Review Article

糖尿病肾病:发病机制与治疗

卷 23, 期 15, 2022

发表于: 07 September, 2022

页: [1418 - 1429] 页: 12

弟呕挨: 10.2174/1389450123666220820110801

价格: $65

摘要

糖尿病肾病(DN)是终末期肾脏疾病(ESRD)的主要原因。它被定义为在没有其他肾脏疾病的情况下尿白蛋白排泄(UAE)增加。DN分为微量白蛋白尿和大量白蛋白尿。影响DN的因素包括高血压、高血糖水平、遗传、氧化应激、血液动力学和代谢变化。高血糖通过激活蛋白激酶C (PKC),产生晚期糖基化产物(AGEs)和活性氧(ROS)引起肾脏损伤。糖尿病患者肾组织中生长因子、趋化因子、细胞粘附分子、炎症细胞因子升高。由于研究努力的增加和医学科学的进步,出现了许多不同的和新的诊断方法和治疗选择。然而,直到现在,还没有永久的治疗方法。本文旨在探讨目前使用的机制、诊断和治疗策略,以增加对DN的了解。

关键词: 糖尿病肾病,尿白蛋白排泄,微量白蛋白尿,大量白蛋白尿,肾损害,发病机制。

图形摘要
[1]
Chan JCN, Lim LL, Wareham NJ, et al. The Lancet Commission on diabetes: Using data to transform diabetes care and patient lives. Lancet 2021; 396(10267): 2019-82.
[http://dx.doi.org/10.1016/S0140-6736(20)32374-6] [PMID: 33189186]
[2]
Bommer C, Sagalova V, Heesemann E, et al. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018; 41(5): 963-70.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[3]
Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: Macro and microvascular injury. Curr Pathobiol Rep 2020; 8(1): 1-14.
[http://dx.doi.org/10.1007/s40139-020-00205-x] [PMID: 32655983]
[4]
Woodhams L, Sim TF, Chalmers L, et al. Diabetic kidney disease in type 2 diabetes: A review of pathogenic mechanisms, patient-related factors and therapeutic options. PeerJ 2021; 9: e11070.
[http://dx.doi.org/10.7717/peerj.11070] [PMID: 33976959]
[5]
Börnhorst C, Russo P, Veidebaum T, et al. The role of lifestyle and non-modifiable risk factors in the development of metabolic disturbances from childhood to adolescence. Int J Obes 2020; 44(11): 2236-45.
[http://dx.doi.org/10.1038/s41366-020-00671-8] [PMID: 32943762]
[6]
Werner N, Nickenig G, Sinning JM. Complex PCI procedures: Challenges for the interventional cardiologist. Clin Res Cardiol 2018; 107(2) (Suppl. 2): 64-73.
[http://dx.doi.org/10.1007/s00392-018-1316-1] [PMID: 29978353]
[7]
Bowden DW. Genetics of diabetes complications. Curr Diab Rep 2002; 2(2): 191-200.
[http://dx.doi.org/10.1007/s11892-002-0080-8] [PMID: 12643139]
[8]
Kebede SA, Tusa BS, Weldesenbet AB, Tessema ZT, Ayele TA. ncidence of diabetic nephropathy and its predictors among type 2 diabetes mellitus patients at university of gondar comprehensive specialized hospital, Northwest Ethiopia. J Nutr Metab. 2021
[9]
Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: A tangled web to unweave. Cardiovasc Drugs Ther 2017; 31(5-6): 579-92.
[http://dx.doi.org/10.1007/s10557-017-6755-9] [PMID: 28956186]
[10]
Lopez-Parra V, Mallavia B, Egido J, Gomez-Guerrero C. Immunoinflammation in diabetic nephropathy: Molecular mechanisms and therapeutic options. Diabet Nephrop 2012; 127-46.
[http://dx.doi.org/10.5772/34541]
[11]
Gaballa MR, Farag YM. Predictors of diabetic nephropathy. Cent Eur J Med 2013; 8(3): 287-96.
[12]
Lei L, Mao Y, Meng D, et al. Percentage of circulating CD8+ T lymphocytes is associated with albuminuria in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122(1): 27-30.
[PMID: 24203650]
[13]
Yu SM, Bonventre JV. Acute kidney injury and progression of diabetic kidney disease. Adv Chronic Kidney Dis 2018; 25(2): 166-80.
[http://dx.doi.org/10.1053/j.ackd.2017.12.005] [PMID: 29580581]
[14]
Tan RJ, Bastacky SI, Liu Y. Molecular basis of kidney disease.Molecular Pathology. Academic Press 2018; pp. 531-53.
[http://dx.doi.org/10.1016/B978-0-12-802761-5.00024-9]
[15]
Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal models of diabetes-associated renal injury. J Diabetes Res 2020; 16.
[http://dx.doi.org/10.1155/2020/9416419]
[16]
Brandt-Jacobsen NH, Johansen ML, Rasmussen J, et al. Effect of high-dose mineralocorticoid receptor antagonist eplerenone on urinary albumin excretion in patients with type 2 diabetes and high cardiovascular risk: Data from the MIRAD trial. Diabetes Metab 2021; 47(4): 101190.
[http://dx.doi.org/10.1016/j.diabet.2020.08.005] [PMID: 32919068]
[17]
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review. J Diabetes Complications 2020; 34(8): 107613.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107613] [PMID: 32505477]
[18]
Zhang C, Fang X, Zhang H, et al. Genetic susceptibility of hypertension-induced kidney disease. Physiol Rep 2021; 9(1): e14688.
[http://dx.doi.org/10.14814/phy2.14688] [PMID: 33377622]
[19]
Hayashi Y. Detection of lower albuminuria levels and early development of diabetic kidney disease using an artificial intelligence-based rule extraction approach. Diagnostics (Basel) 2019; 9(4): 133.
[http://dx.doi.org/10.3390/diagnostics9040133] [PMID: 31569548]
[20]
Wu J, Tomsa D, Zhang M, et al. A passive mixing microfluidic urinary albumin chip for chronic kidney disease assessment. ACS Sens 2018; 3(10): 2191-7.
[http://dx.doi.org/10.1021/acssensors.8b01072] [PMID: 30350581]
[21]
Shiwa T, Nishimura M, Kato M. The effectiveness of the semi-quantitative assessment of microalbuminuria using routine urine dipstick screening in patients with diabetes. Intern Med 2018; 57(4): 503-6.
[http://dx.doi.org/10.2169/internalmedicine.9069-17] [PMID: 29269642]
[22]
Incerti J, Zelmanovitz T, Camargo JL, Gross JL, de Azevedo MJ. Evaluation of tests for microalbuminuria screening in patients with diabetes. Nephrol Dial Transplant 2005; 20(11): 2402-7.
[http://dx.doi.org/10.1093/ndt/gfi074]
[23]
Uwaezuoke SN. The role of novel biomarkers in predicting diabetic nephropathy: A review. Int J Nephrol Renovasc Dis 2017; 10: 221-31.
[http://dx.doi.org/10.2147/IJNRD.S143186] [PMID: 28860837]
[24]
Zhang D, Ye S, Pan T. The role of serum and urinary biomarkers in the diagnosis of early diabetic nephropathy in patients with type 2 diabetes. PeerJ 2019; 7: e7079.
[http://dx.doi.org/10.7717/peerj.7079] [PMID: 31218128]
[25]
Satirapoj B, Adler SG. Prevalence and management of diabetic nephropathy in western countries. Kidney Dis 2015; 1(1): 61-70.
[http://dx.doi.org/10.1159/000382028] [PMID: 27536666]
[26]
Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: An indicator of more advanced glomerular lesions. Diabetes 2003; 52(4): 1036-40.
[http://dx.doi.org/10.2337/diabetes.52.4.1036] [PMID: 12663477]
[27]
MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004; 27(1): 195-200.
[http://dx.doi.org/10.2337/diacare.27.1.195] [PMID: 14693989]
[28]
Carrara F, Gaspari F. GFR measured by iohexol: The best choice from a laboratory perspective. J Lab Precis Med 2018; 3: 77.
[http://dx.doi.org/10.21037/jlpm.2018.09.07]
[29]
Sahajpal NS, Goel RK, Chaubey A, Aurora R, Jain SK. Pathological perturbations in diabetic retinopathy: Hyperglycemia, AGEs, oxidative stress and inflammatory pathways. Curr Protein Pept Sci 2019; 20(1): 92-110.
[http://dx.doi.org/10.2174/1389203719666180928123449] [PMID: 30264677]
[30]
Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864(12): 3631-43.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.036] [PMID: 30279139]
[31]
Chun P. Therapeutic effects of histone deacetylase inhibitors on kidney disease. Arch Pharm Res 2018; 41(2): 162-83.
[http://dx.doi.org/10.1007/s12272-017-0998-7] [PMID: 29230688]
[32]
Li J, Gobe G. Protein kinase C activation and its role in kidney disease. Nephrology (Carlton) 2006; 11(5): 428-34.
[http://dx.doi.org/10.1111/j.1440-1797.2006.00673.x] [PMID: 17014557]
[33]
Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C–dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD (P) H oxidase. J Am Soc Nephrol 2003; 14 (Suppl. 3): S227-32.
[34]
Ma X, Cui Z, Du Z, Lin H. Transforming growth factor-β signaling, a potential mechanism associated with diabetes mellitus and pancreatic cancer? J Cell Physiol 2020; 235(9): 5882-92.
[http://dx.doi.org/10.1002/jcp.29605] [PMID: 32017070]
[35]
Chen X, Sun L, Li D, et al. Green tea peptides ameliorate diabetic nephropathy by inhibiting the TGF-β/Smad signaling pathway in mice. Food Funct 2022; 13(6): 3258-70.
[http://dx.doi.org/10.1039/D1FO03615G] [PMID: 35234233]
[36]
Schiffer M, von Gersdorff G, Bitzer M, Susztak K, Böttinger EP. Smad proteins and transforming growth factor-β signaling. Kidney Int Suppl 2000; 77(58): S45-52.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07708.x] [PMID: 10997690]
[37]
Ramazani Y, Knops N, Elmonem MA, et al. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69: 44-66.
[http://dx.doi.org/10.1016/j.matbio.2018.03.007] [PMID: 29574063]
[38]
Wolf G. Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-β pathway. Kidney Int 2006; 70(11): 1914-9.
[http://dx.doi.org/10.1038/sj.ki.5001846] [PMID: 16985515]
[39]
Bhatti JS, Sehrawat A, Mishra J, et al. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184: 114-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.03.019] [PMID: 35398495]
[40]
Ha H, Lee HB. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology 2005; 10: S7-S10.
[http://dx.doi.org/10.1111/j.1440-1797.2005.00448.x] [PMID: 16174288]
[41]
Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol 2018; 16: 32-46.
[http://dx.doi.org/10.1016/j.redox.2018.02.013] [PMID: 29475133]
[42]
Djordjevic VB. Free radicals in cell biology. nt. Rev Cytol 2004; 22(237): 57-91.
[http://dx.doi.org/10.1016/S0074-7696(04)37002-6]
[43]
Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M. Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol 2003; 14 (Suppl. 3): S250-3.
[44]
Li JM, Shah AM. ROS generation by nonphagocytic NADPH oxidase: Potential relevance in diabetic nephropathy. J Am Soc Nephrol 2003; 14 (Suppl. 3): S221-6.
[45]
Gill PS, Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal 2006; 8(9-10): 1597-607.
[http://dx.doi.org/10.1089/ars.2006.8.1597] [PMID: 16987014]
[46]
Xiao X, Ma B, Dong B, et al. Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J Autoimmun 2009; 32(2): 85-93.
[http://dx.doi.org/10.1016/j.jaut.2008.12.003] [PMID: 19200691]
[47]
Moon JY, Jeong KH, Lee TW, Ihm CG, Lim SJ, Lee SH. Aberrant recruitment and activation of T cells in diabetic nephropathy. Am J Nephrol 2012; 35(2): 164-74.
[http://dx.doi.org/10.1159/000334928] [PMID: 22286547]
[48]
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19(3): 433-42.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[49]
Sassy-Prigent C, Heudes D, Mandet C, et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000; 49(3): 466-75.
[http://dx.doi.org/10.2337/diabetes.49.3.466] [PMID: 10868970]
[50]
Navarro JF, Milena FJ, Mora C, León C, García J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: Effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 2006; 26(6): 562-70.
[http://dx.doi.org/10.1159/000098004] [PMID: 17167242]
[51]
Jones S, Jones S, Phillips AO. Regulation of renal proximal tubular epithelial cell hyaluronan generation: Implications for diabetic nephropathy. Kidney Int 2001; 59(5): 1739-49.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590051739.x] [PMID: 11318944]
[52]
Mahadevan P, Larkins RG, Fraser JR, Fosang AJ, Dunlop ME. Increased hyaluronan production in the glomeruli from diabetic rats: A link between glucose-induced prostaglandin production and reduced sulphated proteoglycan. Diabetologia 1995; 38(3): 298-305.
[http://dx.doi.org/10.1007/BF00400634] [PMID: 7758876]
[53]
Feigerlová E, Battaglia-Hsu SF. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev 2017; 37: 57-65.
[http://dx.doi.org/10.1016/j.cytogfr.2017.03.003] [PMID: 28363692]
[54]
Dalla Vestra M, Mussap M, Gallina P, et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J Am Soc Nephrol 2005; 16(3) (Suppl. 1): S78-82.
[http://dx.doi.org/10.1681/ASN.2004110961] [PMID: 15938041]
[55]
Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes 1995; 44(10): 1233-8.
[http://dx.doi.org/10.2337/diab.44.10.1233] [PMID: 7556963]
[56]
Schwarz M, Wahl M, Resch K, Radeke HH. IFNgamma induces functional chemokine receptor expression in human mesangial cells. Clin Exp Immunol 2002; 128(2): 285-94.
[http://dx.doi.org/10.1046/j.1365-2249.2002.01829.x] [PMID: 11985519]
[57]
Dai SM, Matsuno H, Nakamura H, Nishioka K, Yudoh K. Interleukin-18 enhances monocyte tumor necrosis factor α and interleukin-1β production induced by direct contact with T lymphocytes: Implications in rheumatoid arthritis. Arthritis Rheum 2004; 50(2): 432-43.
[http://dx.doi.org/10.1002/art.20064] [PMID: 14872485]
[58]
Stuyt RJ, Netea MG, Geijtenbeek TB, Kullberg BJ, Dinarello CA, van der Meer JW. Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes. Immunology 2003; 110(3): 329-34.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01747.x] [PMID: 14632660]
[59]
Mariño E, Cardier JE. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-α and Fas (CD95). Cytokine 2003; 22(5): 142-8.
[http://dx.doi.org/10.1016/S1043-4666(03)00150-9] [PMID: 12842762]
[60]
Nakamura A, Shikata K, Hiramatsu M, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 2005; 28(12): 2890-5.
[http://dx.doi.org/10.2337/diacare.28.12.2890] [PMID: 16306550]
[61]
Moriwaki Y, Yamamoto T, Shibutani Y, et al. Elevated levels of interleukin-18 and tumor necrosis factor-α in serum of patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy. Metabolism 2003; 52(5): 605-8.
[http://dx.doi.org/10.1053/meta.2003.50096] [PMID: 12759891]
[62]
Wong CK, Ho AW, Tong PC, et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol 2007; 149(1): 123-31.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03389.x] [PMID: 17425653]
[63]
Zhang B, Ramesh G, Norbury CC, Reeves WB. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int 2007; 72(1): 37-44.
[http://dx.doi.org/10.1038/sj.ki.5002242] [PMID: 17396112]
[64]
Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 2007; 71(7): 619-28.
[http://dx.doi.org/10.1038/sj.ki.5002132] [PMID: 17311071]
[65]
Sugimoto H, Shikata K, Wada J, Horiuchi S, Makino H. Advanced glycation end products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: Aminoguanidine ameliorates the overexpression of tumour necrosis factor-α and inducible nitric oxide synthase in diabetic rat glomeruli. Diabetologia 1999; 42(7): 878-86.
[http://dx.doi.org/10.1007/s001250051241] [PMID: 10440132]
[66]
Navarro JF, Milena FJ, Mora C, et al. Tumor necrosis factor-α gene expression in diabetic nephropathy: Relationship with urinary albumin excretion and effect of angiotensin-converting enzyme inhibition. Kidney Int Suppl 2005; 1(99): S98-S102.
[http://dx.doi.org/10.1111/j.1523-1755.2005.09918.x] [PMID: 16336586]
[67]
DiPetrillo K, Gesek FA. Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am J Nephrol 2004; 24(3): 352-9.
[http://dx.doi.org/10.1159/000079121] [PMID: 15205554]
[68]
DiPetrillo K, Coutermarsh B, Gesek FA. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 2003; 284(1): F113-21.
[http://dx.doi.org/10.1152/ajprenal.00026.2002] [PMID: 12388406]
[69]
Tiongco RE, Aguas IS, Cabrera FJ, et al. The role of the TNF-α gene -308 G/A polymorphism in the development of diabetic nephropathy: An updated meta-analysis. Diabetes Metab Syndr 2020; 14(6): 2123-9.
[http://dx.doi.org/10.1016/j.dsx.2020.10.032] [PMID: 33395772]
[70]
Martinon F, Burns K, Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10(2): 417-26.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[71]
Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 2016; 12(1): 13-26.
[http://dx.doi.org/10.1038/nrneph.2015.175] [PMID: 26568190]
[72]
Rathinam VA, Fitzgerald KA. Inflammasome complexes: Emerging mechanisms and effector functions. Cell 2016; 165(4): 792-800.
[http://dx.doi.org/10.1016/j.cell.2016.03.046] [PMID: 27153493]
[73]
Oliveira CB, Lima CAD, Vajgel G, Sandrin-Garcia P. The role of NLRP3 Inflammasome in lupus nephritis. Int J Mol Sci 2021; 22(22): 12476.
[http://dx.doi.org/10.3390/ijms222212476] [PMID: 34830358]
[74]
Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18(5): 1141-60.
[http://dx.doi.org/10.1038/s41423-021-00670-3] [PMID: 33850310]
[75]
Zhang C, Zhu X, Li L, et al. A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation. Diabetes Metab Syndr Obes 2019; 12: 1297-309.
[http://dx.doi.org/10.2147/DMSO.S199802] [PMID: 31447572]
[76]
Hou Y, Lin S, Qiu J, et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 2020; 521(3): 791-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.194] [PMID: 31703838]
[77]
Du L, Wang L, Wang B, et al. A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling. Acta Pharmacol Sin 2020; 41(3): 358-72.
[http://dx.doi.org/10.1038/s41401-019-0297-6] [PMID: 31645661]
[78]
Bakker PJ, Butter LM, Kors L, et al. Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation. Kidney Int 2014; 85(5): 1112-22.
[http://dx.doi.org/10.1038/ki.2013.503] [PMID: 24352154]
[79]
Ludwig-Portugall I, Bartok E, Dhana E, et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int 2016; 90(3): 525-39.
[http://dx.doi.org/10.1016/j.kint.2016.03.035] [PMID: 27262364]
[80]
Abd El-Khalik SR, Nasif E, Arakeep HM, Rabah H. The prospective ameliorative role of zinc oxide nanoparticles in STZ-induced diabetic nephropathy in rats: Mechanistic targeting of autophagy and regulating Nrf2/TXNIP/NLRP3 inflammasome signaling. Biol Trace Elem Res 2022; 200(4): 1677-87.
[http://dx.doi.org/10.1007/s12011-021-02773-4] [PMID: 34241775]
[81]
Sies H, Belousov VV, Chandel NS, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 2022; 1-17.
[http://dx.doi.org/10.1038/s41580-022-00456-z] [PMID: 35190722]
[82]
Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of autophagy in oxidative stress. Int J Mol Sci 2020; 21(9): 3289.
[http://dx.doi.org/10.3390/ijms21093289] [PMID: 32384691]
[83]
Mortimore GE, Pösö AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987; 7(1): 539-64.
[http://dx.doi.org/10.1146/annurev.nu.07.070187.002543] [PMID: 3300746]
[84]
Petibone DM, Majeed W, Casciano DA. Autophagy function and its relationship to pathology, clinical applications, drug metabolism and toxicity. J Appl Toxicol 2017; 37(1): 23-37.
[http://dx.doi.org/10.1002/jat.3393] [PMID: 27682190]
[85]
Yang D, Livingston MJ, Liu Z, et al. Autophagy in diabetic kidney disease: Regulation, pathological role and therapeutic potential. Cell Mol Life Sci CMLS 2018; 75(4): 669-88.
[http://dx.doi.org/10.1007/s00018-017-2639-1] [PMID: 28871310]
[86]
Duan X, Kong Z, Mai X, et al. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 2018; 16: 414-25.
[http://dx.doi.org/10.1016/j.redox.2018.03.019] [PMID: 29653411]
[87]
Liu Y, Li D, He Z, et al. Inhibition of autophagy-attenuated calcium oxalate crystal-induced renal tubular epithelial cell injury in vivo and in vitro. Oncotarget 2017; 9(4): 4571-82.
[http://dx.doi.org/10.18632/oncotarget.23383] [PMID: 29435125]
[88]
Liu X, Zhao X, Cheng R, Huang Y. Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2020; 40(4): BSR20193006.
[http://dx.doi.org/10.1042/BSR20193006] [PMID: 32186721]
[89]
Bai M, Che R, Zhang Y, et al. Reactive oxygen species-initiated autophagy opposes aldosterone-induced podocyte injury. Am J Physiol Renal Physiol 2016; 310(7): F669-78.
[http://dx.doi.org/10.1152/ajprenal.00409.2015] [PMID: 26764202]
[90]
Song Y, Tao Q, Yu L, et al. Activation of autophagy contributes to the renoprotective effect of postconditioning on acute kidney injury and renal fibrosis. Biochem Biophys Res Commun 2018; 504(4): 641-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.003] [PMID: 30205956]
[91]
Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: A randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28(2): 103-17.
[http://dx.doi.org/10.1016/0168-8227(95)01064-K] [PMID: 7587918]
[92]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[93]
Shichiri M, Kishikawa H, Ohkubo Y, Wake N. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care 2000; 23 (Suppl. 2): B21-9.
[94]
Bakris G, Viberti G, Weston WM, Heise M, Porter LE, Freed MI. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Hum Hypertens 2003; 17(1): 7-12.
[http://dx.doi.org/10.1038/sj.jhh.1001444] [PMID: 12571611]
[95]
Bakris GL, Weir MR, Shanifar S, et al. Effects of blood pressure level on progression of diabetic nephropathy: Results from the RENAAL study. Arch Intern Med 2003; 163(13): 1555-65.
[http://dx.doi.org/10.1001/archinte.163.13.1555] [PMID: 12860578]
[96]
Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: Principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 1998; 351(9118): 1755-62.
[http://dx.doi.org/10.1016/S0140-6736(98)04311-6] [PMID: 9635947]
[97]
Zhu Y, Li ZL, Ding A, et al. Olmesartan medoxomil, an angiotensin II-receptor blocker, ameliorates renal injury in db/db mice. Drug Des Devel Ther 2019; 13: 3657-67.
[http://dx.doi.org/10.2147/DDDT.S217826] [PMID: 31695333]
[98]
Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 2016; 39 (Suppl. 2): S165-71.
[http://dx.doi.org/10.2337/dcS15-3006] [PMID: 27440829]
[99]
Lewis EJ, Rohde R, Bain R. A follow-up study of the course of nephropathy in type I diabetes mellitus. Nephrology 1997; 3 (Suppl. 1): 1222.
[100]
Mandita A, Timofte D, Balcangiu-Stroescu AE, et al. Treatment of high blood pressure in patients with chronic renal disease. Rev Chim Buchar 2019; 70: 993-5.
[http://dx.doi.org/10.37358/RC.19.3.7047]
[101]
Rossing P. Clinical perspective-evolving evidence of mineralocorticoid receptor antagonists in patients with chronic kidney disease and type 2 diabetes. Kidney Int Suppl 2022; 12(1): 27-35.
[http://dx.doi.org/10.1016/j.kisu.2021.11.005] [PMID: 35529090]
[102]
Ruggenenti P, Cortinovis M, Parvanova A, et al. Preventing microalbuminuria with benazepril, valsartan, and benazepril-valsartan combination therapy in diabetic patients with high-normal albuminuria: A prospective, randomized, open-label, blinded endpoint (PROBE) study. PLoS Med 2021; 18(7): e1003691.
[http://dx.doi.org/10.1371/journal.pmed.1003691] [PMID: 34260595]
[103]
Apetrii M, Timofte D, Voroneanu L, Covic A. Nutrition in chronic kidney disease-the role of proteins and specific diets. Nutrients 2021; 13(3): 956.
[http://dx.doi.org/10.3390/nu13030956] [PMID: 33809492]
[104]
Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. J Am Coll Cardiol 2004; 44(3): 720-32.
[http://dx.doi.org/10.1016/j.jacc.2004.07.001] [PMID: 15358046]
[105]
Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: A meta-analysis. Kidney Int 2001; 59(1): 260-9.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00487.x] [PMID: 11135079]
[106]
Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: A randomised placebo-controlled trial. Lancet 2003; 361(9374): 2005-16.
[http://dx.doi.org/10.1016/S0140-6736(03)13636-7] [PMID: 12814710]
[107]
Sinclair SH, DelVecchio C, Levin A. Treatment of anemia in the diabetic patient with retinopathy and kidney disease. Am J Ophthalmol 2003; 135(5): 740-3.
[http://dx.doi.org/10.1016/S0002-9394(02)02149-9] [PMID: 12719099]
[108]
Laville M. New strategies in anaemia management: ACORD (Anaemia CORrection in Diabetes) trial. Acta Diabetol 2004; 41(1): s18-22.
[109]
Bosman DR, Winkler AS, Marsden JT, Macdougall IC, Watkins PJ. Anemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 2001; 24(3): 495-9.
[http://dx.doi.org/10.2337/diacare.24.3.495] [PMID: 11289474]
[110]
Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes 2003; 52(8): 2110-20.
[http://dx.doi.org/10.2337/diabetes.52.8.2110] [PMID: 12882930]
[111]
Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003; 17(12): 1762-4.
[http://dx.doi.org/10.1096/fj.02-1102fje] [PMID: 12958202]
[112]
Kelly DJ, Zhang Y, Hepper C, et al. Protein kinase C β inhibition attenuates the progression of experimental diabetic nephropathy in the presence of continued hypertension. Diabetes 2003; 52(2): 512-8.
[http://dx.doi.org/10.2337/diabetes.52.2.512] [PMID: 12540629]
[113]
Ceol M, Gambaro G, Sauer U, et al. Glycosaminoglycan therapy prevents TGF-β1 overexpression and pathologic changes in renal tissue of long-term diabetic rats. J Am Soc Nephrol 2000; 11(12): 2324-36.
[http://dx.doi.org/10.1681/ASN.V11122324] [PMID: 11095655]
[114]
Bignamini AA, Chebil A, Gambaro G, Matuška J. Sulodexide for diabetic-induced disabilities: A systematic review and meta-Analysis. Adv Ther 2021; 38(3): 1483-513.
[http://dx.doi.org/10.1007/s12325-021-01620-1] [PMID: 33502688]
[115]
Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am J Nephrol 2004; 24(1): 32-40.
[http://dx.doi.org/10.1159/000075627] [PMID: 14685005]
[116]
Utimura R, Fujihara CK, Mattar AL, Malheiros DM, Noronha IL, Zatz R. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 2003; 63(1): 209-16.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00736.x] [PMID: 12472785]
[117]
Han J, Thompson P, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med 1990; 172(1): 391-4.
[http://dx.doi.org/10.1084/jem.172.1.391] [PMID: 2358784]
[118]
Prabhakar PK, Kumar A, Doble M. Combination therapy: A new strategy to manage diabetes and its complications. Phytomedicine 2014; 21(2): 123-30.
[http://dx.doi.org/10.1016/j.phymed.2013.08.020] [PMID: 24074610]
[119]
Nankar R, Prabhakar PK, Doble M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine 2017; 37: 10-3.
[http://dx.doi.org/10.1016/j.phymed.2017.10.015] [PMID: 29126698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy