Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Nanotechnological Systems and Lung: A Perfect Combination for Lung Pharmaceutical Applications

Author(s): Debora Santonocito* and Carmelo Puglia

Volume 30, Issue 6, 2023

Published on: 21 October, 2022

Page: [725 - 743] Pages: 19

DOI: 10.2174/0929867329666220829092323

Price: $65

Abstract

Nowadays, lungs are the most common organs affected by diseases due to climate change, tobacco smoking, pollution and genetic factors. Conventional pharmacotherapy (oral medication or injection) is poorly selective; this causes toxicity problems and numerous systemic side effects. Furthermore, although pulmonary administration is an interesting drug administration route for treating lung diseases, inhalation therapy is complex mainly due to the lung defense mechanisms leading to rapid drug elimination. Pulmonary drug delivery using nanocarriers appears to be the best therapeutic strategy to overcome these issues. In fact, these nanosystems can reduce both drug therapeutic dose and side effects, improving patient compliance, avoiding alveolar macrophage clearance, protecting the drug from degradation processes, and providing a controlled and targeted drug release. Therefore, this review aims to analyze the scientific literature regarding the use of nanocarriers to treat the main lung diseases (cancer, asthma, infections). In particular, attention was devoted to liposomes and polymer- and lipid-based nanoparticles, being the topic of most published articles in the last decade.

Keywords: Pulmonary drug delivery, lung, liposomes, polymeric nanoparticles, lipid nanoparticles, lung diseases.

[1]
Ball, M.; Hossain, M.; Padalia, D. Anatomy, Airway; StatPearls, 2022.
[2]
Hsia, C.C.; Hyde, D.M.; Weibel, E.R. Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol., 2016, 6(2), 827-895.
[http://dx.doi.org/10.1002/cphy.c150028] [PMID: 27065169]
[3]
Icardo, J.M. Lungs and gas bladders: Morphological insights. Acta Histochem., 2018, 120(7), 605-612.
[http://dx.doi.org/10.1016/j.acthis.2018.08.006] [PMID: 30177383]
[4]
Banov, C. Clinical science, chapter 9. Anatomy and physiology of the lower and upper airway. J. Allergy Clin. Immunol., 1989, 84(6), 1044-1046.
[http://dx.doi.org/10.1016/0091-6749(89)90149-8] [PMID: 2600337]
[5]
Milavetz, G. Global surveillance, prevention and control of chronic respiratory diseases: A comprehensive approach. J. Pharm. Technol., 2008, 24(2), 122.
[http://dx.doi.org/10.1177/875512250802400215]
[6]
Durham, A.L.; Caramori, G.; Chung, K.F.; Adcock, I.M. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl. Res., 2016, 167(1), 192-203.
[http://dx.doi.org/10.1016/j.trsl.2015.08.004] [PMID: 26334389]
[7]
Fujita, Y.; Takeshita, F.; Kuwano, K.; Ochiya, T. RNAi therapeutic platforms for lung diseases. Pharmaceuticals, 2013, 6(2), 223-250.
[http://dx.doi.org/10.3390/ph6020223] [PMID: 24275949]
[8]
Pramanik, S.; Mohanto, S.; Manne, R.; Rajendran, R.R.; Deepak, A.; Edapully, S.J.; Patil, T.; Katari, O. Nanoparticle based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm., 2021, 18(10), 3671-3718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[9]
Ghadiri, M.; Young, P.; Traini, D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics, 2019, 11(3), 113.
[http://dx.doi.org/10.3390/pharmaceutics11030113] [PMID: 30861990]
[10]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[11]
Li, Z.; Qiao, W.; Wang, C.; Wang, H.; Ma, M.; Han, X.; Tang, J. DPPC coated lipid nanoparticles as an inhalable carrier for accumulation of resveratrol in the pulmonary vasculature, a new strategy for pulmonary arterial hypertension treatment. Drug Deliv., 2020, 27(1), 736-744.
[http://dx.doi.org/10.1080/10717544.2020.1760962] [PMID: 32397765]
[12]
Trapani, A.; Gioia, S.; Castellani, S.; Carbone, A.; Cavallaro, G.; Trapani, G.; Conese, M. Nanocarriers for respiratory diseases treatment: Recent advances and current challenges. Curr. Top. Med. Chem., 2014, 14(9), 1133-1147.
[http://dx.doi.org/10.2174/1568026614666140329225817] [PMID: 24678708]
[13]
Thomas, B.; Pugalenthi, A. Currently available inhaled therapies in asthma and advances in drug delivery and devices. Indian J. Pediatr., 2022, 89(4), 387-394.
[http://dx.doi.org/10.1007/s12098-021-03976-2] [PMID: 34989948]
[14]
Kurmi, B.D.; Kayat, J.; Gajbhiye, V.; Tekade, R.K.; Jain, N.K. Micro and nanocarrier mediated lung targeting. Expert Opin. Drug Deliv., 2010, 7(7), 781-794.
[http://dx.doi.org/10.1517/17425247.2010.492212] [PMID: 20560777]
[15]
Xu, H.; Ji, H.; Li, Z.; Qiao, W.; Wang, C.; Tang, J. In vivo pharmacokinetics and in vitro release of imatinib mesylate loaded liposomes for pulmonary delivery. Int. J. Nanomedicine, 2021, 16, 1221-1229.
[http://dx.doi.org/10.2147/IJN.S294626] [PMID: 33628019]
[16]
Hu, X.; Yang, F.; Liao, Y.; Li, L.; Zhao, G.; Zhang, L. Docetaxel-loaded cholesterol-PEG Co-Modified Poly (n-Butyl) cyanoacrylate nanoparticles for antitumor drug pulmonary delivery: Preparation, characterization, and in vivo evaluation. Int. J. Nanomed., 2020, 15, 5361-5376.
[http://dx.doi.org/10.2147/IJN.S249511] [PMID: 32801694]
[17]
Byron, P.R. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J. Pharm. Sci., 1986, 75(5), 433-438.
[http://dx.doi.org/10.1002/jps.2600750502] [PMID: 3735078]
[18]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[19]
Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond.), 2016, 11(9), 1169-1185.
[http://dx.doi.org/10.2217/nnm.16.9] [PMID: 27074098]
[20]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[21]
Kirby, C.J.; Gregoriadis, G. Encyclopaedia of Controlled Drug Delivery; Mathiowitz, E., Ed.; Wiley: New York, 1999, pp. 461-492.
[22]
Rudokas, M.; Najlah, M.; Alhnan, M.A.; Elhissi, A. Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med. Princ. Pract., 2016, 25(S2), 60-72.
[http://dx.doi.org/10.1159/000445116] [PMID: 26938856]
[23]
Bassetti, M.; Vena, A.; Russo, A.; Peghin, M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs, 2020, 80(13), 1309-1318.
[http://dx.doi.org/10.1007/s40265-020-01359-z] [PMID: 32691293]
[24]
Ehsan, Z.; Wetzel, J.D.; Clancy, J.P. Nebulized liposomal amikacin for the treatment of Pseudomonas aeruginosa infection in cystic fibrosis patients. Expert Opin. Investig. Drugs, 2014, 23(5), 743-749.
[http://dx.doi.org/10.1517/13543784.2014.895322] [PMID: 24597573]
[25]
Elhissi, A. Liposomes for pulmonary drug delivery: The role of for mulation and inhalation device design. Curr. Pharm. Des., 2017, 23(3), 362-372.
[http://dx.doi.org/10.2174/1381612823666161116114732] [PMID: 27848886]
[26]
Letsou, G.V.; Safi, H.J.; Reardon, M.J.; Ergenoglu, M.; Li, Z.; Klonaris, C.N.; Baldwin, J.C.; Gilbert, B.E.; Waldrep, J.C. Pharmacokinetics of liposomal aerosolized cyclosporine A for pulmonary immunosuppression. Ann. Thorac. Surg., 1999, 68(6), 2044-2048.
[http://dx.doi.org/10.1016/S0003-4975(99)01183-2] [PMID: 10616974]
[27]
Saari, M.; Vidgren, M.T.; Koskinen, M.O.; Turjanmaa, V.M.H.; Nieminen, M.M. Pulmonary distribution and clearance of two beclomethasone liposome formulations in healthy volunteers. Int. J. Pharm., 1999, 181(1), 1-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00398-6] [PMID: 10370197]
[28]
Taylor, K.M.G.; Taylor, G.; Kellaway, I.W.; Stevens, J. The influence of liposomal encapsulation on sodium cromoglycate pharmacokinetics in man. Pharm. Res., 1989, 6(7), 633-636.
[http://dx.doi.org/10.1023/A:1015917918130] [PMID: 2508078]
[29]
Waters, V.; Ratjen, F. Inhaled liposomal amikacin. Expert Rev. Respir. Med., 2014, 8(4), 401-409.
[http://dx.doi.org/10.1586/17476348.2014.918507] [PMID: 24882271]
[30]
Jarai, B.M.; Kolewe, E.L.; Stillman, Z.S.; Raman, N.; Fromen, C.A. Polymeric Nanoparticles; Elsevier Inc, 2020.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00018-7]
[31]
Ungaro, F.; d’ Angelo, I.; Miro, A.; La Rotonda, M.I.; Quaglia, F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises. J. Pharm. Pharmacol., 2012, 64(9), 1217-1235.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01486.x] [PMID: 22881435]
[32]
Bonaccorso, A.; Pellitteri, R.; Ruozi, B.; Puglia, C.; Santonocito, D.; Pignatello, R.; Musumeci, T. cCurcumin loaded polymeric vs. lipid nanoparticles: Antioxidant effect on normal and hypoxic olfactory ensheathing cells. Nanomaterials (Basel), 2021, 11(1), 159.
[http://dx.doi.org/10.3390/nano11010159] [PMID: 33435146]
[33]
Sinha, V.R.; Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release, 2003, 90(3), 261-280.
[http://dx.doi.org/10.1016/S0168-3659(03)00194-9] [PMID: 12880694]
[34]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[35]
Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[36]
Mura, S.; Hillaireau, H.; Nicolas, J.; Kerdine, R.S.; Le Droumaguet, B.; Deloménie, C.; Nicolas, V.; Pallardy, M.; Tsapis, N.; Fattal, E. Biodegradable nanoparticles meet the bronchial airway barrier: How surface properties affect their interaction with mucus and epithelial cells. Biomacromolecules, 2011, 12(11), 4136-4143.
[http://dx.doi.org/10.1021/bm201226x] [PMID: 21981120]
[37]
Santonocito, D.; Puglia, C. Applications of lipid based nanocarriers for parenteral drug delivery. Curr. Med. Chem., 2022, 29(24), 4152-4169.
[PMID: 34983336]
[38]
Puglia, C.; Santonocito, D. Cosmeceuticals: Nanotechnology based strategies for the delivery of phytocompounds. Curr. Pharm. Des., 2019, 25(21), 2314-2322.
[http://dx.doi.org/10.2174/1381612825666190709211101] [PMID: 31584366]
[39]
Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.G.; Damiani, E.; Puglia, C. Astaxanthin-loaded stealth lipid nanoparticles (ast-ssln) as potential carriers for the treatment of alzheimer’s disease: Formulation development and optimization. Nanomaterials (Basel), 2021, 11(2), 391.
[http://dx.doi.org/10.3390/nano11020391] [PMID: 33546352]
[40]
Puglia, C.; Pignatello, R.; Fuochi, V.; Furneri, P.M.; Lauro, M.R.; Santonocito, D.; Cortesi, R.; Esposito, E. Lipid nanoparticles and active natural compounds: A perfect combination for pharmaceutical applications. Curr. Med. Chem., 2019, 26(24), 4681-4696.
[http://dx.doi.org/10.2174/0929867326666190614123835] [PMID: 31203795]
[41]
Puglia, C.; Santonocito, D.; Romeo, G.; Intagliata, S.; Romano, G.L.; Strettoi, E.; Novelli, E.; Ostacolo, C.; Campiglia, P.; Sommella, E.M.; Pignatello, R.; Bucolo, C. Lipid nanoparticles traverse non corneal path to reach the posterior eye segment: In vivo evidence. Molecules, 2021, 26(15), 4673.
[http://dx.doi.org/10.3390/molecules26154673] [PMID: 34361825]
[42]
Santonocito, D.; Vivero, L.M.; Lauro, M.R.; Torrisi, C.; Castelli, F.; Sarpietro, M.G.; Puglia, C. Design of Nanotechnological Carriers for Ocular Delivery of Mangiferin: Preformulation Study. Molecules, 2022, 27(4), 1328.
[http://dx.doi.org/10.3390/molecules27041328] [PMID: 35209120]
[43]
Corrias, F.; Lai, F. New methods for lipid nanoparticles preparation. Recent Pat. Drug Deliv. Formul., 2011, 5(3), 201-213.
[http://dx.doi.org/10.2174/187221111797200597] [PMID: 21834772]
[44]
Puglia, C.; Santonocito, D.; Ostacolo, C.; Maria Sommella, E.; Campiglia, P.; Carbone, C.; Drago, F.; Pignatello, R.; Bucolo, C. Ocular formulation based on palmitoylethanolamide-loaded nanostructured lipid carriers: Technological and pharmacological profile. Nanomaterials (Basel), 2020, 10(2), 287.
[http://dx.doi.org/10.3390/nano10020287] [PMID: 32046269]
[45]
El-Salamouni, N.S.; Farid, R.M.; El-Kamel, A.H.; El-Gamal, S.S. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2015, 496(2), 976-983.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.043] [PMID: 26498372]
[46]
Nayak, A.P.; Tiyaboonchai, W.; Patankar, S.; Madhusudhan, B.; Souto, E.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids Surf. B Biointerfaces, 2010, 81(1), 263-273.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.020] [PMID: 20688493]
[47]
Heiati, H.; Tawashi, R.; Phillips, N.C. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J. Microencapsul., 1998, 15(2), 173-184.
[http://dx.doi.org/10.3109/02652049809006847] [PMID: 9532523]
[48]
Lowry, R.H.; Wood, A.M.; Higenbottam, T.W. Effects of pH and osmolarity on aerosol-induced cough in normal volunteers. Clin. Sci. (Lond.), 1988, 74(4), 373-376.
[http://dx.doi.org/10.1042/cs0740373] [PMID: 3356109]
[49]
Müller, R.H. "Zeta potential and particle charge in laboratory practice"; Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1996.
[50]
Capstick, T.G.D.; Clifton, I.J. Inhaler technique and training in people with chronic obstructive pulmonary disease and asthma. Expert Rev. Respir. Med., 2012, 6(1), 91-103.
[http://dx.doi.org/10.1586/ers.11.89] [PMID: 22283582]
[51]
Yu, J.; Chien, Y.W. Pulmonary drug delivery: Physiologic and mechanistic aspects. Crit. Rev. Ther. Drug Carrier Syst., 1997, 14(4), 59.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v14.i4.20] [PMID: 9450176]
[52]
Usmani, O.S. Improved lung deposition: New inhaler devices. In: Overcoming Steroid Insensitivity in Respiratory Disease, 1st ed.; Ian, M. Adcock; Chung, Kian Fan, Eds.; John Wiley & Sons, Ltd., 2008; pp. 263-81.
[http://dx.doi.org/10.1002/9780470985731.ch14]
[53]
Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol., 2015, 5(S1), S2-S6.
[http://dx.doi.org/10.1002/alr.21609] [PMID: 26335832]
[54]
Corrigan, C.J. Calcilytics: A non-steroidal replacement for inhaled steroid and SABA/LABA therapy of human asthma? Expert Rev. Respir. Med., 2020, 14(8), 807-816.
[http://dx.doi.org/10.1080/17476348.2020.1756779] [PMID: 32306788]
[55]
Li, Q.; Zhan, S.; Liu, Q.; Su, H.; Dai, X.; Wang, H.; Beng, H.; Tan, W. Preparation of a sustained-release nebulized aerosol of r-terbutaline hydrochloride liposome and Evaluation of its anti-asthmatic effects via pulmonary delivery in guinea pigs. AAPS PharmSciTech, 2018, 19(1), 232-241.
[http://dx.doi.org/10.1208/s12249-017-0816-z] [PMID: 28681333]
[56]
Chakraborty, S.; Ehsan, I.; Mukherjee, B.; Mondal, L.; Roy, S.; Saha, K.D.; Paul, B.; Debnath, M.C.; Bera, T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine, 2019, 20, 102006.
[http://dx.doi.org/10.1016/j.nano.2019.04.009] [PMID: 31059793]
[57]
Jin, H.; Li, J.; Zhang, M.; Luo, R.; Lu, P.; Zhang, W.; Zhang, J.; Pi, J.; Zheng, W.; Mai, Z.; Ding, X.; Liu, X.; Ouyang, S.; Huang, G. Berberine-loaded biomimetic nanoparticles attenuate inflammation of experimental allergic asthma via enhancing IL-12 expression. Front. Pharmacol., 2021, 12, 724525.
[http://dx.doi.org/10.3389/fphar.2021.724525] [PMID: 34858170]
[58]
Esmaeili, M.; Aghajani, M.; Abbasalipourkabir, R.; Amani, A. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: Preparation, optimization, and aerodynamic behavior. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1964-1971.
[http://dx.doi.org/10.3109/21691401.2015.1129614] [PMID: 26758698]
[59]
Patil-Gadhe, A.; Kyadarkunte, A.; Patole, M.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: Part II Pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur. J. Pharm. Biopharm., 2014, 88(1), 169-177.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.007] [PMID: 25078860]
[60]
Corti, A.; Pastorino, F.; Curnis, F.; Arap, W.; Ponzoni, M.; Pasqualini, R. Targeted drug delivery and penetration into solid tumors. Med. Res. Rev., 2012, 32(5), 1078-1091.
[http://dx.doi.org/10.1002/med.20238] [PMID: 21287572]
[61]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[62]
Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4), 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[63]
Gonciar, D.; Mocan, T.; Matea, C.T.; Zdrehus, C.; Mosteanu, O.; Mocan, L.; Pop, T. Nanotechnology in metastatic cancer treatment: Current achievements and future research trends. J. Cancer, 2019, 10(6), 1358-1369.
[http://dx.doi.org/10.7150/jca.28394] [PMID: 31031845]
[64]
Zhu, X.; Kong, Y.; Liu, Q.; Lu, Y.; Xing, H.; Lu, X.; Yang, Y.; Xu, J.; Li, N.; Zhao, D.; Chen, X.; Lu, Y. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm. Pharmacol. Ther., 2019, 55, 50-61.
[http://dx.doi.org/10.1016/j.pupt.2019.02.001] [PMID: 30738974]
[65]
Bakhtiary, Z.; Barar, J.; Aghanejad, A.; Saei, A.A.; Nemati, E.; Ezzati Nazhad Dolatabadi, J.; Omidi, Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm., 2017, 43(8), 1244-1253.
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[66]
Xu, J.; Lu, X.; Zhu, X.; Yang, Y.; Liu, Q.; Zhao, D.; Lu, Y.; Wen, J.; Chen, X.; Li, N. Formulation and characterization of spray-dried powders containing vincristine-liposomes for pulmonary delivery and its pharmacokinetic evaluation from in vitro and in vivo. J. Pharm. Sci., 2019, 108(10), 3348-3358.
[http://dx.doi.org/10.1016/j.xphs.2019.05.009] [PMID: 31103789]
[67]
Adel, I.M.; ElMeligy, M.F.; Abdelrahim, M.E.A.; Maged, A.; Abdelkhalek, A.A.; Abdelmoteleb, A.M.M.; Elkasabgy, N.A. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int. J. Nanomedicine, 2021, 16, 2667-2687.
[http://dx.doi.org/10.2147/IJN.S306831] [PMID: 33854314]
[68]
Frasca, G.; Cardile, V.; Puglia, C.; Bonina, C.; Bonina, F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin. Exp. Gastroenterol., 2012, 5, 61-67.
[PMID: 22629114]
[69]
Zhang, G.; Xie, F.; Sun, Y.; Yu, X.; Xiao, Z.; Fang, R.; Li, J.; Li, Q.; Du, L.; Jin, Y. Inhalable jojoba oil dry nanoemulsion powders for the treatment of lipopolysaccharide- or H2O2-induced acute lung injury. Pharmaceutics, 2021, 13(4), 486.
[http://dx.doi.org/10.3390/pharmaceutics13040486] [PMID: 33918471]
[70]
Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58(15), 1688-1713.
[http://dx.doi.org/10.1016/j.addr.2006.09.017] [PMID: 17118485]
[71]
Crowe, L.M.; Crowe, J.H. Stabilization of dry liposomes by carbohydrates. Dev. Biol. Stand., 1992, 74, 285-294.
[PMID: 1592177]
[72]
Crowe, L.M.; Womersley, C.; Crowe, J.H.; Reid, D.; Appel, L.; Rudolph, A. Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochim. Biophys. Acta Biomembr., 1986, 861, 131-140.
[http://dx.doi.org/10.1016/0005-2736(86)90411-6]
[73]
Doebbler, G.F. Cryoprotective compounds. Cryobiology, 1966, 3(1), 2-11.
[http://dx.doi.org/10.1016/S0011-2240(66)80144-X] [PMID: 5338645]
[74]
Bensouda, Y.; Cavé, G.; Seiller, M.; Puisieux, F. Freeze-drying of emulsions influence of congealing on granulometry research of a cryoprotective agent. Pharm. Acta Helv., 1989, 64(2), 40-44.
[PMID: 2717649]
[75]
Madden, T.D.; Bally, M.B.; Hope, M.J.; Cullis, P.R.; Schieren, H.P.; Janoff, A.S. Protection of large unilamellar vesicles by trehalose during dehydration: Retention of vesicle contents. Biochim. Biophys. Acta Biomembr., 1985, 817(1), 67-74.
[http://dx.doi.org/10.1016/0005-2736(85)90069-0] [PMID: 4005259]
[76]
Strauss, G.; Schurtenberger, P.; Hauser, H. The interaction of saccharides with lipid bilayer vesicles: Stabilization during freeze-thawing and freeze-drying. Biochim. Biophys. Acta Biomembr., 1986, 858(1), 169-180.
[http://dx.doi.org/10.1016/0005-2736(86)90303-2] [PMID: 3011090]
[77]
Ausborn, M.; Nuhn, P.; Schreier, H. Stabilization of liposomes by freeze–thaw and lyophilization techniques: Problems and opportunities. Eur. J. Pharm. Biopharm., 1992, 38, 133-139.
[78]
Hauser, H.; Strauss, G. Stabilization of small, unilamellar phospholipid vesicles by sucrose during freezing and dehydration. Adv. Exp. Med. Biol., 1988, 238, 71-80.
[http://dx.doi.org/10.1007/978-1-4684-7908-9_7] [PMID: 3250248]
[79]
Vemuri, S.; Yu, C.D.; Degroot, J.S.; Wangsatornthnakun, V.; Venkataram, S. Effect of sugars on freeze-thaw and lyophilization of liposomes. Drug Dev. Ind. Pharm., 1991, 17(3), 327-348.
[http://dx.doi.org/10.3109/03639049109043831]
[80]
Strauss, G. Freezing and thawing of liposomes suspensions. In: Liposome Technology, Preparation of Liposomes; Gregoriadis, G., Ed.; CRC Press, 1984; 1, pp. 197-219.
[81]
Shulkin, P.M.; Seltzer, S.E.; Davis, M.A.; Adams, D.F. Lyophilized liposomes: A new method for long term vesicular storage. J. Microencapsul., 1984, 1(1), 73-80.
[http://dx.doi.org/10.3109/02652048409031539] [PMID: 6336517]
[82]
Schwarz, C.; Mehnert, W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm., 1997, 157(2), 171-179.
[http://dx.doi.org/10.1016/S0378-5173(97)00222-6] [PMID: 10477814]
[83]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[84]
Abdelwahed, W. Lyophilization of solid lipid nanoparticles for brain targeting. Int. J. Pharm. Pharm. Sci., 2015, 7(10), 381-385.
[85]
Pikal, M.J.; Shah, S. The collapse temperature in freeze drying: Dependence on measurement methodology and rate of water removal from the glassy phase. Int. J. Pharm., 1990, 62(2-3), 165-186.
[http://dx.doi.org/10.1016/0378-5173(90)90231-R]
[86]
Chishti, N.; Jagwani, S.; Dhamecha, D.; Jalalpure, S.; Dehghan, M.H. Preparation, optimization, and in vivo evaluation of nanoparticle-based formulation for pulmonary delivery of anticancer drug. Medicina (Kaunas), 2019, 55(6), 294.
[http://dx.doi.org/10.3390/medicina55060294] [PMID: 31226865]
[87]
Shukla, S.K.; Kulkarni, N.S.; Farrales, P.; Kanabar, D.D.; Parvathaneni, V.; Kunda, N.K.; Muth, A.; Gupta, V. Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm. Res., 2020, 37(3), 67.
[http://dx.doi.org/10.1007/s11095-020-02790-3] [PMID: 32166411]
[88]
Patel, P.; Raval, M.; Manvar, A.; Airao, V.; Bhatt, V.; Shah, P. Lung cancer targeting efficiency of silibinin loaded poly caprolactone /pluronic F68 inhalable nanoparticles: in vitro and in vivo study. PLoS One, 2022, 17(5), e0267257.
[http://dx.doi.org/10.1371/journal.pone.0267257] [PMID: 35560136]
[89]
Patel, P.; Raval, M.; Airao, V.; Bhatt, V.; Shah, P. Silibinin loaded inhalable solid lipid nanoparticles for lung targeting. J. Microencapsul., 2022, 39(1), 1-24.
[http://dx.doi.org/10.1080/02652048.2021.2002448] [PMID: 34825627]
[90]
Osama, H.; Sayed, O.M.; Hussein, R.R.S.; Abdelrahim, M.; A Elberry, A. Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer. J. Liposome Res., 2020, 30(2), 150-162.
[http://dx.doi.org/10.1080/08982104.2019.1610434] [PMID: 31039656]
[91]
Zhang, M.; Li, M.; Du, L.; Zeng, J.; Yao, T.; Jin, Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm., 2020, 578, 119177.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119177] [PMID: 32105724]
[92]
Xu, Y.; Liu, H.; Song, L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: A review. J. Nanobiotechnol., 2020, 18(1), 145.
[http://dx.doi.org/10.1186/s12951-020-00703-5] [PMID: 33076918]
[93]
Decramer, M.; Janssens, W.; Miravitlles, M. Chronic obstructive pulmonary disease. Lancet, 2012, 379(9823), 1341-1351.
[http://dx.doi.org/10.1016/S0140-6736(11)60968-9] [PMID: 22314182]
[94]
Carvalho, T.C.; Peters, J.I.; Williams, R.O. III Influence of particle size on regional lung deposition – What evidence is there? Int. J. Pharm., 2011, 406(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.040] [PMID: 21232585]
[95]
Burhan, E.; Ruesen, C.; Ruslami, R.; Ginanjar, A.; Mangunnegoro, H.; Ascobat, P.; Donders, R.; van Crevel, R.; Aarnoutse, R. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob. Agents Chemother., 2013, 57(8), 3614-3619.
[http://dx.doi.org/10.1128/AAC.02468-12] [PMID: 23689725]
[96]
Kinnula, V.L. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases. Thorax, 2005, 60(8), 693-700.
[http://dx.doi.org/10.1136/thx.2004.037473] [PMID: 16061713]
[97]
Van Klinken, B.J.W.; Dekker, J.; Büller, H.A.; Einerhand, A.W.C. Mucin gene structure and expression: Protection vs. adhesion. Am. J. Physiol., 1995, 269(5 Pt 1), G613-G627.
[PMID: 7491952]
[98]
Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol., 2006, 148(3), 245-254.
[http://dx.doi.org/10.1038/sj.bjp.0706736] [PMID: 16604091]
[99]
Umland, S.P.; Schleimer, R.P.; Johnston, S.L. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm. Pharmacol. Ther., 2002, 15(1), 35-50.
[http://dx.doi.org/10.1006/pupt.2001.0312] [PMID: 11969362]
[100]
Oakley, R.H.; Jewell, C.M.; Yudt, M.R.; Bofetiado, D.M.; Cidlowski, J.A. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem., 1999, 274(39), 27857-27866.
[http://dx.doi.org/10.1074/jbc.274.39.27857] [PMID: 10488132]
[101]
Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res., 2018, 11, 23-32.
[http://dx.doi.org/10.1016/j.jare.2018.03.005] [PMID: 30034873]
[102]
Manca, M.L.; Ferraro, M.; Pace, E.; Di Vincenzo, S.; Valenti, D.; Fernàndez-Busquets, X.; Peptu, C.A.; Manconi, M. Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract. Nanomaterials (Basel), 2021, 11(4), 850.
[http://dx.doi.org/10.3390/nano11040850] [PMID: 33810420]
[103]
De Leo, V.; Ruscigno, S.; Trapani, A.; Di Gioia, S.; Milano, F.; Mandracchia, D.; Comparelli, R.; Castellani, S.; Agostiano, A.; Trapani, G.; Catucci, L.; Conese, M. Preparation of drug loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm., 2018, 545(1-2), 378-388.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.030] [PMID: 29678545]
[104]
Carvalho, F.O.; Silva, É.R.; Nunes, P.S.; Felipe, F.A.; Ramos, K.P.P.; Ferreira, L.A.S.; Lima, V.N.B.; Shanmugam, S.; Oliveira, A.S.; Guterres, S.S.; Camargo, E.A.; Cravalho Olivera, T.V.; de Albuquerque Júnior, R.L.C.; de Lucca Junior, W.; Quintans-Júnior, L.J.; Araújo, A.A.S. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(3), 445-455.
[http://dx.doi.org/10.1007/s00210-019-01731-1] [PMID: 31655855]
[105]
Ritter, D.; Knebel, J.; Niehof, M.; Loinaz, I.; Marradi, M.; Gracia, R.; Welscher, Y.; Nostrum, C.F.; Falciani, C.; Pini, A.; Strandh, M.; Hansen, T. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol. In Vitro, 2020, 63, 104714.
[http://dx.doi.org/10.1016/j.tiv.2019.104714] [PMID: 31706036]
[106]
Günday Türeli, N.; Torge, A.; Juntke, J.; Schwarz, B.C.; Schneider-Daum, N.; Türeli, A.E.; Lehr, C.M.; Schneider, M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm., 2017, 117, 363-371.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.032] [PMID: 28476373]
[107]
Gupta, P.V.; Nirwane, A.M.; Nagarsenker, M.S. Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: Effective antimicrobial and antibiofilm strategy. AAPS PharmSciTech, 2018, 19(3), 1454-1467.
[http://dx.doi.org/10.1208/s12249-017-0945-4] [PMID: 29464594]
[108]
Yu, S.; Wang, S.; Zou, P.; Chai, G.; Lin, Y.W.; Velkov, T.; Li, J.; Pan, W.; Zhou, Q.T. Inhalable liposomal powder formulations for co-delivery of synergistic ciprofloxacin and colistin against multi-drug resistant gram-negative lung infections. Int. J. Pharm., 2020, 575, 118915.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118915] [PMID: 31816354]
[109]
Farhangi, M.; Mahboubi, A.; Kobarfard, F.; Vatanara, A.; Mortazavi, S.A. Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm. Dev. Technol., 2019, 24(5), 584-592.
[http://dx.doi.org/10.1080/10837450.2018.1545237] [PMID: 30431373]
[110]
Falciani, C.; Zevolini, F.; Brunetti, J.; Riolo, G.; Gracia, R.; Marradi, M.; Loinaz, I.; Ziemann, C.; Cossío, U.; Llop, J.; Bracci, L.; Pini, A. Antimicrobial peptide-loaded nanoparticles as inhalation therapy for Pseudomonas aeruginosa infections. Int. J. Nanomedicine, 2020, 15, 1117-1128.
[http://dx.doi.org/10.2147/IJN.S218966] [PMID: 32110011]
[111]
Pini, A.; Giuliani, A.; Falciani, C.; Fabbrini, M.; Pileri, S.; Lelli, B.; Bracci, L. Characterization of the branched antimicrobial peptide M6 by analyzing its mechanism of action and in vivo toxicity. J. Pept. Sci., 2007, 13(6), 393-399.
[http://dx.doi.org/10.1002/psc.858] [PMID: 17486663]
[112]
Falciani, C.; Lozzi, L.; Pollini, S.; Luca, V.; Carnicelli, V.; Brunetti, J.; Lelli, B.; Bindi, S.; Scali, S.; Di Giulio, A.; Rossolini, G.M.; Mangoni, M.L.; Bracci, L.; Pini, A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One, 2012, 7(10), e46259.
[http://dx.doi.org/10.1371/journal.pone.0046259] [PMID: 23056272]
[113]
Suárez, I.; Fünger, S.M.; Kröger, S.; Rademacher, J.; Fätkenheuer, G.; Rybniker, J. The diagnosis and treatment of tuberculosis. Dtsch. Arztebl. Int., 2019, 116(43), 729-735.
[PMID: 31755407]
[114]
Dheda, K.; Barry, C.E., III; Maartens, G. Tuberculosis. Lancet, 2016, 387(10024), 1211-1226.
[http://dx.doi.org/10.1016/S0140-6736(15)00151-8] [PMID: 26377143]
[115]
Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin. Microbiol. Rev., 2018, 31(4), e00021-18.
[http://dx.doi.org/10.1128/CMR.00021-18] [PMID: 30021818]
[116]
Omar, S.M.; Maziad, N.A.; El-Tantawy, N.M. Pulmonary delivery of isoniazid in nanogel loaded chitosan hybrid microparticles for inhalation. J. Aerosol Med. Pulm. Drug Deliv., 2019, 32(2), 78-87.
[http://dx.doi.org/10.1089/jamp.2018.1460] [PMID: 30526251]
[117]
Ma, C.; Wu, M.; Ye, W.; Huang, Z.; Ma, X.; Wang, W.; Wang, W.; Huang, Y.; Pan, X.; Wu, C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv. Transl. Res., 2021, 11(3), 1218-1235.
[http://dx.doi.org/10.1007/s13346-020-00849-7] [PMID: 32946043]
[118]
Shah, S.R.; Prajapati, H.R.; Sheth, D.B.; Gondaliya, E.M.; Vyas, A.J.; Soniwala, M.M.; Chavda, J.R. Pharmacokinetics and in vivo distribution of optimized PLGA nanoparticles for pulmonary delivery of levofloxacin. J. Pharm. Pharmacol., 2020, 72(8), 1026-1037.
[http://dx.doi.org/10.1111/jphp.13275] [PMID: 32337714]
[119]
Shah, S.; Ghetiya, R.; Soniwala, M.; Chavda, J. Development and optimization of inhalable levofloxacin nanoparticles for the treatment of tuberculosis. Curr. Drug Deliv., 2021, 18(6), 779-793.
[http://dx.doi.org/10.2174/1567201817999201103194626] [PMID: 33155907]
[120]
Esposito, E.; Drechsler, M.; Mariani, P.; Panico, A.M.; Cardile, V.; Crascì, L.; Carducci, F.; Graziano, A.C.E.; Cortesi, R.; Puglia, C. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater. Sci. Eng. C, 2017, 71, 669-677.
[http://dx.doi.org/10.1016/j.msec.2016.10.045] [PMID: 27987758]
[121]
Nair, S.S.; Pharande, R.R.; Bannalikar, A.S.; Mukne, A.P. In vitro anti-mycobacterial activity of acetone extract of Glycyrrhiza glabra. J. Pharm. Pharmacogn. Res., 2015, 3(4), 80-86.
[122]
Cao, J.; Chen, X.; Liang, J.; Yu, X.Q.; Xu, A.L.; Chan, E.; Wei, D.; Huang, M.; Wen, J.Y.; Yu, X.Y.; Li, X.T.; Sheu, F.S.; Zhou, S.F. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra. Drug Metab. Dispos., 2007, 35(4), 539-553.
[http://dx.doi.org/10.1124/dmd.106.010801] [PMID: 17220245]
[123]
Gao, S.; Hu, M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev. Med. Chem., 2010, 10(6), 550-567.
[http://dx.doi.org/10.2174/138955710791384081] [PMID: 20370701]
[124]
Mignet, N.; Seguin, J.; Chabot, G. Bioavailability of polyphenol liposomes: A challenge ahead. Pharmaceutics, 2013, 5(4), 457-471.
[http://dx.doi.org/10.3390/pharmaceutics5030457] [PMID: 24300518]
[125]
Viswanathan, V.; Pharande, R.; Bannalikar, A.; Gupta, P.; Gupta, U.; Mukne, A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: Formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev. Ind. Pharm., 2019, 45(1), 11-20.
[http://dx.doi.org/10.1080/03639045.2018.1513025] [PMID: 30122088]
[126]
Klimova, B.; Kuca, K.; Novotny, M.; Maresova, P. Cystic fibrosis revisited – a review study. Med. Chem., 2017, 13(2), 102-109.
[http://dx.doi.org/10.2174/1573406412666160608113235] [PMID: 27292156]
[127]
Radlović, N. Cystic fibrosis. Srp. Arh. Celok. Lek., 2012, 140(3-4), 244-249.
[http://dx.doi.org/10.2298/SARH1204244R] [PMID: 22650116]
[128]
Garbuzenko, O.B.; Kbah, N.; Kuzmov, A.; Pogrebnyak, N.; Pozharov, V.; Minko, T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J. Control. Release, 2019, 296, 225-231.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.025] [PMID: 30677435]
[129]
Bilton, D.; Fajac, I.; Pressler, T.; Clancy, J.P.; Sands, D.; Minic, P.; Cipolli, M.; Galeva, I.; Solé, A.; Quittner, A.L.; Jumadilova, Z.; Ciesielska, M.; Konstan, M.W. Long-term amikacin liposome inhalation suspension in cystic fibrosis patients with chronic P. aeruginosa infection. J. Cyst. Fibros., 2021, 20(6), 1010-1017.
[http://dx.doi.org/10.1016/j.jcf.2021.05.013] [PMID: 34144923]
[130]
Wang, Z.; Meenach, S.A. Synthesis and characterization of nanocomposite microparticles (nCmP) for the treatment of cystic fibrosis-related infections. Pharm. Res., 2016, 33(8), 1862-1872.
[http://dx.doi.org/10.1007/s11095-016-1921-5] [PMID: 27091030]
[131]
Thorn, C.R.; Carvalho, C.S.; Horstmann, J.C.; Lehr, C.M.; Prestidge, C.A.; Thomas, N. Tobramycin liquid crystal nanoparticles eradicate cystic fibrosis-related Pseudomonas aeruginosa biofilms. Small, 2021, 17(24), 2100531.
[http://dx.doi.org/10.1002/smll.202100531] [PMID: 33978317]
[132]
Glass, D.S.; Grossfeld, D.; Renna, H.A.; Agarwala, P.; Spiegler, P.; Kasselman, L.J.; Glass, A.D.; DeLeon, J.; Reiss, A.B. Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. Respir. Investig., 2020, 58(5), 320-335.
[http://dx.doi.org/10.1016/j.resinv.2020.04.002] [PMID: 32487481]
[133]
Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082), 1941-1952.
[http://dx.doi.org/10.1016/S0140-6736(17)30866-8] [PMID: 28365056]
[134]
Xaubet, A.; Ancochea, J.; Molina, M.M. Idiopathic pulmonary fibrosis. Med. Clin. (Barc.), 2017, 148(4), 170-175.
[http://dx.doi.org/10.1016/j.medcli.2016.11.004] [PMID: 27998476]
[135]
Kotta, S.; Aldawsari, H.M.; Badr, S.M.; Binmahfouz, L.S.; Bakhaidar, R.B.; Sreeharsha, N.; Nair, A.B.; Ramnarayanan, C. Aerosol delivery of surfactant liposomes for management of pulmonary fibrosis: An approach supporting pulmonary mechanics. Pharmaceutics, 2021, 13(11), 1851.
[http://dx.doi.org/10.3390/pharmaceutics13111851] [PMID: 34834265]
[136]
Ivanova, V.; Garbuzenko, O.B.; Reuhl, K.R.; Reimer, D.C.; Pozharov, V.P.; Minko, T. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur. J. Pharm. Biopharm., 2013, 84(2), 335-344.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.023] [PMID: 23228437]
[137]
Garbuzenko, O.B.; Ivanova, V.; Kholodovych, V.; Reimer, D.C.; Reuhl, K.R.; Yurkow, E.; Adler, D.; Minko, T. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine, 2017, 13(6), 1983-1992.
[http://dx.doi.org/10.1016/j.nano.2017.04.005] [PMID: 28434932]
[138]
Liparulo, A.; Esposito, R.; Santonocito, D.; Muñoz-ramírez, A.; Spaziano, G.; Bruno, F.; Xiao, J.; Puglia, C.; Filosa, R.; Berrino, L.; D'agostino, B. Formulation and characterization of solid lipid nanoparticles loading rf22-c, a potent and selective 5-LO inhibitor, in a monocrotaline-induced model of pulmonary hypertension. Front. Pharmacol., 2020, 11, 83.
[139]
Berghausen, E.; ten Freyhaus, H.; Rosenkranz, S. Targeting of platelet-derived growth factor signaling in pulmonary arterial hypertension. Handb. Exp. Pharmacol., 2013, 218, 381-408.
[http://dx.doi.org/10.1007/978-3-662-45805-1_16] [PMID: 24092349]
[140]
Perros, F.; Montani, D.; Dorfmüller, P.; Durand-Gasselin, I.; Tcherakian, C.; Le Pavec, J.; Mazmanian, M.; Fadel, E.; Mussot, S.; Mercier, O.; Hervé, P.; Emilie, D.; Eddahibi, S.; Simonneau, G.; Souza, R.; Humbert, M. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med., 2008, 178(1), 81-88.
[http://dx.doi.org/10.1164/rccm.200707-1037OC] [PMID: 18420966]
[141]
Schermuly, R.T.; Dony, E.; Ghofrani, H.A.; Pullamsetti, S.; Savai, R.; Roth, M.; Sydykov, A.; Lai, Y.J.; Weissmann, N.; Seeger, W.; Grimminger, F. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest., 2005, 115(10), 2811-2821.
[http://dx.doi.org/10.1172/JCI24838] [PMID: 16200212]
[142]
Hoeper, M.M.; Barst, R.J.; Bourge, R.C.; Feldman, J.; Frost, A.E.; Galié, N.; Gómez-Sánchez, M.A.; Grimminger, F.; Grünig, E.; Hassoun, P.M.; Morrell, N.W.; Peacock, A.J.; Satoh, T.; Simonneau, G.; Tapson, V.F.; Torres, F.; Lawrence, D.; Quinn, D.A.; Ghofrani, H.A. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: Results of the randomized IMPRES study. Circulation, 2013, 127(10), 1128-1138.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000765] [PMID: 23403476]
[143]
Russo, G.; Pennisi, M.; Fichera, E.; Motta, S.; Raciti, G.; Viceconti, M.; Pappalardo, F. In silico trial to test COVID-19 candidate vaccines: A case study with UISS platform. BMC Bioinformatics, 2020, 21(S17)(Suppl. 17), 527.
[http://dx.doi.org/10.1186/s12859-020-03872-0] [PMID: 33308153]
[144]
Noor, R. Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and Moderna mRNA Vaccines. Curr. Clin. Microbiol. Rep., 2021, 8(3), 178-185.
[http://dx.doi.org/10.1007/s40588-021-00162-y] [PMID: 33686365]
[145]
Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P.Y.; Türeci, Ö.; Tompkins, K.R.; Walsh, E.E.; Frenck, R.; Falsey, A.R.; Dormitzer, P.R.; Gruber, W.C.; Şahin, U.; Jansen, K.U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020, 586(7830), 589-593.
[http://dx.doi.org/10.1038/s41586-020-2639-4] [PMID: 32785213]
[146]
Witika, B.A.; Makoni, P.A.; Mweetwa, L.L.; Ntemi, P.V.; Chikukwa, M.T.R.; Matafwali, S.K.; Mwila, C.; Mudenda, S.; Katandula, J.; Walker, R.B. Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment. Molecules, 2020, 25(24), 5952.
[http://dx.doi.org/10.3390/molecules25245952] [PMID: 33339110]
[147]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[148]
Tai, T.T.; Wu, T.J.; Wu, H.D.; Tsai, Y.C.; Wang, H.T.; Wang, A.M.; Shih, S.F.; Chen, Y.C. A strategy to treat COVID-19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study. Clin. Transl. Sci., 2021, 14(1), 132-136.
[http://dx.doi.org/10.1111/cts.12923] [PMID: 33135382]
[149]
Vartak, R.; Patil, S.M.; Saraswat, A.; Patki, M.; Kunda, N.K.; Patel, K. Aerosolized nanoliposomal carrier of remdesivir: An effective alternative for COVID-19 treatment in vitro. Nanomedicine (Lond.), 2021, 16(14), 1187-1202.
[http://dx.doi.org/10.2217/nnm-2020-0475] [PMID: 33982600]
[150]
Tulbah, A.S.; Lee, W.H. Physicochemical characteristics and in vitro toxicity/Anti-SARS-CoV-2 activity of favipiravir solid lipid nanoparticles (SLNs). Pharmaceuticals, 2021, 14(10), 1059.
[http://dx.doi.org/10.3390/ph14101059] [PMID: 34681283]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy