, et al. Isorhamnetin inhibits H2O2-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation. J Cell Biochem 2012; 113(2): 473-85.
[http://dx.doi.org/10.1002/jcb.23371] [PMID: 21948481]
[68]
Michos ED, McEvoy JW, Blumenthal RS. Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med 2019; 381(16): 1557-67.
[http://dx.doi.org/10.1056/NEJMra1806939] [PMID: 31618541]
[69]
El-Tantawy WH, Temraz A. Natural products for controlling hyperlipidemia: Review Arch Physiol Biochem 2019; 125(2): 128-35.
[http://dx.doi.org/10.1080/13813455.2018.1441315] [PMID: 29457523]
[70]
Farias-Pereira R, Savarese J, Yue Y, Lee SH, Park Y. Fat-lowering effects of isorhamnetin are via NHR-49-dependent pathway in Caenorhabditis elegans. Curr Res Food Sci 2020; 2: 70-6.
[http://dx.doi.org/10.1016/j.crfs.2019.11.002] [PMID: 32914113]
[71]
Xiao P, Liu S, Kuang Y, et al. Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. J Ethnopharmacol 2021; 264: 113380.
[http://dx.doi.org/10.1016/j.jep.2020.113380] [PMID: 32918994]
[72]
Othman ZA, Wan Ghazali WS, Noordin L, Mohd Yusof NA, Mohamed M. Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxidants 2019; 9(1): 9.
[http://dx.doi.org/10.3390/antiox9010033] [PMID: 31905919]
[73]
Hoek-van den Hil EF, Beekmann K, Keijer J, Hollman PCH, Rietjens IMCM, van Schothorst EM. Interference of flavonoids with enzymatic assays for the determination of free fatty acid and triglyceride levels. Anal Bioanal Chem 2012; 402(3): 1389-92.
[http://dx.doi.org/10.1007/s00216-011-5563-5] [PMID: 22119999]
[74]
Lee J, Jung E, Lee J, et al. Isorhamnetin represses adipogenesis in 3T3-L1 cells. Obesity 2009; 17(2): 226-32.
[http://dx.doi.org/10.1038/oby.2008.472] [PMID: 18948972]
[75]
Rodríguez-Rodríguez C, Torres N, Gutiérrez-Uribe JA, et al. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity. Food Funct 2015; 6(3): 805-15.
[http://dx.doi.org/10.1039/C4FO01092B] [PMID: 25588195]
[76]
Ressaissi A, Attia N, Falé PL, et al. Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: Cholesterol permeability, HMG-CoA reductase inhibition, and docking studies. Arch Pharm Res 2017; 40(11): 1278-86.
[http://dx.doi.org/10.1007/s12272-017-0959-1] [PMID: 28936788]
[77]
Oparil S, Acelajado MC, Bakris GL, et al. Hypertension. Nat Rev Dis Primers 2018; 4(1): 18014.
[http://dx.doi.org/10.1038/nrdp.2018.14] [PMID: 29565029]
[78]
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol 2020; 16(4): 223-37.
[http://dx.doi.org/10.1038/s41581-019-0244-2] [PMID: 32024986]
[79]
Valenzuela PL, Carrera-Bastos P, Gálvez BG, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2021; 18(4): 251-75.
[http://dx.doi.org/10.1038/s41569-020-00437-9] [PMID: 33037326]
[80]
Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension 2020; 75(2): 285-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14240] [PMID: 31865786]
[81]
Fu Z, Bo H, Chun-yan H, et al. Effects of total flavonoids of Hippophae rhamnoides L. on intracellular free calcium in cultured vascular smooth muscle cells of spontaneously hypertensive rats and Wistar-Kyoto rats. Chin J Integr Med 2005; 11(4): 287-92.
[http://dx.doi.org/10.1007/BF02835791] [PMID: 16417780]
[82]
Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: A scientific statement from the american heart association. Circulation 2018; 137(20): e578-622.
[http://dx.doi.org/10.1161/CIR.0000000000000560] [PMID: 29650544]
[83]
Chang Z, Wang J, Jing Z, et al. Protective effects of isorhamnetin on pulmonary arterial hypertension: In vivo and in vitro studies. Phytother Res 2020; 34(10): 2730-44.
[http://dx.doi.org/10.1002/ptr.6714] [PMID: 32452118]
[84]
Pingili AK, Kara M, Khan NS, et al. 6β-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice. Hypertension 2015; 65(6): 1279-87.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05396] [PMID: 25870196]
[85]
Song CY, Ghafoor K, Ghafoor HU, et al. Cytochrome P450 1B1 contributes to the development of atherosclerosis and hypertension in apolipoprotein E–deficient mice. Hypertension 2016; 67(1): 206-13.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06427] [PMID: 26573711]
[86]
Malik KU, Jennings BL, Yaghini FA, et al. Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: A novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat 2012; 98(3-4): 69-74.
[http://dx.doi.org/10.1016/j.prostaglandins.2011.12.003] [PMID: 22210049]
[87]
Singh P, Song CY, Dutta SR, Gonzalez FJ, Malik KU. Central CYP1B1 (Cytochrome P450 1B1)-estradiol metabolite 2-methoxyestradiol protects from hypertension and neuroinflammation in female mice. Hypertension 2020; 75(4): 1054-62.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14548] [PMID: 32148125]
[88]
Singh P, Dutta SR, Song CY, Oh S, Gonzalez FJ, Malik KU. Brain testosterone-CYP1B1 (Cytochrome P450 1B1) generated metabolite 6β-hydroxytestosterone promotes neurogenic hypertension and inflammation. Hypertension 2020; 76(3): 1006-18.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15567] [PMID: 32755412]
[89]
Li F, Zhu W, Gonzalez FJ. Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol Ther 2017; 178: 18-30.
[http://dx.doi.org/10.1016/j.pharmthera.2017.03.007] [PMID: 28322972]
[90]
Jimenez R, Lopez-Sepulveda R, Romero M, et al. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct 2015; 6(2): 409-14.
[http://dx.doi.org/10.1039/C4FO00818A] [PMID: 25562607]
[91]
Galindo P, Rodriguez-Gómez I, González-Manzano S, et al. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One 2012; 7(3): e32673.
[http://dx.doi.org/10.1371/journal.pone.0032673] [PMID: 22427863]
[92]
Yamagata K. Soy isoflavones inhibit endothelial cell dysfunction and prevent cardiovascular disease. J Cardiovasc Pharmacol 2019; 74(3): 201-9.
[http://dx.doi.org/10.1097/FJC.0000000000000708] [PMID: 31356541]
[93]
Maruhashi T, Kihara Y, Higashi Y. Bilirubin and endothelial function. J Atheroscler Thromb 2019; 26(8): 688-96.
[http://dx.doi.org/10.5551/jat.RV17035] [PMID: 31270300]
[94]
Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol 2017; 174(12): 1591-619.
[http://dx.doi.org/10.1111/bph.13517] [PMID: 27187006]
[95]
Yubero-Serrano EM, Fernandez-Gandara C, Garcia-Rios A, et al. Mediterranean diet and endothelial function in patients with coronary heart disease: An analysis of the CORDIOPREV randomized controlled trial. PLoS Med 2020; 17(9): e1003282.
[http://dx.doi.org/10.1371/journal.pmed.1003282] [PMID: 32903262]
[96]
Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Endothelial cells: From dysfunction mechanism to pharmacological effect in cardiovascular disease. Cardiovasc Toxicol 2019; 19(1): 13-22.
[http://dx.doi.org/10.1007/s12012-018-9493-8] [PMID: 30506414]
[97]
Ibarra M, Moreno L, Vera R, et al. Effects of the flavonoid quercetin and its methylated metabolite isorhamnetin in isolated arteries from spontaneously hypertensive rats. Planta Med 2003; 69(11): 995-1000.
[http://dx.doi.org/10.1055/s-2003-45144] [PMID: 14735435]
[98]
Sanchez M, Lodi F, Vera R, et al. Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II in rat aorta. J Nutr 2007; 137(4): 910-5.
[http://dx.doi.org/10.1093/jn/137.4.910] [PMID: 17374653]
[99]
Romero M, Jiménez R, Sánchez M, et al. Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 2009; 202(1): 58-67.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.007] [PMID: 18436224]
[100]
van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: New concepts and clinical perspectives. Nat Rev Cardiol 2019; 16(3): 166-79.
[http://dx.doi.org/10.1038/s41569-018-0110-0] [PMID: 30429532]
[101]
Bakogiannis C, Sachse M, Stamatelopoulos K, Stellos K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine 2019; 122: 154157.
[http://dx.doi.org/10.1016/j.cyto.2017.09.013] [PMID: 29198385]
[102]
Khodadi E. Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovasc Toxicol 2020; 20(1): 1-10.
[http://dx.doi.org/10.1007/s12012-019-09555-4] [PMID: 31784932]
[103]
Capodanno D, Bhatt DL, Eikelboom JW, et al. Dual-pathway inhibition for secondary and tertiary antithrombotic prevention in cardiovascular disease. Nat Rev Cardiol 2020; 17(4): 242-57.
[http://dx.doi.org/10.1038/s41569-019-0314-y] [PMID: 31953535]
[104]
Skalski B, Lis B, Pecio Ł, et al. Isorhamnetin and its new derivatives isolated from sea buckthorn berries prevent H2O2/Fe – Induced oxidative stress and changes in hemostasis. Food Chem Toxicol 2019; 125: 614-20.
[http://dx.doi.org/10.1016/j.fct.2019.02.014] [PMID: 30738133]
[105]
Chen TR, Wei LH, Guan XQ, et al. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg Chem 2019; 92: 103199.
[http://dx.doi.org/10.1016/j.bioorg.2019.103199] [PMID: 31446241]
[106]
Rodríguez L, Badimon L, Méndez D, et al. Antiplatelet activity of isorhamnetin via mitochondrial regulation. Antioxidants 2021; 10(5): 666.
[http://dx.doi.org/10.3390/antiox10050666] [PMID: 33922903]
[107]
Kwon SU, Lee HY, Xin M, et al. Antithrombotic activity of Vitis labrusca extract on rat platelet aggregation. Blood Coagul Fibrinolysis 2016; 27(2): 141-6.
[http://dx.doi.org/10.1097/MBC.0000000000000394] [PMID: 26340455]
[108]
Ku SK, Kim TH, Bae JS. Anticoagulant activities of persicarin and isorhamnetin. Vascul Pharmacol 2013; 58(4): 272-9.
[http://dx.doi.org/10.1016/j.vph.2013.01.005] [PMID: 23391847]
[109]
Ku SK, Kim TH, Lee S, Kim SM, Bae JS. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem Toxicol 2013; 53: 197-204.
[http://dx.doi.org/10.1016/j.fct.2012.11.040] [PMID: 23220618]
[110]
Perez A, Gonzalez-Manzano S, Jimenez R, et al. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: Correlation with beta-glucuronidase activity. Pharmacol Res 2014; 89: 11-8.
[http://dx.doi.org/10.1016/j.phrs.2014.07.005] [PMID: 25076013]
[111]
Steven S, Frenis K, Oelze M, et al. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid Med Cell Longev 2019; 2019: 1-26.
[http://dx.doi.org/10.1155/2019/7092151] [PMID: 31341533]
[112]
Ahn H, Lee GS. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 2017; 24: 77-86.
[http://dx.doi.org/10.1016/j.phymed.2016.11.019] [PMID: 28160865]
[113]
Yan S, Wang XK, Yang LY, et al. Anti inflammatory effects of isorhamnetin: A review. Gansu Sci Technol 2020; 36(13): 115-8.
[114]
Yang JH, Kim SC, Shin BY, et al. O-methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation. Food Chem Toxicol 2013; 59: 362-72.
[http://dx.doi.org/10.1016/j.fct.2013.05.049] [PMID: 23774260]
[115]
Chen TL, Zhu GL, Wang JA, et al. Protective effects of isorhamnetin on apoptosis and inflammation in TNF-α-induced HUVECs injury. Int J Clin Exp Pathol 2015; 8(3): 2311-20.
[PMID: 26045738]
[116]
Brannick B, Dagogo-Jack S. Prediabetes and cardiovascular disease. Endocrinol Metab Clin North Am 2018; 47(1): 33-50.
[http://dx.doi.org/10.1016/j.ecl.2017.10.001] [PMID: 29407055]
[117]
Jamali-Raeufy N, Baluchnejadmojarad T, Roghani M. keimasi S, goudarzi M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. J Chem Neuroanat 2019; 102: 101709.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101709] [PMID: 31698018]
[118]
Liu J, Wang S, Tan W, et al. Dual-screening of anti-inflammatory and antioxidant active ingredients of shenxiang suhe pill and its potential multi-target therapy for coronary heart disease. Biomed Pharmacother 2020; 129: 110283.
[http://dx.doi.org/10.1016/j.biopha.2020.110283] [PMID: 32531677]
[119]
van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail 2019; 21(4): 425-35.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[120]
Taleb A, Ahmad KA, Ihsan AU, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother 2018; 102: 689-98.
[http://dx.doi.org/10.1016/j.biopha.2018.03.140] [PMID: 29604588]
[121]
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 2021; 163: 56-68.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.015] [PMID: 33310138]
[122]
D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid Redox Signal 2018; 28(8): 711-32.
[http://dx.doi.org/10.1089/ars.2017.7178] [PMID: 28661724]
[123]
Wang J, Gong HM, Zou HH, Liang L, Wu XY. Isorhamnetin prevents H2O2 induced oxidative stress in human retinal pigment epithelial cells. Mol Med Rep 2018; 17(1): 648-52.
[PMID: 29115489]
[124]
Wang X, Zhong W. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice. Int J Clin Exp Med 2015; 8(9): 16536-42.
[PMID: 26629181]
[125]
Yang JH, Shin BY, Han JY, et al. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol Appl Pharmacol 2014; 274(2): 293-301.
[http://dx.doi.org/10.1016/j.taap.2013.10.026] [PMID: 24211276]
[126]
Abdel Motaal A, Salem HH, Almaghaslah D, et al. Flavonol glycosides: In vitro inhibition of DPPIV, aldose reductase and combating oxidative stress are potential mechanisms for mediating the antidiabetic activity of Cleome droserifolia. Molecules 2020; 25(24): 5864.
[http://dx.doi.org/10.3390/molecules25245864] [PMID: 33322431]
[127]
Abdallah HM, Esmat A. Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L. J Ethnopharmacol 2017; 205: 51-6.
[http://dx.doi.org/10.1016/j.jep.2017.04.022] [PMID: 28465252]
[128]
Sun J, Sun G, Meng X, et al. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One 2013; 8(5): e64526.
[http://dx.doi.org/10.1371/journal.pone.0064526] [PMID: 23724057]
[129]
Jdir H, Kolsi RBA, Zouari S, Hamden K, Zouari N, Fakhfakh N. The cruciferous diplotaxis simplex: Phytochemistry analysis and its protective effect on liver and kidney toxicities, and lipid profile disorders in alloxan-induced diabetic rats. Lipids Health Dis 2017; 16(1): 100.
[http://dx.doi.org/10.1186/s12944-017-0492-8] [PMID: 28558824]
[130]
Sun WQ. Analysis of the advantages of traditional Chinese medicine in treating cardiovascular diseases. Elec J Integ Trad Chinese Western Med 2019; 7(7): 25-6.
[http://dx.doi.org/10.3969/j.issn.2095-6681.2019.07.013]
[131]
Fan YD, Bai LD, Chang J, et al. Research progress on objectification of TCM syndromes of cardiovascular diseases. Chin Arch Trade Chinese Med 2021; 39(10): 172-6.
[http://dx.doi.org/10.13193/j.issn.1673-7717.2021.10.042]
[132]
Zhang J. Evaluation of the clinical effects of traditional Chinese medicine for the prevention and treatment of cardiovascular disease. J Chin Clin Med 2020; 12(21): 41-2.
[133]
Gao M, Ge Z, Deng R, et al. Evaluation of VEGF mediated pro-angiogenic and hemostatic effects and chemical marker investigation for Typhae Pollen and its processed product. J Ethnopharmacol 2021; 268: 113591.
[http://dx.doi.org/10.1016/j.jep.2020.113591] [PMID: 33212176]
[134]
Hao P, Jiang F, Cheng J, Ma L, Zhang Y, Zhao Y. Traditional Chinese medicine for cardiovascular disease. J Am Coll Cardiol 2017; 69(24): 2952-66.
[http://dx.doi.org/10.1016/j.jacc.2017.04.041] [PMID: 28619197]
[135]
Bu L, Dai O, Zhou F, et al. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother 2020; 132: 110855.
[http://dx.doi.org/10.1016/j.biopha.2020.110855] [PMID: 33059257]
[136]
Li TT, Wang ZB, Li Y, Cao F, Yang BY, Kuang HX. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med 2019; 17(6): 401-12.
[http://dx.doi.org/10.1016/S1875-5364(19)30048-2] [PMID: 31262453]
[137]
Ibarra M, Pérez-Vizcaíno F, Cogolludo A, et al. Cardiovascular effects of isorhamnetin and quercetin in isolated rat and porcine vascular smooth muscle and isolated rat atria. Planta Med 2002; 68(4): 307-10.
[http://dx.doi.org/10.1055/s-2002-26752] [PMID: 11988852]
[138]
Gao L, Yao R, Liu Y, et al. Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway. Mol Cell Biochem 2017; 429(1-2): 167-77.
[http://dx.doi.org/10.1007/s11010-017-2944-x] [PMID: 28176246]
[139]
Karbab A, Charef N, Abu Zarga MH, Qadri MI, Mubarak MS. Ethnomedicinal documentation and anti-inflammatory effects of n-butanol extract and of four compounds isolated from the stems of Pituranthos scoparius: An in vitro and in vivo investigation. J Ethnopharmacol 2021; 267: 113488.
[http://dx.doi.org/10.1016/j.jep.2020.113488] [PMID: 33091487]
[140]
Ibrahim II, Moussa AA, Chen Z, et al. Bioactive phenolic components and antioxidant activities of water-based extracts and flavonoid-rich fractions from Salvadora persica L. leaves. Nat Prod Res 2021; 1-5.
[http://dx.doi.org/10.1080/14786419.2021.1919105] [PMID: 33858274]
[141]
Chung DC, Long Le T, Ho NQC, et al. Evaluation of in vitro cytotoxicity and in vivo potential toxicity of the extract from in vitro cultivated Anoectochilus roxburghii Lindl. J Toxicol Environ Health A 2021; 84(24): 987-1003.
[http://dx.doi.org/10.1080/15287394.2021.1963363] [PMID: 34384338]
[142]
Wang H, Zhang Q, Cheng ML, et al. Effect of the Miaoyao Fanggan sachet-derived isorhamnetin on TLR2/4 and NKp46 expression in mice. J Ethnopharmacol 2012; 144(1): 138-44.
[http://dx.doi.org/10.1016/j.jep.2012.08.040] [PMID: 22974546]
[143]
Ban C, Park JB, Cho S, et al. Characterization of Ginkgo biloba leaf flavonoids as neuroexocytosis regulators. Molecules 2020; 25(8): 1829.
[http://dx.doi.org/10.3390/molecules25081829] [PMID: 32316426]
[144]
Jiayi C, Tianyi N, Dan T, Tingguo K, Qingfeng W, Qianqian Z. Isorhamnetin protects endothelial cells model CRL1730 from oxidative injury by hydrogen peroxide. Pak J Pharm Sci 2019; 32(1): 131-6.
[PMID: 30772801]
[145]
Cai F, Zhang Y, Li J, Huang S, Gao R. Isorhamnetin inhibited the proliferation and metastasis of androgen-independent prostate cancer cells by targeting the mitochondrion-dependent intrinsic apoptotic and PI3K/Akt/mTOR pathway. Biosci Rep 2020; 40(3): BSR20192826.
[http://dx.doi.org/10.1042/BSR20192826] [PMID: 32039440]
[146]
Liang RJ, Chen JX, Zhi DX, et al. Effects of isorhamnetin on human liver microsomes CYPs and rat primary hepatocytes. Yaowu Pingjia Yanjiu 2017; 40: 627-32.
[147]
Li W, Chen Z, Yan M, He P, Chen Z, Dai H. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation. J Neurochem 2016; 136(3): 651-9.
[http://dx.doi.org/10.1111/jnc.13436] [PMID: 26578299]
[148]
Jiang L, Li H, Wang L, et al. Isorhamnetin attenuates Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. J Microbiol Biotechnol 2016; 26(3): 596-602.
[http://dx.doi.org/10.4014/jmb.1507.07091] [PMID: 26643966]
[149]
Kim M, Jee SC, Kim KS, Kim HS, Yu KN, Sung JS. Quercetin and isorhamnetin attenuate benzo[a]pyrene-induced toxicity by modulating detoxification enzymes through the AhR and NRF2 signaling pathways. Antioxidants 2021; 10(5): 787.
[http://dx.doi.org/10.3390/antiox10050787] [PMID: 34065697]
[150]
Bouhlel I, Limem I, Skandrani I, et al. Assessment of isorhamnetin 3-O-neohesperidoside from Acacia salicina: Protective effects toward oxidation damage and genotoxicity induced by aflatoxin B1 and nifuroxazide. J Appl Toxicol 2010; 30(6): 551-8.
[http://dx.doi.org/10.1002/jat.1525] [PMID: 20809543]
[151]
Devi VG, Rooban BN, Sasikala V, Sahasranamam V, Abraham A. Isorhamnetin-3-glucoside alleviates oxidative stress and opacification in selenite cataract in vitro. Toxicol In Vitro 2010; 24(6): 1662-9.
[http://dx.doi.org/10.1016/j.tiv.2010.05.021] [PMID: 20566334]
[152]
Zeng Y, Qi L, Li S, et al. A metabonomic analysis of the effect of quercetin on toxicity induced by chronic exposure to low-level dichlorvos in rat plasma. Mol Biosyst 2014; 10(10): 2643-53.
[http://dx.doi.org/10.1039/C4MB00299G] [PMID: 25070706]
[153]
El Raey MA, Osman SM, El Kashak WA, Wink M. New isorhamnetin derivatives from Salsola imbricata Forssk. leaves with distinct anti-inflammatory activity. Pharmacogn Mag 2016; 12(45)(Suppl. 1): 47.
[http://dx.doi.org/10.4103/0973-1296.176110] [PMID: 27041858]
[154]
Yang S, Cao C, Chen S, et al. Serum metabolomics analysis of quercetin against acrylamide-induced toxicity in rats. J Agric Food Chem 2016; 64(48): 9237-45.
[http://dx.doi.org/10.1021/acs.jafc.6b04149] [PMID: 27933994]
[155]
Bao W, Cao C, Li S, et al. Metabonomic analysis of quercetin against the toxicity of acrylamide in rat urine. Food Funct 2017; 8(3): 1204-14.
[http://dx.doi.org/10.1039/C6FO01553K] [PMID: 28224155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy