Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Large Cardamom Extract Enhances Ramipril's Vasoprotective Action by Modulating Endothelial Redox Biology. An Evaluation based on in-silico and in-vitro Research

Author(s): Amritha A. M., Shakhi Shylesh C. M., Kavyanjana R. Nair, Arya V. S., Thennavan Arumugam, Uma Devi P.* and Kanthlal S. K.*

Volume 18, Issue 6, 2022

Published on: 14 October, 2022

Page: [440 - 447] Pages: 8

DOI: 10.2174/1573409918666220820160834

Price: $65

Abstract

Background: The mechanisms that cause a patient's blood pressure to rise are diverse. Controlling blood pressure with monotherapy acting through a single pathway may be unachievable. Combining clinically used drug with herbal remedy can have two to five times greater antihypertensive response than monotherapy.

Methods: This study examined the effects of aqueous extracts of large cardamom and ramipril on the redox biology of nitric oxide and vascular reactivity in the isolated aorta incubated with a nitro- L-arginine methyl ester. Molecular docking study was performed to predict the affinity of constituents of large cardamom extracts with the NOX 2 gene.

Results: Nitric oxide (NO) levels, disordered antioxidant enzymes (glutathione and catalase), NADPH oxidase and lipid peroxidation were recovered when aqueous extract of large cardamomand ramipril were combined. A gradual increase in the percentage relaxation of acetylcholine in phenylephrine pre-contracted aorta indicates that the combination therapy prevents endothelial damage. Molecular docking study reveals the important phytoconstituents present in the large cardamom that can effectively bind with the NADPH oxidase for its antioxidant activity.

Consculsion: According to our findings, it was evidenced that the large cardamom extract's vasoprotective action was was primarily due to its ability to restore endothelial redox biology by suppressing NADPH oxidase activity. Our findings suggest that ramipril's direct impact on the eNOS/NO system, along with the antioxidant properties of AELC, could have a synergetic benefit in the treatment of hypertension, as well as could minimize ramipril's existing side effects.

Keywords: Large cardamom, ramipril, nitric oxide, NADPH, glutathione, catalase.

Graphical Abstract
[1]
Iring, A.; Jin, Y-J.; Albarrán-Juárez, J.; Siragusa, M.; Wang, S.; Dancs, P.T.; Nakayama, A.; Tonack, S.; Chen, M.; Künne, C.; Sokol, A.M.; Günther, S.; Martínez, A.; Fleming, I.; Wettschureck, N.; Graumann, J.; Weinstein, L.S.; Offermanns, S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J. Clin. Invest., 2019, 129(7), 2775-2791.
[http://dx.doi.org/10.1172/JCI123825] [PMID: 31205027]
[2]
Ferrari, R.; Boersma, E. The impact of ACE inhibition on all-cause and cardiovascular mortality in contemporary hypertension trials: A review. Expert Rev. Cardiovasc. Ther., 2013, 11(6), 705-717.
[http://dx.doi.org/10.1586/erc.13.42] [PMID: 23750680]
[3]
Park, J.B.; Kario, K.; Wang, J-G. Systolic hypertension: An increasing clinical challenge in Asia. Hypertens. Res., 2015, 38(4), 227-236.
[http://dx.doi.org/10.1038/hr.2014.169] [PMID: 25503845]
[4]
Kanthlal, S.K.; Joseph, J.; Paul, B.; M, V.; P, U.D. Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin. Exp. Hypertens., 2020, 42(7), 581-589.
[http://dx.doi.org/10.1080/10641963.2020.1739699] [PMID: 32202168]
[5]
Kumar, S.; Prahalathan, P.; Raja, B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: A dose-dependence study. Redox Rep., 2011, 16(5), 208-215.
[http://dx.doi.org/10.1179/1351000211Y.0000000009] [PMID: 22005341]
[6]
Wagner, T.C.; Scott, M.D. Single extraction method for the spectrophotometric quantification of oxidized and reduced pyridine nucleotides in erythrocytes. Anal. Biochem., 1994, 222(2), 417-426.
[http://dx.doi.org/10.1006/abio.1994.1511] [PMID: 7864367]
[7]
Mohammadi, M.T.; Amini, R.; Jahanbakhsh, Z.; Shekarforoush, S. Effects of atorvastatin on the hypertension-induced oxidative stress in the rat brain. Iran. Biomed. J., 2013, 17(3), 152-157.
[PMID: 23748894]
[8]
Khattab, M.; Ahmad, M.; Al-Shabanah, O.A.; Raza, M. Effects of losartan on blood pressure, oxidative stress, and nitrate/nitrite levels in the nitric oxide deficient hypertensive rats. Recep Chann., 2004, 10(5-6), 147-157.
[http://dx.doi.org/10.3109/10606820490936141] [PMID: 15989079]
[9]
Panthiya, L.; Pantan, R.; Tocharus, J.; Nakaew, A.; Suksamrarn, A.; Tocharus, C. Endothelium-dependent and endothelium-independent vasorelaxant effects of tiliacorinine 12′-O-acetate and mechanisms on isolated rat aorta. Biomed. Pharmacother., 2019, 109, 2090-2099.
[http://dx.doi.org/10.1016/j.biopha.2018.11.062] [PMID: 30551466]
[10]
Chen, L.; Morrow, J.K.; Tran, H.T.; Phatak, S.S.; Du-Cuny, L.; Zhang, S. From laptop to benchtop to bedside: Structure-based drug design on protein targets. Curr. Pharm. Des., 2012, 18(9), 1217-1239.
[http://dx.doi.org/10.2174/138161212799436386] [PMID: 22316152]
[11]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[12]
Vishal, P.K.; Oh, J.M.; Khames, A.; Abdelgawad, M.A.; Nair, A.S.; Nath, L.R.; Gambacorta, N.; Ciriaco, F.; Nicolotti, O.; Kim, H.; Mathew, B. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for the treatment of neurodegenerative disorders. Pharmaceutics, 2021, 13(6), 13.
[http://dx.doi.org/10.3390/pharmaceutics13060850] [PMID: 34201128]
[13]
Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D., Jr Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach. Curr. Compu. Drug Des., 2011, 7(1), 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[14]
Parasuraman, S. Prediction of activity spectra for substances. J. Pharmacol. Pharmacother., 2011, 2(1), 52-53.
[http://dx.doi.org/10.4103/0976-500X.77119] [PMID: 21701651]
[15]
Förstermann, U. Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(6), 338-349.
[http://dx.doi.org/10.1038/ncpcardio1211] [PMID: 18461048]
[16]
Förstermann, U.; Li, H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br. J. Pharmacol., 2011, 164(2), 213-223.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01196.x] [PMID: 21198553]
[17]
S, K.; v, A.; Paul-Prasanth, B.; M, V.; A, R.S.; P, U.D. Aqueous extract of large cardamom inhibits vascular damage, oxidative stress, and metabolic changes in fructose-fed hypertensive rats. Clin. Exp. Hypertens., 2021, 43(7), 622-632.
[http://dx.doi.org/10.1080/10641963.2021.1925682] [PMID: 34281445]
[18]
Kumar, S.; Prahalathan, P.; Raja, B. Syringic acid ameliorates (L)-NAME-induced hypertension by reducing oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(12), 1175-1184.
[http://dx.doi.org/10.1007/s00210-012-0802-7] [PMID: 23079793]
[19]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[20]
Zhang, J-Q.; Yang, G-H.; Zhou, X.; Liu, J.X.; Shi, R.; Dong, Y.; Chen, S.B.; Li, Y.M. Effects of allisartan isoproxil on blood pressure and target organ injury in patients with mild to moderate essential hypertension. Medicine (Baltimore), 2019, 98(12), e14907.
[http://dx.doi.org/10.1097/MD.0000000000014907] [PMID: 30896643]
[21]
Kourtzidis, I.A.; Stoupas, A.T.; Gioris, I.S.; Veskoukis, A.S.; Margaritelis, N.V.; Tsantarliotou, M.; Taitzoglou, I.; Vrabas, I.S.; Paschalis, V.; Kyparos, A.; Nikolaidis, M.G. The NAD(+) precursor nicotinamide riboside decreases exercise performance in rats. J. Int. Soc. Sports Nutr., 2016, 13, 32.
[http://dx.doi.org/10.1186/s12970-016-0143-x] [PMID: 27489522]
[22]
Rafieian-Kopaei, M.; Baradaran, A.; Rafieian, M. Plants antioxidants: From laboratory to clinic. J. Nephropathol., 2013, 2(2), 152-153.
[http://dx.doi.org/10.5812/nephropathol.12116] [PMID: 24475444]
[23]
Sirker, A.; Zhang, M.; Shah, A.M. NADPH oxidases in cardiovascular disease: Insights from in vivo models and clinical studies. Basic Res. Cardiol., 2011, 106(5), 735-747.
[http://dx.doi.org/10.1007/s00395-011-0190-z] [PMID: 21598086]
[24]
Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal., 2008, 10(2), 179-206.
[http://dx.doi.org/10.1089/ars.2007.1672] [PMID: 18020963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy