Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Neurochemical Signaling in Depression: Impact of Target-Based Pharmaceuticals

Author(s): Khushboo and Bechan Sharma*

Volume 18, Issue 1, 2023

Published on: 19 September, 2022

Page: [2 - 14] Pages: 13

DOI: 10.2174/1574885517666220817122840

Price: $65

Abstract

Depression is a chronic, devastating, and frequently occurring disease. Clinical studies have shown the association of depression with atrophy as well as degeneration of nerve cells and glial cells, which contribute to the size and function of specific brain regions that regulate the status of the mind, including depression. The currently available pharmacotherapies can be helpful in the treatment of psychosomatic disorders, including depression. Since these drugs display a very slow reaction and are required to be taken for a prolonged period, they often induce many side effects, which pose challenges in chemotherapy of the disease. The vascular endothelial growth factor A (VEGF) and the brainderived neurotrophic factor (BDNF) are known to play key roles in regulating the pathophysiology of depression. While searching for better options of treatment, rapid-acting antidepressants, such as the antagonist ketamine and N-methyl-D-aspartate NMDA receptor (NMDAR), are gaining more attention, which affects an array of signaling pathways. An evolutionary hypothesis suggests that the plasticity of neuronal routes is likely to be involved in the pathogenesis and hence the treatment of depression. It has been shown that due to the improper functioning of the neuronal system, adaptive plasticity can contribute to the pathogenesis of depression. Due to the use of medicines that promise choices for the treatment of depressive patients for dramatic improvement, there is an urgent need to develop novel tools about the mechanism of action of these rapid-acting antidepressants affecting the brain, particularly their interaction with the neuronal cell signaling pathways and their special effects on the neural circuits in the brain.

Keywords: Depression, pharmacotherapies, antidepressants, receptors, signaling pathways, psychosomatic disorders.

Graphical Abstract
[1]
Lopez AD, Murray CC. The global burden of disease, 1990-2020. Nat Med 1998; 4(11): 1241-3.
[http://dx.doi.org/10.1038/3218] [PMID: 9809543]
[2]
Li Z, Ruan M, Chen J, Fang Y. Major depressive disorder: Advances in neuroscience research and translational applications. Neurosci Bull 2021; 37(6): 863-80.
[http://dx.doi.org/10.1007/s12264-021-00638-3] [PMID: 33582959]
[3]
American Psychiatric Association Diagnostic and Statistical Manual of mental disorders. DSM-5 American Psychiatric Association. Washington, D.C 2013.
[4]
Keers R, Uher R. Gene-environment interaction in major depression and antidepressant treatment response. Curr Psychiatry Rep 2012; 14(2): 129-37.
[http://dx.doi.org/10.1007/s11920-011-0251-x] [PMID: 22198824]
[5]
Angst F, Stassen HH, Clayton PJ, Angst J. Mortality of patients with mood disorders: Follow-up over 34-38 years. J Affect Disord 2002; 68(2-3): 167-81.
[http://dx.doi.org/10.1016/S0165-0327(01)00377-9] [PMID: 12063145]
[6]
Duman RS, Aghajanian GK. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012; 338(6103): 68-72.
[http://dx.doi.org/10.1126/science.1222939] [PMID: 23042884]
[7]
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 2008; 33(1): 88-109.
[http://dx.doi.org/10.1038/sj.npp.1301574] [PMID: 17851537]
[8]
Andrade C, Rao NS. How antidepressant drugs act: A primer on neuroplasticity as the eventual mediator of antidepressant efficacy. Indian J Psychiatry 2010; 52(4): 378-86.
[http://dx.doi.org/10.4103/0019-5545.74318] [PMID: 21267376]
[9]
Abdallah CG, Jiang L, De Feyter HM, et al. Glutamate metabolism in major depressive disorder. Am J Psychiatry 2014; 171(12): 1320-7.
[http://dx.doi.org/10.1176/appi.ajp.2014.14010067] [PMID: 25073688]
[10]
Iwata M, Ota KT, Duman RS. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 2013; 31: 105-14.
[http://dx.doi.org/10.1016/j.bbi.2012.12.008] [PMID: 23261775]
[11]
Duman RS. Neurobiology of stress, depression, and rapid acting antidepressants: Remodeling synaptic connections. Depress Anxiety 2014; 31(4): 291-6.
[http://dx.doi.org/10.1002/da.22227] [PMID: 24616149]
[12]
Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012; 22(1): 1-16.
[http://dx.doi.org/10.1016/j.euroneuro.2011.05.003] [PMID: 21723712]
[13]
Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45(9): 1085-98.
[http://dx.doi.org/10.1016/S0006-3223(99)00041-4] [PMID: 10331101]
[14]
Treadway MT, Waskom ML, Dillon DG, et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. Biol Psychiatry 2015; 77(3): 285-94.
[http://dx.doi.org/10.1016/j.biopsych.2014.06.018] [PMID: 25109665]
[15]
Kang HJ, Voleti B, Hajszan T, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18(9): 1413-7.
[http://dx.doi.org/10.1038/nm.2886] [PMID: 22885997]
[16]
Banasr M, Dwyer JM, Duman RS. Cell atrophy and loss in depression: Reversal by antidepressant treatment. Curr Opin Cell Biol 2011; 23(6): 730-7.
[http://dx.doi.org/10.1016/j.ceb.2011.09.002] [PMID: 21996102]
[17]
Krystal JH, Sanacora G, Duman RS. Rapid-acting glutamatergic antidepressants: The path to ketamine and beyond. Biol Psychiatry 2013; 73(12): 1133-41.
[http://dx.doi.org/10.1016/j.biopsych.2013.03.026] [PMID: 23726151]
[18]
Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45(5): 651-60.
[http://dx.doi.org/10.1016/j.neuron.2005.02.014] [PMID: 15748841]
[19]
Horn DI, Yu C, Steiner J, et al. Glutamatergic and resting-state functional connectivity correlates of severity in major depression-the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 2010; 4: 33.
[http://dx.doi.org/10.3389/fnsys.2010.00033] [PMID: 20700385]
[20]
Bonansco C, Couve A, Perea G, Ferradas CÁ, Roncagliolo M, Fuenzalida M. Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 2011; 33(8): 1483-92.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07631.x] [PMID: 21395864]
[21]
Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci 2012; 35(1): 47-56.
[http://dx.doi.org/10.1016/j.tins.2011.11.004] [PMID: 22217452]
[22]
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59(12): 1116-27.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[23]
Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 1997; 17(8): 2921-7.
[http://dx.doi.org/10.1523/JNEUROSCI.17-08-02921.1997] [PMID: 9092613]
[24]
Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat Med 2016; 22(3): 238-49.
[http://dx.doi.org/10.1038/nm.4050] [PMID: 26937618]
[25]
Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol Psychiatry 2008; 64(6): 527-32.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.005] [PMID: 18571629]
[26]
Losenkov IS, Mulder NJV, Levchuk LA, et al. Association between BDNF gene variant Rs6265 and the severity of depression in antidepressant treatment-free depressed patients. Front Psychiatry 2020; 11: 38.
[http://dx.doi.org/10.3389/fpsyt.2020.00038] [PMID: 32116853]
[27]
Tsai S-J. Critical issues in BDNF Val66Met genetic studies of neuropsychiatric disorders. Front Mol Neurosci 2018; 11: 156.
[http://dx.doi.org/10.3389/fnmol.2018.00156] [PMID: 29867348]
[28]
Yang T, Nie Z, Shu H, et al. The role of BDNF on neural plasticity in depression. Front Cell Neurosci 2020; 14: 82.
[http://dx.doi.org/10.3389/fncel.2020.00082] [PMID: 32351365]
[29]
Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 2014; 3(10): 647-61.
[http://dx.doi.org/10.1089/wound.2013.0517] [PMID: 25302139]
[30]
Streit M, Velasco P, Riccardi L, et al. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J 2000; 19(13): 3272-82.
[http://dx.doi.org/10.1093/emboj/19.13.3272] [PMID: 10880440]
[31]
Shibuya M. Vascular Endothelial Growth Factor (VEGF) and its Receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011; 2(12): 1097-105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[32]
Clark-Raymond A, Halaris A. VEGF and depression: A comprehensive assessment of clinical data. J Psychiatr Res 2013; 47(8): 1080-7.
[http://dx.doi.org/10.1016/j.jpsychires.2013.04.008] [PMID: 23684549]
[33]
Nowacka MM, Obuchowicz E. Vascular Endothelial Growth Factor (VEGF) and its role in the central nervous system: A new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides 2012; 46(1): 1-10.
[http://dx.doi.org/10.1016/j.npep.2011.05.005] [PMID: 21719103]
[34]
Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymph angiogenesis. Exp Cell Res 2006; 312(5): 549-60.
[http://dx.doi.org/10.1016/j.yexcr.2005.11.012]
[35]
Lee CH, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol 2019; 10: 1696.
[http://dx.doi.org/10.3389/fimmu.2019.01696] [PMID: 31379879]
[36]
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13: 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[37]
Dwivedi Y. Brain-derived neurotrophic factor: Role in depression and suicide. Neuropsychiatr Dis Treat 2009; 5: 433-49.
[http://dx.doi.org/10.2147/NDT.S5700] [PMID: 19721723]
[38]
Khushboo SB. Factors inducing depression as effective tool in therapy. Med Clin Arch 2019; 3: 3-4.
[http://dx.doi.org/10.15761/MCA.1000163]
[39]
Pandya M, Altinay M, Malone DA Jr, Anand A. Where in the brain is depression? Curr Psychiatry Rep 2012; 14(6): 634-42.
[http://dx.doi.org/10.1007/s11920-012-0322-7] [PMID: 23055003]
[40]
Boulle F, Kenis G, Cazorla M, et al. TrkB inhibition as a therapeutic target for CNS-related disorders. Prog Neurobiol 2012; 98(2): 197-206.
[http://dx.doi.org/10.1016/j.pneurobio.2012.06.002] [PMID: 22705453]
[41]
Ernfors P, Wetmore C, Olson L, Persson H. Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 1990; 5(4): 511-26.
[http://dx.doi.org/10.1016/0896-6273(90)90090-3] [PMID: 2206535]
[42]
Hetman M, Hsuan SL, Habas A, Higgins MJ, Xia Z. ERK1/2 antagonizes glycogen synthase kinase-3beta-induced apoptosis in cortical neurons. J Biol Chem 2002; 277(51): 49577-84.
[http://dx.doi.org/10.1074/jbc.M111227200] [PMID: 12393899]
[43]
Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 2011; 121(5): 1846-57.
[http://dx.doi.org/10.1172/JCI43992] [PMID: 21505263]
[44]
Jin K, Sun Y, Xie L, et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2003; 2(3): 175-83.
[http://dx.doi.org/10.1046/j.1474-9728.2003.00046.x] [PMID: 12882410]
[45]
Chacón-Fernández P, Säuberli K, Colzani M, Moreau T, Ghevaert C, Barde YA. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem 2016; 291(19): 9872-81.
[http://dx.doi.org/10.1074/jbc.M116.720029] [PMID: 27006395]
[46]
Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22(8): 3251-61.
[http://dx.doi.org/10.1523/JNEUROSCI.22-08-03251.2002] [PMID: 11943826]
[47]
Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50(4): 260-5.
[http://dx.doi.org/10.1016/S0006-3223(01)01083-6] [PMID: 11522260]
[48]
Castrén E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 2017; 97(Pt B): 119-26.
[http://dx.doi.org/10.1016/j.nbd.2016.07.010] [PMID: 27425886]
[49]
Schechter LE, Ring RH, Beyer CE, et al. Innovative approaches for the development of antidepressant drugs: Current and future strategies. NeuroRx 2005; 2(4): 590-611.
[http://dx.doi.org/10.1602/neurorx.2.4.590] [PMID: 16489368]
[50]
López-Muñoz F, Alamo C. Monoaminergic neurotransmission: The history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 2009; 15(14): 1563-86.
[http://dx.doi.org/10.2174/138161209788168001] [PMID: 19442174]
[51]
Khushboo S, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Neuroanatomical, biochemical, and functional modifications in brain induced by treatment with antidepressants. Mol Neurobiol 2022; 59(6): 3564-84.
[http://dx.doi.org/10.1007/s12035-022-02780-z] [PMID: 35352302]
[52]
Fasipe OJ. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep 2019; 6: 95-110.
[http://dx.doi.org/10.1016/j.ibror.2019.01.001] [PMID: 31211282]
[53]
Colla M, Scheerer H, Weidt S, Seifritz E, Kronenberg G. Novel insights into the neurobiology of the antidepressant response from ketamine research: A mini review. Front Behav Neurosci 2021; 15759466.
[http://dx.doi.org/10.3389/fnbeh.2021.759466] [PMID: 34924969]
[54]
Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 2012; 62(1): 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036] [PMID: 21827775]
[55]
Mathews DC, Henter ID, Zarate CA. Targeting the glutamatergic system to treat major depressive disorder: Rationale and progress to date. Drugs 2012; 72(10): 1313-33.
[http://dx.doi.org/10.2165/11633130-000000000-00000] [PMID: 22731961]
[56]
Khushboo SB. Antidepressants: Mechanism of action, toxicity and possible amelioration. J Appl Biotechnol Bio Eng 2017; 3(5): 00082.
[57]
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235(8): 2195-220.
[http://dx.doi.org/10.1007/s00213-018-4950-4] [PMID: 29961124]
[58]
Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 2004; 29(4): 252-65.
[PMID: 15309042]
[59]
Holtzheimer PE III, Nemeroff CB. Advances in the treatment of depression. NeuroRx 2006; 3(1): 42-56.
[http://dx.doi.org/10.1016/j.nurx.2005.12.007] [PMID: 16490412]
[60]
Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: Contribution of discrete neuronal populations and target regions. Mol Psychiatry 2020; 25(11): 2742-58.
[http://dx.doi.org/10.1038/s41380-020-0685-9] [PMID: 32086434]
[61]
Hecking J, Davoudian PA, Wilkinson ST. Emerging therapeutics based on the amino acid neurotransmitter system: An update on the pharmaceutical pipeline for mood disorders. Chronic Stress (Thousand Oaks) 2021; 5: 24705470211020446.
[http://dx.doi.org/10.1177/24705470211020446]
[62]
Davis AK, Barrett FS, May DG, et al. Effects of psilocybin-assisted therapy on major depressive disorder: A randomized clinical trial. Jama Psychiatry 2020; 4e203285.
[http://dx.doi.org/10.1001/jamapsychiatry.2020.3285] [PMID: 33146667]
[63]
Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018; 391(10128): 1357-66.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[64]
Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 2018; 23(4): 801-11.
[http://dx.doi.org/10.1038/mp.2017.255] [PMID: 29532791]
[65]
Ibrahim L, Diazgranados N, Luckenbaugh DA, et al. Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(4): 1155-9.
[http://dx.doi.org/10.1016/j.pnpbp.2011.03.019] [PMID: 21466832]
[66]
Zhang Y, Xu Z, Zhang S, Desrosiers A, Schottenfeld RS, Chawarski MC. Profiles of psychiatric symptoms among amphetamine type stimulant and ketamine using inpatients in Wuhan, China. J Psychiatr Res 2014; 53: 99-102.
[http://dx.doi.org/10.1016/j.jpsychires.2014.02.010] [PMID: 24613031]
[67]
Maeng S, Zarate CA Jr, Du J, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 2008; 63(4): 349-52.
[http://dx.doi.org/10.1016/j.biopsych.2007.05.028] [PMID: 17643398]
[68]
Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475(7354): 91-5.
[http://dx.doi.org/10.1038/nature10130] [PMID: 21677641]
[69]
Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 2014; 18(1): pyu033.
[http://dx.doi.org/10.1093/ijnp/pyu033] [PMID: 25539510]
[70]
Fava M. Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 2003; 53(8): 649-59.
[http://dx.doi.org/10.1016/S0006-3223(03)00231-2] [PMID: 12706951]
[71]
Holtzheimer PE III, Nemeroff CB. Future prospects in depression research. Dialogues Clin Neurosci 2006; 8(2): 175-89.
[http://dx.doi.org/10.31887/DCNS.2006.8.2/pholtzheimer] [PMID: 16889104]
[72]
Michael M, Raz Y, Jens N, Stefan B, Joe H. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab Brain Dis 2009; 24: 27-53.
[http://dx.doi.org/10.1007/s11011-008-9118-1]
[73]
Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329(5994): 959-64.
[http://dx.doi.org/10.1126/science.1190287] [PMID: 20724638]
[74]
Licinio J, Wong ML. Advances in depression research: Second special issue, 2020, with highlights on biological mechanisms, clinical features, co-morbidity, genetics, imaging, and treatment. Mol Psychiatry 2020; 25(7): 1356-60.
[http://dx.doi.org/10.1038/s41380-020-0798-1] [PMID: 32555341]
[75]
Buttenschøn HN, Foldager L, Elfving B, Poulsen PHP, Uher R, Mors O. Neurotrophic factors in depression in response to treatment. J Affect Disord 2015; 183: 287-94.
[http://dx.doi.org/10.1016/j.jad.2015.05.027] [PMID: 26047306]
[76]
Chen ZY, Jing D, Bath KG, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006; 314(5796): 140-3.
[http://dx.doi.org/10.1126/science.1129663] [PMID: 17023662]
[77]
Coppell AL, Pei Q, Zetterström TS. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 2003; 44(7): 903-10.
[http://dx.doi.org/10.1016/S0028-3908(03)00077-7] [PMID: 12726822]
[78]
Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54(7): 597-606.
[http://dx.doi.org/10.1001/archpsyc.1997.01830190015002] [PMID: 9236543]
[79]
Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 2009; 29(27): 8688-97.
[http://dx.doi.org/10.1523/JNEUROSCI.6078-08.2009] [PMID: 19587275]
[80]
Beurel E, Song L, Jope RS. Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry 2011; 16(11): 1068-70.
[http://dx.doi.org/10.1038/mp.2011.47] [PMID: 21502951]
[81]
Kraus C, Wasserman D, Henter ID, Acevedo-Diaz E, Kadriu B, Zarate CA Jr. The influence of ketamine on drug discovery in depression. Drug Discov 2019.
[http://dx.doi.org/10.1016/j.drudis.2019.07.007]
[82]
Culp C, Kim HK, Abdi S. Ketamine use for cancer and chronic pain management. Front Pharmacol 2021; 11599721.
[http://dx.doi.org/10.3389/fphar.2020.599721] [PMID: 33708116]
[83]
Correia-Melo FS, Leal GC, Vieira F, et al. Efficacy and safety of adjunctive therapy using esketamine or racemic ketamine for adult treatment-resistant depression: A randomized, double-blind, non-inferiority study. J Affect Disord 2020; 264: 527-34.
[http://dx.doi.org/10.1016/j.jad.2019.11.086] [PMID: 31786030]
[84]
Preskorn S, Macaluso M, Mehra DOV, Zammit G, Moskal JR, Burch RM. Randomized proof of concept trial of GLYX-13, an N-methyl-D-aspartate receptor glycine site partial agonist, in major depressive disorder nonresponsive to a previous antidepressant agent. J Psychiatr Pract 2015; 21(2): 140-9.
[http://dx.doi.org/10.1097/01.pra.0000462606.17725.93] [PMID: 25782764]
[85]
Liu RJ, Duman C, Kato T, et al. GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology 2017; 42(6): 1231-42.
[http://dx.doi.org/10.1038/npp.2016.202] [PMID: 27634355]
[86]
Voleti B, Navarria A, Liu RJ, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry 2013; 74(10): 742-9.
[http://dx.doi.org/10.1016/j.biopsych.2013.04.025] [PMID: 23751205]
[87]
Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 2007; 39(4): 728-34.
[http://dx.doi.org/10.1249/mss.0b013e31802f04c7] [PMID: 17414812]
[88]
Furey ML, Drevets WC. Antidepressant efficacy of the antimuscarinic drug scopolamine: A randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 2006; 63(10): 1121-9.
[http://dx.doi.org/10.1001/archpsyc.63.10.1121] [PMID: 17015814]
[89]
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11(10): 682-96.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[90]
Kazlauckas V, Pagnussat N, Mioranzza S, et al. Enriched environment effects on behavior, memory and BDNF in low and high exploratory mice. Physiol Behav 2011; 102(5): 475-80.
[http://dx.doi.org/10.1016/j.physbeh.2010.12.025] [PMID: 21236277]
[91]
Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 2012; 71(11): 996-1005.
[http://dx.doi.org/10.1016/j.biopsych.2011.09.030] [PMID: 22036038]
[92]
Bath KG, Jing DQ, Dincheva I, et al. BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 2012; 37(5): 1297-304.
[http://dx.doi.org/10.1038/npp.2011.318] [PMID: 22218094]
[93]
Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15(11): 7539-47.
[http://dx.doi.org/10.1523/JNEUROSCI.15-11-07539.1995] [PMID: 7472505]
[94]
Li G, Jing P, Liu Z, et al. Beneficial effect of fluoxetine treatment against psychological stress is mediated by increasing BDNF expression in selected brain areas. Oncotarget 2017; 8(41): 69527-37.
[http://dx.doi.org/10.18632/oncotarget.17891] [PMID: 29050222]
[95]
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455(7215): 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[96]
Li N, Liu RJ, Dwyer JM, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011; 69(8): 754-61.
[http://dx.doi.org/10.1016/j.biopsych.2010.12.015] [PMID: 21292242]
[97]
Marais L, Stein DJ, Daniels WM. Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab Brain Dis 2009; 24(4): 587-97.
[http://dx.doi.org/10.1007/s11011-009-9157-2] [PMID: 19844781]
[98]
Miller OH, Yang L, Wang CC, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. eLife 2014; 3e03581.
[http://dx.doi.org/10.7554/eLife.03581] [PMID: 25340958]
[99]
FDA approves first treatment for post-partum depression. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-post-partum-depression
[100]
Molteni R, Calabrese F, Bedogni F, et al. Chronic treatment with fluoxetine up-regulates cellular BDNF mRNA expression in rat dopaminergic regions. Int J Neuropsychopharmacol 2006; 9(3): 307-17.
[http://dx.doi.org/10.1017/S1461145705005766] [PMID: 16035958]
[101]
Monteggia LM, Barrot M, Powell CM, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004; 101(29): 10827-32.
[http://dx.doi.org/10.1073/pnas.0402141101] [PMID: 15249684]
[102]
Monteggia LM, Gideons E, Kavalali ET. The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 2013; 73(12): 1199-203.
[http://dx.doi.org/10.1016/j.biopsych.2012.09.006] [PMID: 23062356]
[103]
Ota KT, Liu RJ, Voleti B, et al. REDD1 is essential for stress-induced synaptic loss and depressive behavior. Nat Med 2014; 20(5): 531-5.
[http://dx.doi.org/10.1038/nm.3513] [PMID: 24728411]
[104]
Rantamäki T, Hendolin P, Kankaanpää A, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32(10): 2152-62.
[http://dx.doi.org/10.1038/sj.npp.1301345] [PMID: 17314919]
[105]
Rantamäki T, Vesa L, Antila H, et al. Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade. PLoS One 2011; 6(6): e20567.
[http://dx.doi.org/10.1371/journal.pone.0020567] [PMID: 21666748]
[106]
Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23(1): 349-57.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00349.2003] [PMID: 12514234]
[107]
Sharma B, Gupta VK. Modulations of mammalian brain functions by antidepressant drugs: Role of some phytochemicals as prospective antidepressants. Evidence Based Medicine and Practice 2016; 2(2)
[108]
Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature 2017; 546(7659): E1-3.
[http://dx.doi.org/10.1038/nature22084] [PMID: 28640258]
[109]
Wang C, Zheng D, Xu J, Lam W, Yew DT. Brain damages in ketamine addicts as revealed by magnetic resonance imaging. Front Neuroanat 2013; 7: 23.
[http://dx.doi.org/10.3389/fnana.2013.00023] [PMID: 23882190]
[110]
Wittchen HU, Jacobi F, Rehm J, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011; 21(9): 655-79.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.018] [PMID: 21896369]
[111]
Wohleb ES, Gerhard D, Thomas A, Duman RS. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr Neuropharmacol 2017; 15(1): 11-20.
[http://dx.doi.org/10.2174/1570159X14666160309114549] [PMID: 26955968]
[112]
Wohleb ES, Wu M, Gerhard DM, et al. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest 2016; 126(7): 2482-94.
[http://dx.doi.org/10.1172/JCI85033] [PMID: 27270172]
[113]
Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci 2013; 118(1): 3-8.
[http://dx.doi.org/10.3109/03009734.2012.724118] [PMID: 22970723]
[114]
Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016; 533(7604): 481-6.
[http://dx.doi.org/10.1038/nature17998] [PMID: 27144355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy