Review Article

乳腺癌治疗中的杂环:吡唑衍生物的使用

卷 30, 期 10, 2023

发表于: 25 October, 2022

页: [1145 - 1174] 页: 30

弟呕挨: 10.2174/0929867329666220829091830

open access plus

摘要

在芳香杂环中,吡唑 —一种结构中有两个相邻氮原子的五元环,在药理学背景下被认为是有效的候选者。由于该部分存在于许多天然物质中,因此是一个有趣的治疗靶点,涵盖了广泛的生物活性。因此,吡唑衍生物作为抗肿瘤剂的潜力已经在许多研究中得到探索,在某些情况下显示出有希望的结果。从这个意义上说,乳腺癌已经是一些国家女性癌症死亡的主要原因,一直是本综述选择的主题,涵盖了从2003年发表的最早研究到2021年的最新研究的一系列不同研究。

关键词: 乳腺癌,癌症,杂环,吡唑,肿瘤,HDI

[1]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[2]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[3]
Brown, S.B.; Brown, E.A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol., 2004, 5(8), 497-508.
[http://dx.doi.org/10.1016/S1470-2045(04)01529-3] [PMID: 15288239]
[4]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[5]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[6]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[7]
Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, 160, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[8]
Keibler, M.A.; Wasylenko, T.M.; Kelleher, J.K.; Iliopoulos, O.; Vander Heiden, M.G.; Stephanopoulos, G. Metabolic requirements for cancer cell proliferation. Cancer Metab., 2016, 4, 16.
[http://dx.doi.org/10.1186/s40170-016-0156-6] [PMID: 27540483]
[9]
Nilsson, A.; Nielsen, J. Genome scale metabolic modeling of cancer. Metab. Eng., 2017, 43(Pt B), 103-112.
[http://dx.doi.org/10.1016/j.ymben.2016.10.022] [PMID: 27825806]
[10]
Hason, M.; Bartůněk, P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes (Basel), 2019, 10(11), 935.
[http://dx.doi.org/10.3390/genes10110935] [PMID: 31731811]
[11]
Andrei, L.; Kasas, S.; Ochoa Garrido, I.; Stanković, T.; Suárez Korsnes, M.; Vaclavikova, R.; Assaraf, Y.G.; Pešić, M. Advanced technological tools to study multidrug resistance in cancer. Drug Resist. Updat., 2020, 48, 100658.
[http://dx.doi.org/10.1016/j.drup.2019.100658] [PMID: 31678863]
[12]
Afshar, N.; English, D.R.; Thursfield, V.; Mitchell, P.L.; Te Marvelde, L.; Farrugia, H.; Giles, G.G.; Milne, R.L. Differences in cancer survival by sex: A population-based study using cancer registry data. Cancer Causes Control, 2018, 29(11), 1059-1069.
[http://dx.doi.org/10.1007/s10552-018-1079-z] [PMID: 30194549]
[13]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[14]
Jeon, J.S.; Bersini, S.; Gilardi, M.; Dubini, G.; Charest, J.L.; Moretti, M.; Kamm, R.D. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA, 2015, 112(1), 214-219.
[http://dx.doi.org/10.1073/pnas.1417115112] [PMID: 25524628]
[15]
Kaushik, A.K.; De Berardinis, R.J. Applications of metabolomics to study cancer metabolism. Rev. Can., 2018, 1870(1), 2-14.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.009]
[16]
WHO. Who report on cancer: Setting priorities, investing wisely and providing care for all. 2020. Available from: https://www.who.int/publications/i/item/9789240001299
[17]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[18]
Ziegler, R.G.; Hoover, R.N.; Pike, M.C.; Hildesheim, A.; Nomura, A.M.; West, D.W.; Wu-Williams, A.H.; Kolonel, L.N.; Horn-Ross, P.L.; Rosenthal, J.F.; Hyer, M.B. Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst., 1993, 85(22), 1819-1827.
[http://dx.doi.org/10.1093/jnci/85.22.1819] [PMID: 8230262]
[19]
Brinton, L.A.; Gaudet, M.M.; Gierach, G.L. Breast cancer. In: Cancer Epidemiology and Prevention, 4th ed; Thun, M.J.; Linet, M.S.; Cerhan, J.R.; Haiman, C.A.; Schottenfeld, D., Eds.; Oxford University Press:: New York, 2018; pp. 861-888.
[http://dx.doi.org/10.1093/oso/9780190238667.003.0045]
[20]
Bray, F.; McCarron, P.; Parkin, D.M. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res., 2004, 6(6), 229-239.
[http://dx.doi.org/10.1186/bcr932] [PMID: 15535852]
[21]
Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; Kotchen, J.M.; Ockene, J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 2002, 288(3), 321-333.
[http://dx.doi.org/10.1001/jama.288.3.321] [PMID: 12117397]
[22]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[23]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[24]
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168.
[http://dx.doi.org/10.2174/1871520620666200705214917] [PMID: 32628593]
[25]
Auria-Luna, F.; Marqués-López, E.; Romanos, E.; Fernández-Moreira, V.; Gimeno, M.C.; Marzo, I.; Herrera, R.P. Novel ureido-dihydropyridine scaffolds as theranostic agents. Bioorg. Chem., 2020, 105, 104364.
[http://dx.doi.org/10.1016/j.bioorg.2020.104364] [PMID: 33113409]
[26]
Rodrigues, J.M.; Calhelha, R.C.; Nogueira, A.; Ferreira, I.C.F.R.; Barros, L.; Queiroz, M.R.P. Synthesis of novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and antitumor activity evaluation: Effects in human tumor cells growth, cell cycle analysis, apoptosis and toxicity in non-tumor cells. Molecules, 2021, 26(16), 4823.
[http://dx.doi.org/10.3390/molecules26164823] [PMID: 34443411]
[27]
Lenis-Rojas, O.A.; Cordeiro, S.; Horta-Meireles, M.; Fernández, J.A.A.; Fernández Vila, S.; Rubiolo, J.A.; Cabezas-Sainz, P.; Sanchez, L.; Fernandes, A.R.; Royo, B. N- Heterocyclic carbene iron complexes as anticancer agents: In vitro and in vivo biological studies. Molecules, 2021, 26(18), 5535.
[http://dx.doi.org/10.3390/molecules26185535] [PMID: 34577006]
[28]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[29]
Shih, S-R.; Chu, T-Y.; Reddy, G.R.; Tseng, S-N.; Chen, H-L.; Tang, W-F.; Wu, M-S.; Yeh, J-Y.; Chao, Y-S.; Hsu, J.T.; Hsieh, H-P.; Horng, J-T. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J. Biomed. Sci., 2010, 17(13), 13.
[http://dx.doi.org/10.1186/1423-0127-17-13] [PMID: 20178582]
[30]
Hashem, A.I.; Youssef, A.S.A.; Kandeel, K.A.; Abou-Elmagd, W.S.I. Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. Eur. J. Med. Chem., 2007, 42(7), 934-939.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.032] [PMID: 17321008]
[31]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Micky, J.A.; Abdel-Megeid, F.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem., 2008, 16(15), 7102-7106.
[http://dx.doi.org/10.1016/j.bmc.2008.06.054] [PMID: 18635363]
[32]
Morsy, A.R.I.; Ramadan, S.K.; Elsafty, M.M. Synthesis and antiviral activity of some pyrrolonyl substituted heterocycles as additives to enhance inactivated Newcastle disease vaccine. Med. Chem. Res., 2020, 29, 979-988.
[http://dx.doi.org/10.1007/s00044-020-02538-z]
[33]
Chandna, N.; Kumar, S.; Kaushik, P.; Kaushik, D.; Roy, S.K.; Gupta, G.K.; Jachak, S.M.; Kapoor, J.K.; Sharma, P.K. Synthesis of novel celecoxib analogues by bioisosteric replacement of sulfonamide as potent anti-inflammatory agents and cyclooxygenase inhibitors. Bioorg. Med. Chem., 2013, 21(15), 4581-4590.
[http://dx.doi.org/10.1016/j.bmc.2013.05.029] [PMID: 23769654]
[34]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[35]
Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 44(11), 4557-4566.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.024] [PMID: 19631423]
[36]
Ramadan, S.K.; El-Helw, E.A.E. Synthesis and antimicrobial activity evaluation of some novel heterocycles derived from chromonyl-2(3H)-furanone. J. Chem. Res., 2018, 42(6), 332-336.
[http://dx.doi.org/10.3184/174751918X15295796734379]
[37]
Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. Chapter thirty-one -to market, to market-2011. Annu. Rep. Med. Chem., 2012, 47, 499-569.
[http://dx.doi.org/10.1016/B978-0-12-396492-2.00031-X]
[38]
Hsu, A-L.; Ching, T-T.; Wang, D-S.; Song, X.; Rangnekar, V.M.; Chen, C-S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J. Biol. Chem., 2000, 275(15), 11397-11403.
[http://dx.doi.org/10.1074/jbc.275.15.11397] [PMID: 10753955]
[39]
Williams, C.S.; Watson, A.J.; Sheng, H.; Helou, R.; Shao, J.; DuBois, R.N. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: Lack of correlation between in vitro and in vivo models. Cancer Res., 2000, 60(21), 6045-6051.
[PMID: 11085526]
[40]
Kulp, S.K.; Yang, Y-T.; Hung, C-C.; Chen, K-F.; Lai, J-P.; Tseng, P-H.; Fowble, J.W.; Ward, P.J.; Chen, C-S. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res., 2004, 64(4), 1444-1451.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2396] [PMID: 14973075]
[41]
Nitulescu, G.M.; Draghici, C.; Missir, A.V. Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur. J. Med. Chem., 2010, 45(11), 4914-4919.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.064] [PMID: 20728965]
[42]
Ramadan, S.K.; El-Helw, E.A.E.; Sallam, H.A. Cytotoxic and antimicrobial activities of some novel heterocycles employing 6-(1,3-diphenyl-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile. Heterocycl. Commun., 2019, 25(1), 107-115.
[http://dx.doi.org/10.1515/hc-2019-0008]
[43]
FDA. Drug approval date and data were obtained from the following sources., Available from: https://www.ema. europa.eu/
[44]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer in women: Burden and trends. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 444-457.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858] [PMID: 28223433]
[45]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[46]
Noble, M.E.M.; Endicott, J.A.; Johnson, L.N. Protein kinase inhibitors: Insights into drug design from structure. Science, 2004, 303(5665), 1800-1805.
[http://dx.doi.org/10.1126/science.1095920] [PMID: 15031492]
[47]
Cherry, M.; Williams, D.H. Recent kinase and kinase inhibitor X-ray structures: Mechanisms of inhibition and selectivity insights. Curr. Med. Chem., 2004, 11(6), 663-673.
[http://dx.doi.org/10.2174/0929867043455792] [PMID: 15032722]
[48]
Furet, P.; Meyer, T.; Strauss, A.; Raccuglia, S.; Rondeau, J-M. Structure-based design and protein X-ray analysis of a protein kinase inhibitor. Bioorg. Med. Chem. Lett., 2002, 12(2), 221-224.
[http://dx.doi.org/10.1016/S0960-894X(01)00715-6] [PMID: 11755359]
[49]
Ikuta, M.; Kamata, K.; Fukasawa, K.; Honma, T.; Machida, T.; Hirai, H.; Suzuki-Takahashi, I.; Hayama, T.; Nishimura, S. Crystallographic approach to identification of cyclin-dependent kinase 4 (CDK4)-specific inhibitors by using CDK4 mimic CDK2 protein. J. Biol. Chem., 2001, 276(29), 27548-27554.
[http://dx.doi.org/10.1074/jbc.M102060200] [PMID: 11335721]
[50]
Sawyer, J.S.; Beight, D.W.; Britt, K.S.; Anderson, B.D.; Campbell, R.M.; Goodson, T., Jr; Herron, D.K.; Li, H-Y.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.; Wagner, J.R.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Bioorg. Med. Chem. Lett., 2004, 14(13), 3581-3584.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.007] [PMID: 15177479]
[51]
Sawyer, J.S.; Anderson, B.D.; Beight, D.W.; Campbell, R.M.; Jones, M.L.; Herron, D.K.; Lampe, J.W.; McCowan, J.R.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.R.; Vieth, M.; Weir, L.C.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J. Med. Chem., 2003, 46(19), 3953-3956.
[http://dx.doi.org/10.1021/jm0205705] [PMID: 12954047]
[52]
El-Gamal, M.I.; Zaraei, S-O.; Madkour, M.M.; Anbar, H.S. Evaluation of substituted pyrazole-based kinase inhibitors in one decade (2011-2020): Current status and future prospects. Molecules, 2022, 27(1), 330.
[http://dx.doi.org/10.3390/molecules27010330] [PMID: 35011562]
[53]
Persson, T.; Yde, C.W.; Rasmussen, J.E.; Rasmussen, T.L.; Guerra, B.; Issinger, O-G.; Nielsen, J. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction: Induction of growth arrest in MCF-7 cancer cells. Org. Biomol. Chem., 2007, 5(24), 3963-3970.
[http://dx.doi.org/10.1039/b711279c] [PMID: 18043801]
[54]
El-Deeb, I.M.; Lee, S.H. Design and synthesis of new potent anticancer pyrazoles with high FLT3 kinase inhibitory selectivity. Bioorg. Med. Chem., 2010, 18(11), 3961-3973.
[http://dx.doi.org/10.1016/j.bmc.2010.04.029] [PMID: 20472440]
[55]
Shankar, D.B.; Li, J.; Tapang, P.; Owen McCall, J.; Pease, L.J.; Dai, Y.; Wei, R-Q.; Albert, D.H.; Bouska, J.J.; Osterling, D.J.; Guo, J.; Marcotte, P.A.; Johnson, E.F.; Soni, N.; Hartandi, K.; Michaelides, M.R.; Davidsen, S.K.; Priceman, S.J.; Chang, J.C.; Rhodes, K.; Shah, N.; Moore, T.B.; Sakamoto, K.M.; Glaser, K.B. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: Inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood, 2007, 109(8), 3400-3408.
[http://dx.doi.org/10.1182/blood-2006-06-029579] [PMID: 17209055]
[56]
Schmidt-Arras, D.; Schwäble, J.; Böhmer, F-D.; Serve, H. Flt3 receptor tyrosine kinase as a drug target in leukemia. Curr. Pharm. Des., 2004, 10(16), 1867-1883.
[http://dx.doi.org/10.2174/1381612043384394] [PMID: 15180525]
[57]
Gazit, A.; Yee, K.; Uecker, A.; Böhmer, F-D.; Sjöblom, T.; Östman, A.; Waltenberger, J.; Golomb, G.; Banai, S.; Heinrich, M.C.; Levitzki, A. Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Bioorg. Med. Chem., 2003, 11(9), 2007-2018.
[http://dx.doi.org/10.1016/S0968-0896(03)00048-8] [PMID: 12670652]
[58]
Mahboobi, S.; Uecker, A.; Cénac, C.; Sellmer, A.; Eichhorn, E.; Elz, S.; Böhmer, F-D.; Dove, S. Inhibition of FLT3 and PDGFR tyrosine kinase activity by bis(benzo[b]furan-2-yl)methanones. Bioorg. Med. Chem., 2007, 15(5), 2187-2197.
[http://dx.doi.org/10.1016/j.bmc.2006.12.011] [PMID: 17210255]
[59]
Woodburn, J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther., 1999, 82(2-3), 241-250.
[http://dx.doi.org/10.1016/S0163-7258(98)00045-X] [PMID: 10454201]
[60]
Wells, A. Tumor invasion: Role of growth factor-induced cell motility. Adv. Cancer Res., 2000, 78, 31-101.
[http://dx.doi.org/10.1016/S0065-230X(08)61023-4] [PMID: 10547668]
[61]
Bridges, A.J. The rationale and strategy used to develop a series of highly potent, irreversible, inhibitors of the epidermal growth factor receptor family of tyrosine kinases. Curr. Med. Chem., 1999, 6(9), 825-843.
[http://dx.doi.org/10.2174/092986730609220401151141] [PMID: 10495354]
[62]
Boschelli, D.H. Small molecule inhibitors of receptor tyrosine kinases. Drugs Future, 1999, 24(5), 515-537.
[http://dx.doi.org/10.1358/dof.1999.024.05.858622]
[63]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[64]
Prossnitz, E.R.; Arterburn, J.B.; Smith, H.O.; Oprea, T.I.; Sklar, L.A.; Hathaway, H.J. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu. Rev. Physiol., 2008, 70, 165-190.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100518] [PMID: 18271749]
[65]
Sawai, A.; Chandarlapaty, S.; Greulich, H.; Gonen, M.; Ye, Q.; Arteaga, C.L.; Sellers, W.; Rosen, N.; Solit, D.B. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res., 2008, 68(2), 589-596.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1570] [PMID: 18199556]
[66]
Wei, F.; Zhao, B-X.; Huang, B.; Zhang, L.; Sun, C-H.; Dong, W-L.; Shin, D-S.; Miao, J-Y. Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2′-hydroxy-3′-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate. Bioorg. Med. Chem. Lett., 2006, 16(24), 6342-6347.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.008] [PMID: 17000107]
[67]
Das, J.; Pany, S.; Panchal, S.; Majhi, A.; Rahman, G.M. Binding of isoxazole and pyrazole derivatives of curcumin with the activator binding domain of novel protein kinase C. Bioorg. Med. Chem., 2011, 19(21), 6196-6202.
[http://dx.doi.org/10.1016/j.bmc.2011.09.011] [PMID: 21975067]
[68]
Xie, Y-S.; Pan, X-H.; Zhao, B-X.; Liu, J-T.; Shin, D-S.; Zhang, J-H.; Zheng, L-W.; Zhao, J.; Miao, J-Y. Synthesis, structure characterization and preliminary biological evaluation of novel 5-alkyl-2-ferrocenyl-6,7-dihydropyrazolo [1,5-a]pyrazin-4(5H)-one derivatives. J. Organomet. Chem., 2008, 693(7), 1367-1374.
[http://dx.doi.org/10.1016/j.jorganchem.2008.01.043]
[69]
Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonía, R.; Nogueras, M.; Sanchez, A.; Cobo, J. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg. Med. Chem., 2010, 18(14), 4965-4974.
[http://dx.doi.org/10.1016/j.bmc.2010.06.013] [PMID: 20594863]
[70]
Li, D-D.; Lv, P-C.; Zhang, H.; Zhang, H-J.; Hou, Y-P.; Liu, K.; Ye, Y-H.; Zhu, H-L. The combination of 4-anilinoquinazoline and cinnamic acid: A novel mode of binding to the epidermal growth factor receptor tyrosine kinase. Bioorg. Med. Chem., 2011, 19(16), 5012-5022.
[http://dx.doi.org/10.1016/j.bmc.2011.06.044] [PMID: 21763148]
[71]
Cárdenas, M.; Marder, M.; Blank, V.C.; Roguin, L.P. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg. Med. Chem., 2006, 14(9), 2966-2971.
[http://dx.doi.org/10.1016/j.bmc.2005.12.021] [PMID: 16412650]
[72]
Dallavalle, S.; Cincinelli, R.; Nannei, R.; Merlini, L.; Morini, G.; Penco, S.; Pisano, C.; Vesci, L.; Barbarino, M.; Zuco, V.; De Cesare, M.; Zunino, F. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2009, 44(5), 1900-1912.
[http://dx.doi.org/10.1016/j.ejmech.2008.11.005] [PMID: 19084294]
[73]
Qian, Y.; Zhang, H-J.; Zhang, H.; Xu, C.; Zhao, J.; Zhu, H-L. Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents. Bioorg. Med. Chem., 2010, 18(14), 4991-4996.
[http://dx.doi.org/10.1016/j.bmc.2010.06.003] [PMID: 20594859]
[74]
Zhang, W-M.; Xing, M.; Zhao, T-T.; Ren, Y-J.; Yang, X-H.; Yang, Y-S.; Lv, P-C.; Zhu, H-L. Synthesis, molecular modeling and biological evaluation of cinnamic acid derivatives with pyrazole moieties as novel anticancer agents. RSC Advances, 2014, 4(70), 37197-37207.
[http://dx.doi.org/10.1039/C4RA05257A]
[75]
Ashourpour, M.; Mostafavi Hosseini, F.; Amini, M.; Saeedian Moghadam, E.; Kazerouni, F.; Arman, S.Y.; Shahsavari, Z. Pyrazole derivatives induce apoptosis via ROS generation in the triple negative breast cancer cells, MDA-MB-468. Asian Pac. J. Cancer Prev., 2021, 22(7), 2079-2087.
[http://dx.doi.org/10.31557/APJCP.2021.22.7.2079] [PMID: 34319030]
[76]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: Epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[77]
Hong, Y.; Cho, M.; Yuan, Y-C.; Chen, S. Molecular basis for the interaction of four different classes of substrates and inhibitors with human aromatase. Biochem. Pharmacol., 2008, 75(5), 1161-1169.
[http://dx.doi.org/10.1016/j.bcp.2007.11.010] [PMID: 18184606]
[78]
Leonard, G.D.; Swain, S.M. Ductal carcinoma in situ, complexities and challenges. J. Natl. Cancer Inst., 2004, 96(12), 906-920.
[http://dx.doi.org/10.1093/jnci/djh164] [PMID: 15199110]
[79]
Gusberg, S.B. Tamoxifen for breast cancer: Associated endometrial cancer. Cancer, 1990, 65(7), 1463-1464.
[http://dx.doi.org/10.1002/1097-0142(19900401)65:7<1463:AID-CNCR2820650702>3.0.CO;2-S] [PMID: 2311060]
[80]
Neven, P.; Vergote, I. Should tamoxifen users be screened for endometrial lesions? Lancet, 1998, 351(9097), 155-157.
[http://dx.doi.org/10.1016/S0140-6736(05)78216-7] [PMID: 9449866]
[81]
Wiseman, L.R.; Goa, K.L. Toremifene. A review of its pharmacological properties and clinical efficacy in the management of advanced breast cancer. Drugs, 1997, 54(1), 141-160.
[http://dx.doi.org/10.2165/00003495-199754010-00014] [PMID: 9211086]
[82]
Diasio, R.B. The role of dihydropyrimidine dehydrogenase (DPD) modulation in 5-FU pharmacology. Oncology (Williston Park), 1998, 12(10)(Suppl. 7), 23-27.
[PMID: 9830621]
[83]
Naruse, T.; Nishida, Y.; Ishiguro, N. Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomed. Pharmacother., 2007, 61(6), 338-346.
[http://dx.doi.org/10.1016/j.biopha.2007.02.011] [PMID: 17395421]
[84]
Dang, C.T.; Dannenberg, A.J.; Subbaramaiah, K.; Dickler, M.N.; Moasser, M.M.; Seidman, A.D.; D’Andrea, G.M.; Theodoulou, M.; Panageas, K.S.; Norton, L.; Hudis, C.A.; Phase, I.I. Phase II study of celecoxib and trastuzumab in metastatic breast cancer patients who have progressed after prior trastuzumab-based treatments. Clin. Cancer Res., 2004, 10(12 Pt 1), 4062-4067.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0463] [PMID: 15217939]
[85]
Reardon, D.A.; Quinn, J.A.; Vredenburgh, J.; Rich, J.N.; Gururangan, S.; Badruddoja, M.; Herndon, J.E., II; Dowell, J.M.; Friedman, A.H.; Friedman, H.S. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer, 2005, 103(2), 329-338.
[http://dx.doi.org/10.1002/cncr.20776] [PMID: 15558802]
[86]
Csiki, I.; Morrow, J.D.; Sandler, A.; Shyr, Y.; Oates, J.; Williams, M.K.; Dang, T.; Carbone, D.P.; Johnson, D.H. Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: A phase II trial of celecoxib and docetaxel. Clin. Cancer Res., 2005, 11(18), 6634-6640.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0436] [PMID: 16166442]
[87]
Farag, A.M.; Mayhoub, A.S.; Eldebss, T.M.A.; Amr, A-G.E.; Ali, K.A.K.; Abdel-Hafez, N.A.; Abdulla, M.M. Synthesis and structure-activity relationship studies of pyrazole-based heterocycles as antitumor agents. Arch. Pharm. (Weinheim), 2010, 343(7), 384-396.
[http://dx.doi.org/10.1002/ardp.200900176] [PMID: 20397210]
[88]
Weil, C.S. Tables for convenient calculation of median-effective dose (LD50 or ED50) and instructions in their use. Biometrics, 1952, 8(3), 249-263.
[http://dx.doi.org/10.2307/3001557]
[89]
Giuliano, M.; Hu, H.; Wang, Y-C.; Fu, X.; Nardone, A.; Herrera, S.; Mao, S.; Contreras, A.; Gutiérrez, C.; Wang, T.; Hilsenbeck, S.G.; De Angelis, C.; Wang, N.J.; Heiser, L.M.; Gray, J.W.; López-Tarruella, S.; Pavlick, A.C.; Trivedi, M.V.; Chamness, G.C.; Chang, J.C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy. Clin. Cancer Res., 2015, 21(17), 3995-4003.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2728] [PMID: 26015514]
[90]
Dunnwald, L.K.; Rossing, M.A.; Li, C.I. Hormone receptor status, tumor characteristics, and prognosis: A prospective cohort of breast cancer patients. Breast Cancer Res., 2007, 9(1), R6.
[http://dx.doi.org/10.1186/bcr1639] [PMID: 17239243]
[91]
Ali, S.; Coombes, R.C. Estrogen receptor alpha in human breast cancer: Occurrence and significance. J. Mammary Gland Biol. Neoplasia, 2000, 5(3), 271-281.
[http://dx.doi.org/10.1023/A:1009594727358] [PMID: 14973389]
[92]
Raju, H.; Chandrappa, S.; Prasanna, D.S.; Ananda, H.; Nagamani, T.S.; Byregowda, S.M.; Rangappa, K.S. Synthesis, characterization and in-vitro antiproliferative effects of novel 5-amino pyrazole derivatives against breast cancer cell lines. Anti-Cancer Drug Discov., 2011, 6(2), 186-195.
[http://dx.doi.org/10.2174/157489211795328459] [PMID: 21247401]
[93]
Ananda, H.; Sharath Kumar, K.S.; Nishana, M.; Hegde, M.; Srivastava, M.; Byregowda, R.; Choudhary, B.; Raghavan, S.C.; Rangappa, K.S. Regioselective synthesis and biological studies of novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives as potential antiproliferative agents. Mol. Cell. Biochem., 2017, 426(1-2), 149-160.
[http://dx.doi.org/10.1007/s11010-016-2887-7] [PMID: 27882441]
[94]
Ananda, H.; Sharath Kumar, K.S.; Sudhanva, M.S.; Rangappa, S.; Rangappa, K.S. A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression. Mol. Cell. Biochem., 2018, 449(1-2), 137-144.
[http://dx.doi.org/10.1007/s11010-018-3350-8] [PMID: 29777335]
[95]
Vajdos, F.F.; Hoth, L.R.; Geoghegan, K.F.; Simons, S.P.; LeMotte, P.K.; Danley, D.E.; Ammirati, M.J.; Pandit, J. The 2.0 A crystal structure of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci., 2007, 16(5), 897-905.
[http://dx.doi.org/10.1110/ps.062729207] [PMID: 17456742]
[96]
Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[97]
Liekens, S.; De Clercq, E.; Neyts, J. Angiogenesis: Regulators and clinical applications. Biochem. Pharmacol., 2001, 61(3), 253-270.
[http://dx.doi.org/10.1016/S0006-2952(00)00529-3] [PMID: 11172729]
[98]
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 2005, 438(7070), 932-936.
[http://dx.doi.org/10.1038/nature04478] [PMID: 16355210]
[99]
Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[100]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1995, 1(1), 27-31.
[http://dx.doi.org/10.1038/nm0195-27] [PMID: 7584949]
[101]
Wu, Y.; Sun, W.L.; Feng, J.F. Antiangiogenic therapy in the management of breast cancer. Asia Pac. J. Clin. Oncol., 2013, 9(2), 110-116.
[http://dx.doi.org/10.1111/j.1743-7563.2012.01569.x] [PMID: 22898270]
[102]
Kerbel, R.S. Clinical trials of antiangiogenic drugs: Opportunities, problems, and assessment of initial results. J. Clin. Oncol., 2001, 19(18)(Suppl.), 45S-51S.
[PMID: 11560971]
[103]
Leahy, K.M.; Koki, A.T.; Masferrer, J.L. Role of cyclooxygenases in angiogenesis. Curr. Med. Chem., 2000, 7(11), 1163-1170.
[http://dx.doi.org/10.2174/0929867003374336] [PMID: 11032965]
[104]
Connolly, E.M.; Harmey, J.H.; O’Grady, T.; Foley, D.; Roche-Nagle, G.; Kay, E.; Bouchier-Hayes, D.J. Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. Br. J. Cancer, 2002, 87(2), 231-237.
[http://dx.doi.org/10.1038/sj.bjc.6600462] [PMID: 12107848]
[105]
Blanke, C.D. Celecoxib with chemotherapy in colorectal cancer. Oncology (Williston Park), 2002, 16(4)(Suppl. 3), 17-21.
[PMID: 12014863]
[106]
Abadi, A.H.; Eissa, A.A.H.; Hassan, G.S. Synthesis of novel 1,3,4-trisubstituted pyrazole derivatives and their evaluation as antitumor and antiangiogenic agents. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 838-844.
[http://dx.doi.org/10.1248/cpb.51.838] [PMID: 12843591]
[107]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[108]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[109]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19(6), 622-638.
[PMID: 1462164]
[110]
Christodoulou, M.S.; Liekens, S.; Kasiotis, K.M.; Haroutounian, S.A. Novel pyrazole derivatives: Synthesis and evaluation of anti-angiogenic activity. Bioorg. Med. Chem., 2010, 18(12), 4338-4350.
[http://dx.doi.org/10.1016/j.bmc.2010.04.076] [PMID: 20493716]
[111]
Elmegeed, G.A.; Khalil, W.K.B.; Mohareb, R.M.; Ahmed, H.H.; Abd-Elhalim, M.M.; Elsayed, G.H. Cytotoxicity and gene expression profiles of novel synthesized steroid derivatives as chemotherapeutic anti-breast cancer agents. Bioorg. Med. Chem., 2011, 19(22), 6860-6872.
[http://dx.doi.org/10.1016/j.bmc.2011.09.033] [PMID: 22000946]
[112]
El-Far, M.; Elmegeed, G.A.; Eskander, E.F.; Rady, H.M.; Tantawy, M.A. Novel modified steroid derivatives of androstanolone as chemotherapeutic anti-cancer agents. Eur. J. Med. Chem., 2009, 44(10), 3936-3946.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.020] [PMID: 19447526]
[113]
Chiang, K-C.; Yeh, C-N.; Chen, H-Y.; Lee, J.M.; Juang, H-H.; Chen, M-F.; Takano, M.; Kittaka, A.; Chen, T.C. 19-Nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10) is a potent cell growth regulator with enhanced chemotherapeutic potency in liver cancer cells. Steroids, 2011, 76(13), 1513-1519.
[http://dx.doi.org/10.1016/j.steroids.2011.08.006] [PMID: 21888924]
[114]
Troisi, L.; Florio, S.; Granito, C. Chemoselective construction of novel steroid derivatives. Steroids, 2002, 67(8), 687-693.
[http://dx.doi.org/10.1016/S0039-128X(02)00032-6] [PMID: 12117615]
[115]
Mohareb, R.M.; Elmegeed, G.A.; Abdel-Salam, O.M.E.; Doss, S.H.; William, M.G. Synthesis of modified steroids as a novel class of non-ulcerogenic, anti-inflammatory and anti-nociceptive agents. Steroids, 2011, 76(10-11), 1190-1203.
[http://dx.doi.org/10.1016/j.steroids.2011.05.011] [PMID: 21664368]
[116]
Banday, A.H.; Mir, B.P.; Lone, I.H.; Suri, K.A.; Kumar, H.M. Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 2010, 75(12), 805-809.
[http://dx.doi.org/10.1016/j.steroids.2010.02.014] [PMID: 20206644]
[117]
Shinkawa, T.; Nakajima, H.; Nishijima, K.; Yamasaki, F.; Kato, K.; Ohzawa, N.; Mizota, M. A novel quinolinone diuretic, M12285, and its activation mechanism through sulfate conjugation. Eur. J. Pharmacol., 1992, 219(2), 217-224.
[http://dx.doi.org/10.1016/0014-2999(92)90299-J] [PMID: 1330606]
[118]
Maurice, T.; Urani, A.; Phan, V-L.; Romieu, P. The interaction between neuroactive steroids and the σ1 receptor function: Behavioral consequences and therapeutic opportunities. Brain Res. Brain Res. Rev., 2001, 37(1-3), 116-132.
[http://dx.doi.org/10.1016/S0165-0173(01)00112-6] [PMID: 11744080]
[119]
Vajda, F.J.E. Neuroprotection and neurodegenerative disease. J. Clin. Neurosci., 2002, 9(1), 4-8.
[http://dx.doi.org/10.1054/jocn.2001.1027] [PMID: 11749009]
[120]
Mohareb, R.M.; Al-Omran, F. Reaction of pregnenolone with cyanoacetylhydrazine: Novel synthesis of hydrazide-hydrazone, pyrazole, pyridine, thiazole, thiophene derivatives and their cytotoxicity evaluations. Steroids, 2012, 77(14), 1551-1559.
[http://dx.doi.org/10.1016/j.steroids.2012.09.007] [PMID: 23064008]
[121]
Mohareb, R.M.; Wardakhan, W.W.; Elmegeed, G.A.; Ashour, R.M.S. Heterocyclizations of pregnenolone: Novel synthesis of thiosemicarbazone, thiophene, thiazole, thieno[2,3-b]pyridine derivatives and their cytotoxicity evaluations. Steroids, 2012, 77(14), 1560-1569.
[http://dx.doi.org/10.1016/j.steroids.2012.09.004] [PMID: 23064007]
[122]
Stetler-Stevenson, W.G.; Aznavoorian, S.; Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol., 1993, 9, 541-573.
[http://dx.doi.org/10.1146/annurev.cb.09.110193.002545] [PMID: 8280471]
[123]
Van Aken, E.; De Wever, O.; Correia da Rocha, A.S.; Mareel, M. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch., 2001, 439(6), 725-751.
[http://dx.doi.org/10.1007/s004280100516] [PMID: 11787845]
[124]
Parmar, V.S.; Sharma, N.K.; Husain, M.; Watterson, A.C.; Kumar, J.; Samuelson, L.A.; Cholli, A.L.; Prasad, A.K.; Kumar, A.; Malhotra, S.; Kumar, N.; Jha, A.; Singh, A.; Singh, I. Himanshu; Vats, A.; Shakil, N.A.; Trikha, S.; Mukherjee, S.; Sharma, S.K.; Singh, S.K.; Kumar, A.; Jha, H.N.; Olsen, C.E.; Stove, C.P.; Bracke, M.E.; Mareel, M.M. Synthesis, characterization and in vitro anti-invasive activity screening of polyphenolic and heterocyclic compounds. Bioorg. Med. Chem., 2003, 11(6), 913-929.
[http://dx.doi.org/10.1016/S0968-0896(02)00539-4] [PMID: 12614877]
[125]
Mareel, M.M.; De Mets, M. Effect of microtubule inhibitors on invasion and on related activities of tumor cells. Int. Rev. Cytol., 1984, 90, 125-168.
[http://dx.doi.org/10.1016/S0074-7696(08)61489-8] [PMID: 6389412]
[126]
Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol., 1995, 7(5), 619-627.
[http://dx.doi.org/10.1016/0955-0674(95)80102-2] [PMID: 8573335]
[127]
Birchmeier, W.; Behrens, J. Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta, 1994, 1198(1), 11-26.
[http://dx.doi.org/10.1016/0304-419X(94)90003-5] [PMID: 8199193]
[128]
Rostom, S.A.F.; Shalaby, M.A.; El-Demellawy, M.A. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur. J. Med. Chem., 2003, 38(11-12), 959-974.
[http://dx.doi.org/10.1016/j.ejmech.2003.08.003] [PMID: 14642328]
[129]
Park, H-J.; Lee, K.; Park, S-J.; Ahn, B.; Lee, J-C.; Cho, H.; Lee, K-I. Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 2005, 15(13), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.082] [PMID: 15922597]
[130]
Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.; Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst., 1990, 82(13), 1113-1118.
[http://dx.doi.org/10.1093/jnci/82.13.1113] [PMID: 2359137]
[131]
Krapcho, A.P.; Menta, E.; Oliva, A.; Di Domenico, R.; Fiocchi, L.; Maresch, M.E.; Gallagher, C.E.; Hacker, M.P.; Beggiolin, G.; Giuliani, F.C.; Pezzoni, G.; Spinelli, S. Synthesis and antitumor evaluation of 2,5-disubstituted-indazolo[4, 3-gh]isoquinolin-6(2H)-ones (9-aza-anthrapyra-zoles). J. Med. Chem., 1998, 41(27), 5429-5444.
[http://dx.doi.org/10.1021/jm9804432] [PMID: 9876113]
[132]
Bontemps-Gracz, M.M.; Kupiec, A.; Antonini, I.; Borowski, E. The ability to overcome multidrug resistance of tumor cell lines by novel acridine cytostatics with condensed heterocyclic rings. Acta Biochim. Pol., 2002, 49(1), 87-92.
[http://dx.doi.org/10.18388/abp.2002_3824] [PMID: 12136960]
[133]
Stefańska, B.; Bontemps-Gracz, M.M.; Antonini, I.; Martelli, S.; Arciemiuk, M.; Piwkowska, A.; Rogacka, D.; Borowski, E. 2,7-Dihydro-3H-pyridazino[5,4,3-kl]acridin-3-one derivatives, novel type of cytotoxic agents active on multidrug-resistant cell lines. Synthesis and biological evaluation. Bioorg. Med. Chem., 2005, 13(6), 1969-1975.
[http://dx.doi.org/10.1016/j.bmc.2005.01.023] [PMID: 15727851]
[134]
Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A-L.; Leonce, S.; Gaignard, D.H.; Atassi, G. Synthesis and conformational analysis of some new Pyrano[2,3-c]xanthen-7-one and Pyrano[3,2-b]xanthen-6-one derivatives with cytotoxic activity. Heterocycles, 2000, 53(1), 93-106.
[http://dx.doi.org/10.3987/COM-99-8727]
[135]
Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A-L.; Leonce, S.; Atassi, G.; Caignard, D.H. Design and synthesis of some new pyranoxanthenones with cytotoxic activity. J. Heterocycl. Chem., 2001, 38(1), 147-152.
[http://dx.doi.org/10.1002/jhet.5570380121]
[136]
Kostakis, I.K.; Pouli, N.; Marakos, P.; Mikros, E.; Skaltsounis, A-L.; Leonce, S.; Atassi, G.; Renard, P. Synthesis, cytotoxic activity, NMR study and stereochemical effects of some new pyrano[3,2-b]thioxanthen-6-ones and pyrano[2,3-c]thioxanthen-7-ones. Bioorg. Med. Chem., 2001, 9(11), 2793-2802.
[http://dx.doi.org/10.1016/S0968-0896(01)00130-4] [PMID: 11597459]
[137]
Svoboda, G.H.; Poore, G.A.; Simpson, P.J.; Boder, G.B. Alkaloids of Acronychia baueri schott I. isolation of the alkaloids and a study of the antitumor and other biological properties of acronycine. J. Pharm. Sci., 1966, 55(8), 758-768.
[http://dx.doi.org/10.1002/jps.2600550803] [PMID: 5975286]
[138]
Michel, S.; Gaslonde, T.; Tillequin, F. Benzo[b]acronycine derivatives: A novel class of antitumor agents. Eur. J. Med. Chem., 2004, 39(8), 649-655.
[http://dx.doi.org/10.1016/j.ejmech.2004.05.001] [PMID: 15276298]
[139]
Elomri, A.; Mitaku, S.; Michel, S.; Skaltsounis, A-L.; Tillequin, F.; Koch, M.; Pierré, A.; Guilbaud, N.; Léonce, S.; Kraus-Berthier, L.; Rolland, Y.; Atassi, G. Synthesis and cytotoxic and antitumor activity of esters in the 1,2-dihydroxy-1,2-dihydroacronycine series. J. Med. Chem., 1996, 39(24), 4762-4766.
[http://dx.doi.org/10.1021/jm9602975] [PMID: 8941390]
[140]
Kostakis, I.; Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A-L.; Leonce, S.; Caignard, D.H.; Atassi, G. Synthesis and cytotoxic activity of 2-dialkylaminoethylamino substituted xanthenone and thioxanthenone derivatives. Farmaco, 2000, 55(6-7), 455-460.
[http://dx.doi.org/10.1016/S0014-827X(00)00068-9] [PMID: 11204746]
[141]
Kostakis, I.K.; Magiatis, P.; Pouli, N.; Marakos, P.; Skaltsounis, A.L.; Pratsinis, H.; Léonce, S.; Pierré, A. Design, synthesis, and antiproliferative activity of some new pyrazole-fused amino derivatives of the pyranoxanthenone, pyranothioxanthenone, and pyranoacridone ring systems: A new class of cytotoxic agents. J. Med. Chem., 2002, 45(12), 2599-2609.
[http://dx.doi.org/10.1021/jm011117g] [PMID: 12036369]
[142]
Giannouli, V.; Kostakis, I.K.; Pouli, N.; Marakos, P.; Kousidou, O.Ch.; Tzanakakis, G.N.; Karamanos, N.K. Design, synthesis, and evaluation of the antiproliferative activity of a series of novel fused xanthenone aminoderivatives in human breast cancer cells. J. Med. Chem., 2007, 50(7), 1716-1719.
[http://dx.doi.org/10.1021/jm061410m] [PMID: 17335189]
[143]
Bandgar, B.P.; Totre, J.V.; Gawande, S.S.; Khobragade, C.N.; Warangkar, S.C.; Kadam, P.D. Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg. Med. Chem., 2010, 18(16), 6149-6155.
[http://dx.doi.org/10.1016/j.bmc.2010.06.046] [PMID: 20638287]
[144]
Dengler, W.A.; Schulte, J.; Berger, D.P.; Mertelsmann, R.; Fiebig, H.H. Development of a Propidium Iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs, 1995, 6(4), 522-532.
[http://dx.doi.org/10.1097/00001813-199508000-00005] [PMID: 7579556]
[145]
Hu, P.; Zhao, K-Q.; Xu, H-B. (4-Hydroxybenzylidene)-4-ferrocenylaniline. Molecules, 2001, 6(12), M251.
[http://dx.doi.org/10.3390/M251]
[146]
Togni, A.; Halterman, R.L. Eds.; Metallocenes; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998.
[http://dx.doi.org/10.1002/9783527619542]
[147]
Drent, E. Ferrocene: Homogenous catalysis, organic synthesis, material; VCH: Weinheim, 1995.
[148]
Stepnicka, P. Ed.; Ferrocenes: Ligands, Material and Biomolecules; John Wiley and Sons: NJ, USA, 2008.
[149]
Bruijnincx, P.C.A.; Sadler, P.J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol., 2008, 12(2), 197-206.
[http://dx.doi.org/10.1016/j.cbpa.2007.11.013] [PMID: 18155674]
[150]
Yu, H.; Shao, L.; Fang, J. Synthesis and biological activity research of novel ferrocenyl-containing thiazole imine derivatives. J. Organomet. Chem., 2007, 692(5), 991-996.
[http://dx.doi.org/10.1016/j.jorganchem.2006.10.059]
[151]
Tabbì, G.; Cassino, C.; Cavigiolio, G.; Colangelo, D.; Ghiglia, A.; Viano, I.; Osella, D. Water stability and cytotoxic activity relationship of a series of ferrocenium derivatives. ESR insights on the radical production during the degradation process. J. Med. Chem., 2002, 45(26), 5786-5796.
[http://dx.doi.org/10.1021/jm021003k] [PMID: 12477361]
[152]
Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew. Chem. Int. Ed., 2005, 45(2), 285-290.
[http://dx.doi.org/10.1002/anie.200502925] [PMID: 16312004]
[153]
Hamels, D.; Dansette, P.M.; Hillard, E.A.; Top, S.; Vessières, A.; Herson, P.; Jaouen, G.; Mansuy, D. Ferrocenyl quinone methides as strong antiproliferative agents: Formation by metabolic and chemical oxidation of ferrocenyl phenols. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9124-9126.
[http://dx.doi.org/10.1002/anie.200903768] [PMID: 19876986]
[154]
van Staveren, D.R.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev., 2004, 104(12), 5931-5985.
[http://dx.doi.org/10.1021/cr0101510] [PMID: 15584693]
[155]
Köpf-Maier, P.; Köpf, H.; Neuse, E.W. Ferrocenium salts—the first antineoplastic iron compounds. Angew. Chem. Int. Ed. Engl., 1984, 23(6), 456-457.
[http://dx.doi.org/10.1002/anie.198404561]
[156]
Sun, M-L.; Ruan, B-F.; Zhang, Q.; Liu, Z-D.; Li, S-L.; Wu, J-Y.; Jin, B-K.; Yang, J-X.; Zhang, S-Y.; Tian, Y-P. Synthesis, crystal structures, electrochemical studies and anti-tumor activities of three polynuclear organotin(IV) carboxylates containing ferrocenyl moiety. J. Organomet. Chem., 2011, 696(20), 3180-3185.
[http://dx.doi.org/10.1016/j.jorganchem.2011.06.045]
[157]
Huang, X-F.; Tang, J-F.; Ji, J-L.; Wang, X-L.; Ruan, B-F. Synthesis, characterization and antitumor activity of novel amide derivatives containing ferrocenyl pyrazol-moiety. J. Organomet. Chem., 2012, 706-707, 113-123.
[http://dx.doi.org/10.1016/j.jorganchem.2012.02.001]
[158]
Huang, X-F.; Wang, L-Z.; Tang, L.; Lu, Y-X.; Wang, F.; Song, G-Q.; Ruan, B-F. Synthesis, characterization and antitumor activity of novel ferrocene derivatives containing pyrazolyl-moiety. J. Organomet. Chem., 2014, 749, 157-162.
[http://dx.doi.org/10.1016/j.jorganchem.2013.08.043]
[159]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[160]
Gediya, L.K.; Njar, V.C. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2009, 4(11), 1099-1111.
[http://dx.doi.org/10.1517/17460440903341705] [PMID: 23480431]
[161]
Shah, K.; Chhabra, S.; Shirvastava, S.K.; Mishra, P. Benzimidazole: A promising pharmacophore. Med. Chem. Res., 2013, 22, 5077-5104.
[http://dx.doi.org/10.1007/s00044-013-0476-9]
[162]
Sarhan, A.A.O.; Al-Dhfyan, A.; Al-Mozaini, M.A.; Adra, C.N.; Aboul-Fadl, T. Cell cycle disruption and apoptotic activity of 3-aminothiazolo[3,2-a]benzimidazole-2-carboni-trile and its homologues. Eur. J. Med. Chem., 2010, 45(6), 2689-2694.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.025] [PMID: 20226574]
[163]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[http://dx.doi.org/10.2174/138955713804999847] [PMID: 23190032]
[164]
Husain, A.; Rashid, M.; Shaharyar, M.; Siddiqui, A.A.; Mishra, R. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents. Eur. J. Med. Chem., 2013, 62, 785-798.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.011] [PMID: 23333063]
[165]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[166]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[167]
Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507.
[http://dx.doi.org/10.1038/nrc2663] [PMID: 19550425]
[168]
Aggarwal, R.; Kumar, R.; Kumar, S.; Garg, G.; Mahajan, R.; Sharma, J. Synthesis and antibacterial activity of some 5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-thiocar-boxamides, 3-trifluoromethylpyrazol-1-thiocarboxamides and 4-aryl-2-(5(3)-trifluoromethyl-1-pyrazolyl)thiazoles. J. Fluor. Chem., 2011, 132(11), 965-972.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.029]
[169]
Usachev, B.I.; Obydennov, D.L.; Röschenthaler, G-V.; Sosnovskikh, V.Y. 2-Cyano-6-(trifluoromethyl)-4H-pyran-4-one: A novel versatile CF3-containing building block. J. Fluor. Chem., 2012, 137, 22-26.
[http://dx.doi.org/10.1016/j.jfluchem.2012.01.006]
[170]
Aggarwal, R.; Bansal, A.; Mittal, A. Synthesis and antimicrobial activity of 3-(2-thienyl)-4-arylazo-5-hydroxy-5-trifluoromethyl-Δ2-isoxazolines and 3-(2-thienyl)-4-aryla-zo-5-trifluoromethylisoxazoles. J. Fluor. Chem., 2013, 145, 95-101.
[http://dx.doi.org/10.1016/j.jfluchem.2012.10.005]
[171]
Fayed, E.A.; Eissa, S.I.; Bayoumi, A.H.; Gohar, N.A.; Mehany, A.B.M.; Ammar, Y.A. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol. Divers., 2019, 23(1), 165-181.
[http://dx.doi.org/10.1007/s11030-018-9865-9] [PMID: 30099687]
[172]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[173]
Lu, W.; Li, P.; Shan, Y.; Su, P.; Wang, J.; Shi, Y.; Zhang, J. Discovery of biphenyl-based VEGFR-2 inhibitors. Part 3: Design, synthesis and 3D-QSAR studies. Bioorg. Med. Chem., 2015, 23(5), 1044-1054.
[http://dx.doi.org/10.1016/j.bmc.2015.01.006] [PMID: 25637123]
[174]
Kamal, A.; Faazil, S.; Ramaiah, M.J.; Ashraf, M.; Balakrishna, M.; Pushpavalli, S.N.C.V.L.; Patel, N.; Pal-Bhadra, M. Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells. Bioorg. Med. Chem. Lett., 2013, 23(20), 5733-5739.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.068] [PMID: 23999041]
[175]
Wang, M.; Xu, S.; Lei, H.; Wang, C.; Xiao, Z.; Jia, S.; Zhi, J.; Zheng, P.; Zhu, W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg. Med. Chem., 2017, 25(20), 5754-5763.
[http://dx.doi.org/10.1016/j.bmc.2017.09.003] [PMID: 28927801]

© 2024 Bentham Science Publishers | Privacy Policy