Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery

Author(s): Roohi Mohi-ud-Din*, Reyaz Hassan Mir, Prince Ahad Mir, Nazia Banday, Abdul Jalil Shah, Gifty Sawhney, Mudasir Maqbool Bhat, Gaber E. Batiha and Faheem Hyder Pottoo*

Volume 23, Issue 9, 2022

Published on: 09 September, 2022

Page: [735 - 756] Pages: 22

DOI: 10.2174/1389200223666220817115003

Price: $65

Open Access Journals Promotions 2
Abstract

Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.

Keywords: ABC transporters, blood brain barrier, P-glycoprotein, epilepsy, oxidative stress, tight junctions, pharmacoresistance.

Graphical Abstract
[1]
Gil-Martins, E.; Barbosa, D.J.; Silva, V.; Remião, F.; Silva, R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neuro-logical disorders. Pharmacol. Ther., 2020, 213, 107554.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107554] [PMID: 32320731]
[2]
Fisher, R.S. Final comments on the process: ILAE definition of epilepsy. Epilepsia, 2014, 55(4), 492-493.
[http://dx.doi.org/10.1111/epi.12585] [PMID: 24731068]
[3]
Ahmad, M.A.; Pottoo, F.H.; Akbar, M. Gene therapy repairs for the epileptic brain: Potential for treatment and future directions. Curr. Gene Ther., 2020, 19(6), 367-375.
[http://dx.doi.org/10.2174/1566523220666200131142423] [PMID: 32003688]
[4]
Loiselle, K.A.; Ramsey, R.R.; Rausch, J.R.; Modi, A.C. Trajectories of health-related quality of life among children with newly diagnosed epilepsy. J. Pediatr. Psychol., 2016, 41(9), 1011-1021.
[http://dx.doi.org/10.1093/jpepsy/jsw019] [PMID: 27017987]
[5]
Bhasin, H.; Sharma, S. The new international league against epilepsy (ILAE) 2017 classification of seizures and epilepsy: What pediatri-cians need to know. Indian J. Pediatr., 2019, 86(7), 569-571.
[http://dx.doi.org/10.1007/s12098-019-02910-x] [PMID: 30847864]
[6]
Egesa, I.J.; Newton, C.R.J.C.; Kariuki, S.M. Evaluation of the international league against epilepsy 1981, 1989, and 2017 classifications of seizure semiology and etiology in a population‐based cohort of children and adults with epilepsy. Epilepsia Open, 2022, 7(1), 98-109.
[http://dx.doi.org/10.1002/epi4.12562] [PMID: 34792291]
[7]
Hammer, G.D.; McPhee, S.J.; Education, M.H. Pathophysiology of disease: An introduction to clinical medicine; McGraw-Hill Education Medical: New York, USA, 2014.
[8]
Nguyen, L.H.; Bordey, A. convergent and divergent mechanisms of epileptogenesis in mTORopathies. Front. Neuroanat., 2021, 15, 664695.
[http://dx.doi.org/10.3389/fnana.2021.664695]
[9]
Pitkänen, A.; Löscher, W.; Vezzani, A.; Becker, A.J.; Simonato, M.; Lukasiuk, K.; Gröhn, O.; Bankstahl, J.P.; Friedman, A.; Aronica, E.; Gorter, J.A.; Ravizza, T.; Sisodiya, S.M.; Kokaia, M.; Beck, H. Advances in the development of biomarkers for epilepsy. Lancet Neurol., 2016, 15(8), 843-856.
[http://dx.doi.org/10.1016/S1474-4422(16)00112-5] [PMID: 27302363]
[10]
Van Vliet, EA.; Aronica, E.; Gorter, JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin. Cell Dev. Biol., 2015, 38, 26-34.
[http://dx.doi.org/10.1016/j.semcdb.2014.10.003] [PMID: 25444846]
[11]
Varvel, N.H.; Jiang, J.; Dingledine, R. Candidate drug targets for prevention or modification of epilepsy. Annu. Rev. Pharmacol. Toxicol., 2015, 55(1), 229-247.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124607] [PMID: 25196047]
[12]
Sultana, B.; Panzini, M.A.; Veilleux Carpentier, A.; Comtois, J.; Rioux, B.; Gore, G.; Bauer, P.R.; Kwon, C.S.; Jetté, N.; Josephson, C.B.; Keezer, M.R. Incidence and prevalence of drug-resistant epilepsy: A systematic review and meta-analysis. Neurology, 2021, 96(17), 805-817.
[http://dx.doi.org/10.1212/WNL.0000000000011839] [PMID: 33722992]
[13]
Pottoo, F.H.; Tabassum, N.; Javed, M.N.; Nigar, S.; Rasheed, R.; Khan, A.; Barkat, M.A.; Alam, M.S.; Maqbool, A.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepti-cus and temporal lobe epilepsy. Mol. Neurobiol., 2019, 56(2), 1233-1247.
[http://dx.doi.org/10.1007/s12035-018-1121-x] [PMID: 29881945]
[14]
Franco, V.; French, J.A.; Perucca, E. Challenges in the clinical development of new antiepileptic drugs. Pharmacol. Res., 2016, 103, 95-104.
[http://dx.doi.org/10.1016/j.phrs.2015.11.007] [PMID: 26611249]
[15]
Pottoo, F.H.; Tabassum, N.; Javed, M.N.; Nigar, S.; Sharma, S.; Barkat, M.A. Harshita; Alam, M.S.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur. J. Pharm. Sci., 2020, 146, 105261.
[http://dx.doi.org/10.1016/j.ejps.2020.105261] [PMID: 32061655]
[16]
Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front. Neurol., 2017, 8, 301.
[http://dx.doi.org/10.3389/fneur.2017.00301] [PMID: 28729850]
[17]
Leandro, K.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. ABC transporters in drug-resistant epilepsy: Mechanisms of upregulation and therapeutic approaches. Pharmacol. Res., 2019, 144, 357-376.
[http://dx.doi.org/10.1016/j.phrs.2019.04.031] [PMID: 31051235]
[18]
Orlandi, A.; Paolino, M.C.; Striano, P.; Parisi, P. Clinical reappraisal of the influence of drug-transporter polymorphisms in epilepsy. Expert Opin. Drug Metab. Toxicol., 2018, 14(5), 505-512.
[http://dx.doi.org/10.1080/17425255.2018.1473377] [PMID: 29804481]
[19]
Łukawski, K.; Czuczwar, S.J. Understanding mechanisms of drug resistance in epilepsy and strategies for overcoming it. Expert Opin. Drug Metab. Toxicol., 2021, 17(9), 1075-1090.
[http://dx.doi.org/10.1080/17425255.2021.1959912] [PMID: 34310255]
[20]
Malyshev, SM.; Alekseeva, TM.; Khachatryan, WA.; Galagudza, MM. Pathogenesis of drug resistant epilepsy. Epilepsy and Paroxysmal Conditions, 2019, 11(1), 79-87.
[http://dx.doi.org/10.17749/2077-8333.2019.11.1.79-87]
[21]
Rodriguez-Acevedo, A.J.; Gordon, L.G.; Waddell, N.; Hollway, G.; Vadlamudi, L. Developing a gene panel for pharmacoresistant epilep-sy: A review of epilepsy pharmacogenetics. Pharmacogenomics, 2021, 22(4), 225-234.
[http://dx.doi.org/10.2217/pgs-2020-0145] [PMID: 33666520]
[22]
Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new inno-vative treatment options. Pharmacol. Rev., 2020, 72(3), 606-638.
[http://dx.doi.org/10.1124/pr.120.019539] [PMID: 32540959]
[23]
Rehman, S.; Nabi, B.; Pottoo, F.H.; Baboota, S.; Ali, J. Lipid nanoformulations in the treatment of neuropsychiatric diseases: An approach to overcome the blood brain barrier. Curr. Drug Metab., 2020, 21(9), 674-684.
[http://dx.doi.org/10.2174/1573399816666200627214129] [PMID: 32593280]
[24]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A. Harshita,; Alam, M.S.; Naim, M.J.; Alam, O.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52(1), 185-204.
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[25]
Alahmari, A. Blood-Brain barrier overview: Structural and functional correlation. Neural Plast., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6564585] [PMID: 34912450]
[26]
Dickens, D.; Rädisch, S.; Chiduza, G.N.; Giannoudis, A.; Cross, M.J.; Malik, H.; Schaeffeler, E.; Sison-Young, R.L.; Wilkinson, E.L.; Goldring, C.E.; Schwab, M.; Pirmohamed, M.; Nies, A.T. Cellular uptake of the atypical antipsychotic clozapine is a carrier-mediated pro-cess. Mol. Pharm., 2018, 15(8), 3557-3572.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00547] [PMID: 29944835]
[27]
Gupta, S.; Dhanda, S.; Sandhir, R. 2 - Anatomy and physiology of blood-brain barrier. In: Gao, H.; Gao, X., Eds.;Brain Targeted Drug Delivery System; Academic Press: Cambridge, Massachusetts, 2019, pp. 7-31.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00002-0]
[28]
Robert, J.; Caffrey, T.M.; Button, E.B. Toward three-dimensional in vitro models to study neurovascular unit functions in health and dis-ease. Neural Regen. Res., 2021, 16(11), 2132-2140.
[http://dx.doi.org/10.4103/1673-5374.310671] [PMID: 33818484]
[29]
Huang, X.; Hussain, B.; Chang, J. Peripheral inflammation and blood-brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther., 2021, 27(1), 36-47.
[http://dx.doi.org/10.1111/cns.13569] [PMID: 33381913]
[30]
Song, K.H.; Harvey, B.K.; Borden, M.A. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics, 2018, 8(16), 4393-4408.
[http://dx.doi.org/10.7150/thno.26869] [PMID: 30214628]
[31]
Inglut, C.T.; Gray, K.M.; Vig, S.; Jung, J.W.; Stabile, J.; Zhang, Y.; Stroka, K.M.; Huang, H.C. Photodynamic priming modulates endotheli-al cell-cell junction phenotype for light-activated remote control of drug delivery. IEEE J. Sel. Top. Quantum Electron., 2021, 27(4), 1-1.
[PMID: 33519171]
[32]
Kadry, H.; Noorani, B.; Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS, 2020, 17(1), 69.
[http://dx.doi.org/10.1186/s12987-020-00230-3] [PMID: 33208141]
[33]
Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci., 2019, 14(5), 480-496.
[34]
Wang, Z.; Yang, H.; Wu, Z.; Wang, T.; Li, W.; Tang, Y.; Liu, G. In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem, 2018, 13(20), 2189-2201.
[http://dx.doi.org/10.1002/cmdc.201800533] [PMID: 30110511]
[35]
Berthier, J.; Arnion, H.; Saint-Marcoux, F.; Picard, N. Multidrug resistance-associated protein 4 in pharmacology: Overview of its contri-bution to pharmacokinetics, pharmacodynamics and pharmacogenetics. Life Sci., 2019, 231, 116540.
[http://dx.doi.org/10.1016/j.lfs.2019.06.015] [PMID: 31176778]
[36]
Sharma, G.; Sharma, A.R.; Lee, S.S.; Bhattacharya, M.; Nam, J.S.; Chakraborty, C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int. J. Pharm., 2019, 559, 360-372.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.056] [PMID: 30721725]
[37]
Morofuji, Y.; Nakagawa, S. Drug development for central nervous system diseases using in vitro blood-brain barrier models and drug repositioning. Curr. Pharm. Des., 2020, 26(13), 1466-1485.
[http://dx.doi.org/10.2174/1381612826666200224112534] [PMID: 32091330]
[38]
Mohammad, I.S.; He, W.; Yin, L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed. Pharmacother., 2018, 100, 335-348.
[http://dx.doi.org/10.1016/j.biopha.2018.02.038] [PMID: 29453043]
[39]
Vasiliou, V.; Vasiliou, K.; Nebert, D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics, 2008, 3(3), 281-290.
[http://dx.doi.org/10.1186/1479-7364-3-3-281] [PMID: 19403462]
[40]
Wijaya, J.; Fukuda, Y.; Schuetz, J. Obstacles to brain tumor therapy: Key ABC transporters. Int. J. Mol. Sci., 2017, 18(12), 2544.
[http://dx.doi.org/10.3390/ijms18122544] [PMID: 29186899]
[41]
Matthews, P.M. Chronic inflammation in multiple sclerosis-seeing what was always there. Nat. Rev. Neurol., 2019, 15(10), 582-593.
[http://dx.doi.org/10.1038/s41582-019-0240-y] [PMID: 31420598]
[42]
Rempe, R.G.; Hartz, A.M.S.; Soldner, E.L.B.; Sokola, B.S.; Alluri, S.R.; Abner, E.L.; Kryscio, R.J.; Pekcec, A.; Schlichtiger, J.; Bauer, B. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J. Neurosci., 2018, 38(18), 4301-4315.
[http://dx.doi.org/10.1523/JNEUROSCI.2751-17.2018] [PMID: 29632167]
[43]
Han, H.; Mann, A.; Ekstein, D.; Eyal, S. Breaking bad: The structure and function of the blood-brain barrier in epilepsy. AAPS J., 2017, 19(4), 973-988.
[http://dx.doi.org/10.1208/s12248-017-0096-2] [PMID: 28550637]
[44]
Marchi, N.; Banjara, M.; Janigro, D. Blood–brain barrier, bulk flow, and interstitial clearance in epilepsy. J. Neurosci. Methods, 2016, 260, 118-124.
[http://dx.doi.org/10.1016/j.jneumeth.2015.06.011] [PMID: 26093166]
[45]
Zhou, Y.; Chen, Q.; Wang, Y.; Wu, H.; Xu, W.; Pan, Y.; Gao, S.; Dong, X.; Zhang, J.H.; Shao, A. Persistent neurovascular unit dysfunc-tion: Pathophysiological substrate and trigger for late-onset neurodegeneration after traumatic brain injury. Front. Neurosci., 2020, 14, 581.
[http://dx.doi.org/10.3389/fnins.2020.00581] [PMID: 32581697]
[46]
Cuddapah, V.A.; Zhang, S.L.; Sehgal, A. Regulation of the blood-brain barrier by circadian rhythms and sleep. Trends Neurosci., 2019, 42(7), 500-510.
[http://dx.doi.org/10.1016/j.tins.2019.05.001] [PMID: 31253251]
[47]
Librizzi, L.; de Cutis, M.; Janigro, D.; Runtz, L.; de Bock, F.; Barbier, E.L.; Marchi, N. Cerebrovascular heterogeneity and neuronal excita-bility. Neurosci. Lett., 2018, 667, 75-83.
[http://dx.doi.org/10.1016/j.neulet.2017.01.013] [PMID: 28087439]
[48]
Greene, C.; Hanley, N.; Reschke, C.R.; Reddy, A.; Mäe, M.A.; Connolly, R.; Behan, C.; O’Keeffe, E.; Bolger, I.; Hudson, N.; Delaney, C.; Farrell, M.A.; O’Brien, D.F.; Cryan, J.; Brett, F.M.; Beausang, A.; Betsholtz, C.; Henshall, D.C.; Doherty, C.P.; Campbell, M. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity. Nat. Commun., 2022, 13(1), 2003.
[http://dx.doi.org/10.1038/s41467-022-29657-y] [PMID: 35422069]
[49]
Breuil, L.; Marie, S.; Goutal, S.; Auvity, S.; Truillet, C.; Saba, W.; Langer, O.; Caillé, F.; Tournier, N. Comparative vulnerability of PET radioligands to partial inhibition of P-glycoprotein at the blood-brain barrier: A criterion of choice? J. Cereb. Blood Flow Metab., 2022, 42(1), 175-185.
[http://dx.doi.org/10.1177/0271678X211045444] [PMID: 34496661]
[50]
Ghersi-Egea, J.F.; Vasiljevic, A.; Blondel, S.; Strazielle, N. Neuroprotective mechanisms at the blood-CSF barrier of the developing and adult brain. In:Praetorius, Role of the Choroid Plexus in Health and Disease;; Praetorius, J.; Blazer-Yost, B.; Damkier, H., Eds.; Springer New York, NY, 2020, pp. 193-207.
[51]
Blundell, C.; Yi, Y.S.; Ma, L.; Tess, E.R.; Farrell, M.J.; Georgescu, A.; Aleksunes, L.M.; Huh, D. Placental drug transport‐on‐a‐chip: A microengineered in vitro model of transporter‐mediated drug efflux in the human placental barrier. Adv. Healthc. Mater., 2018, 7(2), 1700786.
[http://dx.doi.org/10.1002/adhm.201700786] [PMID: 29121458]
[52]
Dahlgren, D.; Lennernäs, H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics, 2019, 11(8), 411.
[http://dx.doi.org/10.3390/pharmaceutics11080411] [PMID: 31412551]
[53]
Chen, R.; Zhao, X.; Hu, K. Efflux pump inhibition to enhance brain targeting delivery.In:Brain Targeted Drug Delivery System; Academic Press, 2019, pp. 185-196.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00008-1]
[54]
Montanari, F.; Ecker, G.F. Prediction of drug–ABC-transporter interaction - Recent advances and future challenges. Adv. Drug Deliv. Rev., 2015, 86, 17-26.
[http://dx.doi.org/10.1016/j.addr.2015.03.001] [PMID: 25769815]
[55]
Ashraf, T.; Kao, A.; Bendayan, R. Functional expression of drug transporters in glial cells: Potential role on drug delivery to the CNS. Adv. Pharmacol., 2014, 71, 45-111.
[http://dx.doi.org/10.1016/bs.apha.2014.06.010] [PMID: 25307214]
[56]
Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, func-tion and regulation. Nat. Rev. Microbiol., 2018, 16(9), 523-539.
[http://dx.doi.org/10.1038/s41579-018-0048-6] [PMID: 30002505]
[57]
Bagchi, S.; Chhibber, T.; Lahooti, B.; Verma, A.; Borse, V.; Jayant, R.D. In-vitro blood-brain barrier models for drug screening and per-meation studies: An overview. Drug Des. Devel. Ther., 2019, 13, 3591-3605.
[http://dx.doi.org/10.2147/DDDT.S218708] [PMID: 31695329]
[58]
Saeedi, M.; Eslamifar, M.; Khezri, K.; Dizaj, S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, 111, 666-675.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[59]
Kim, Y.; Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science, 2018, 359(6378), 915-919.
[http://dx.doi.org/10.1126/science.aar7389] [PMID: 29371429]
[60]
Domenichini, A.; Adamska, A.; Falasca, M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 52-60.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.019] [PMID: 30268729]
[61]
Silva, R.; Palmeira, A.; Carmo, H.; Barbosa, D.J.; Gameiro, M.; Gomes, A.; Paiva, A.M.; Sousa, E.; Pinto, M.; Bastos, M.L.; Remião, F. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. Arch. Toxicol., 2015, 89(10), 1783-1800.
[http://dx.doi.org/10.1007/s00204-014-1333-4] [PMID: 25234084]
[62]
Hennessy, M.; Spiers, J.P. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol. Res., 2007, 55(1), 1-15.
[http://dx.doi.org/10.1016/j.phrs.2006.10.007] [PMID: 17095241]
[63]
Kammeijer, G.S.M.; Nouta, J.; de la Rosette, J.J.M.C.H.; de Reijke, T.M.; Wuhrer, M. An in-depth glycosylation assay for urinary prostate-specific antigen. Anal. Chem., 2018, 90(7), 4414-4421.
[http://dx.doi.org/10.1021/acs.analchem.7b04281] [PMID: 29502397]
[64]
Vita, SM.; Redell, JB.; Maynard, ME.; Zhao, J.; Grill, RJ.; Dash, PK;; Grayson, BE. P-glycoprotein expression is upregulated in a pre-clinical model of traumatic brain injury. Neurotrauma Rep., 2020, 1(1), 207-217.
[65]
Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther., 2015, 149, 1-123.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.013] [PMID: 25435018]
[66]
Huang, L.; Li, B.; Li, X.; Liu, G.; Liu, R.; Guo, J.; Xu, B.; Li, Y.; Fang, W. Significance and mechanisms of P-glycoprotein in central nerv-ous system diseases. Curr. Drug Targets, 2019, 20(11), 1141-1155.
[http://dx.doi.org/10.2174/1389450120666190308144448] [PMID: 30854958]
[67]
Piantino, M.; Kang, D.H.; Furihata, T.; Nakatani, N.; Kitamura, K.; Shigemoto-Mogami, Y.; Sato, K.; Matsusaki, M. Development of a three-dimensional blood-brain barrier network with opening capillary structures for drug transport screening assays. Mater. Today Bio, 2022, 15, 100324.
[http://dx.doi.org/10.1016/j.mtbio.2022.100324] [PMID: 35757028]
[68]
Saabir, F.; Hussain, A.; Mulani, M.; Kulkarni, S.; Tambe, S. Efflux pump and its inhibitors: Cause and cure for multidrug resistance. J. Appl. Biol. Biotechnol., 2022, 10(3), 177-194.
[http://dx.doi.org/10.7324/JABB.2022.100322]
[69]
Teleanu, R.I.; Preda, M.D.; Niculescu, A.G.; Vladâcenco, O.; Radu, C.I.; Grumezescu, A.M.; Teleanu, D.M. Current strategies to enhance delivery of drugs across the blood-brain barrier. Pharmaceutics, 2022, 14(5), 987.
[http://dx.doi.org/10.3390/pharmaceutics14050987] [PMID: 35631573]
[70]
Bors, L.; Erdő, F. Overcoming the blood-brain barrier. Challenges and tricks for CNS drug delivery. Sci. Pharm., 2019, 87(1), 6.
[http://dx.doi.org/10.3390/scipharm87010006]
[71]
Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C.; Jurkovicova, D.; Linē, A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A.B.; Xavier, C.P.R.; Vasconcelos, M.H. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist. Updat., 2019, 46, 100645.
[http://dx.doi.org/10.1016/j.drup.2019.100645] [PMID: 31585396]
[72]
Hanssen, K.M.; Haber, M.; Fletcher, J.I. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharma-cological inhibition. Drug Resist. Updat., 2021, 59, 100795.
[http://dx.doi.org/10.1016/j.drup.2021.100795] [PMID: 34983733]
[73]
Smolarz, B.; Makowska, M.; Romanowicz, H. Pharmacogenetics of drug-resistant epilepsy (review of literature). Int. J. Mol. Sci., 2021, 22(21), 11696.
[http://dx.doi.org/10.3390/ijms222111696] [PMID: 34769124]
[74]
Jaramillo, A.C.; Al Saig, F.; Cloos, J.; Jansen, G.; Peters, G.J. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist., 2018, 1(1), 6-29.
[http://dx.doi.org/10.20517/cdr.2018.02]
[75]
Liu, X.; Pan, G. Drug Transporters in Drug Disposition, Effects and Toxicity; Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-13-7647-4]
[76]
Kunst, R.F.; Verkade, H.J.; Oude Elferink, R.P.J.; Graaf, S.F.J. Targeting the four pillars of enterohepatic bile salt cycling; lessons from genetics and pharmacology. Hepatology, 2021, 73(6), 2577-2585.
[http://dx.doi.org/10.1002/hep.31651] [PMID: 33222321]
[77]
Deng, X.; Xie, Y.; Chen, Y. Effect of neuroinflammation on ABC transporters: Possible contribution to refractory epilepsy. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 728-735.
[http://dx.doi.org/10.2174/1871527317666180828121820]
[78]
Kim, J.; Ahn, S.I.; Kim, Y. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J. Ind. Eng. Chem., 2019, 73, 8-18.
[http://dx.doi.org/10.1016/j.jiec.2019.01.021] [PMID: 31588177]
[79]
Kroll, T.; Prescher, M.; Smits, S.H.J.; Schmitt, L. Structure and function of hepatobiliary ATP binding cassette transporters. Chem. Rev., 2021, 121(9), 5240-5288.
[http://dx.doi.org/10.1021/acs.chemrev.0c00659] [PMID: 33201677]
[80]
Liu, X. Overview: Role of drug transporters in drug disposition and its clinical significance. Adv. Exp. Med. Biol., 2019, 1141, 1-2.
[81]
Nies, AT.; Klein, F. Multidrug resistance proteins of the ABCC subfamily.In: You, G.; Morris, M.E.; Eds. Drug Transporters: Molecular Characterization and Role in Drug Disposition; Wiley Online Library: Hoboken, New Jersey, USA, 2022.
[http://dx.doi.org/10.1002/9781119739883.ch11]
[82]
Majidinia, M.; Mirza-Aghazadeh-Attari, M.; Rahimi, M.; Mihanfar, A.; Karimian, A.; Safa, A.; Yousefi, B. Overcoming multidrug re-sistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life, 2020, 72(5), 855-871.
[http://dx.doi.org/10.1002/iub.2215] [PMID: 31913572]
[83]
Elfadadny, A.; El-Husseiny, H.M.; Abugomaa, A.; Ragab, R.F.; Mady, E.A.; Aboubakr, M.; Samir, H.; Mandour, A.S.; El-Mleeh, A.; El-Far, A.H.; Abd El-Aziz, A.H.; Elbadawy, M. Role of multidrug resistance-associated proteins in cancer therapeutics: Past, present, and fu-ture perspectives. Environ. Sci. Pollut. Res. Int., 2021, 28(36), 49447-49466.
[http://dx.doi.org/10.1007/s11356-021-15759-5] [PMID: 34355314]
[84]
Liu, W.; Liu, Y. Roles of multidrug resistance protein 4 in microbial infections and inflammatory diseases. Microb. Drug Resist., 2021, 27(11), 1535-1545.
[http://dx.doi.org/10.1089/mdr.2020.0020] [PMID: 33999661]
[85]
Angelis, I.; Moussis, V.; Tsoukatos, D.C.; Tsikaris, V. Multidrug Resistance Protein 4 (MRP4/ABCC4): A suspected efflux transporter for human’s platelet activation. Protein Pept. Lett., 2021, 28(9), 983-995.
[http://dx.doi.org/10.2174/0929866528666210505120659] [PMID: 33964863]
[86]
Aniogo, E.C.; Plackal Adimuriyil George, B.; Abrahamse, H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int., 2019, 19(1), 91.
[http://dx.doi.org/10.1186/s12935-019-0815-0] [PMID: 31007609]
[87]
Zattoni, I.F.; Delabio, L.C.; Dutra, J.P.; Kita, D.H.; Scheiffer, G.; Hembecker, M.; Pereira, G.S.; Moure, V.R.; Valdameri, G. Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur. J. Med. Chem., 2022, 237, 114346.
[http://dx.doi.org/10.1016/j.ejmech.2022.114346] [PMID: 35483322]
[88]
Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport-an update. AAPS J., 2015, 17(1), 65-82.
[http://dx.doi.org/10.1208/s12248-014-9668-6] [PMID: 25236865]
[89]
Zhang, W.; Sun, S.; Zhang, W.; Shi, Z. Polymorphisms of ABCG2 and its impact on clinical relevance. Biochem. Biophys. Res. Commun., 2018, 503(2), 408-413.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.157] [PMID: 29964015]
[90]
Brukner, A.M.; Billington, S.; Benifla, M.; Nguyen, T.B.; Han, H.; Bennett, O.; Gilboa, T.; Blatch, D.; Fellig, Y.; Volkov, O.; Unadkat, J.D.; Ekstein, D.; Eyal, S. Abundance of P -glycoprotein and breast cancer resistance protein measured by targeted proteomics in human epilep-togenic brain tissue. Mol. Pharm., 2021, 18(6), 2263-2273.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00083] [PMID: 34008992]
[91]
Millett, C.E.; Burdick, K.E.; Kubicki, M.R. The effects of peripheral inflammation on the brain—a neuroimaging perspective. Harv. Rev. Psychiatry, 2022, 30(1), 54-58.
[http://dx.doi.org/10.1097/HRP.0000000000000323] [PMID: 34995035]
[92]
de Gooijer, M.C.; Kemper, E.M.; Buil, L.C.M.; Çitirikkaya, C.H.; Buckle, T.; Beijnen, J.H.; van Tellingen, O. ATP-binding cassette trans-porters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost. Cell Rep. Med., 2021, 2(1), 100184.
[http://dx.doi.org/10.1016/j.xcrm.2020.100184] [PMID: 33521698]
[93]
Wang, J.Q.; Wu, Z.X.; Yang, Y.; Teng, Q.X.; Li, Y.D.; Lei, Z.N.; Jani, K.A.; Kaushal, N.; Chen, Z.S. ATP‐binding cassette (ABC) trans-porters in cancer: A review of recent updates. J. Evid. Based Med., 2021, 14(3), 232-256.
[http://dx.doi.org/10.1111/jebm.12434] [PMID: 34388310]
[94]
Sangha, V.; Williams, E.I.; Ronaldson, P.T.; Bendayan, R. Drug transport in the brain.. In: You, G.; Morris, M.E.; Eds. Drug Transporters: Molecular Characterization and Role in Drug Disposition; Wiley Online Library: Hoboken, New Jersey, USA, 2022, pp. 283-317.
[95]
Yu, J.; Chen, H.; Xu, J.; Zhou, P. Research advances in the role and pharmaceuticals of ATP-binding cassette transporters in autoimmune diseases. Mol. Cell. Biochem., 2022, 477(4), 1075-1091.
[http://dx.doi.org/10.1007/s11010-022-04354-y] [PMID: 35034257]
[96]
Gameiro, M.; Silva, R.; Rocha-Pereira, C.; Carmo, H.; Carvalho, F.; Bastos, M.; Remião, F. Cellular models and in vitro assays for the screening of modulators of P-gp, MRP1 and BCRP. Molecules, 2017, 22(4), 600.
[http://dx.doi.org/10.3390/molecules22040600] [PMID: 28397762]
[97]
Mahringer, A.; Fricker, G. ABC transporters at the blood-brain barrier. Expert Opin. Drug Metab. Toxicol., 2016, 12(5), 499-508.
[http://dx.doi.org/10.1517/17425255.2016.1168804] [PMID: 26998936]
[98]
Girardin, F. Membrane transporter proteins: A challenge for CNS drug development. Dialogues Clin. Neurosci., 2006, 8(3), 311-321.
[PMID: 17117613]
[99]
Behl, T.; Kaur, I.; Sehgal, A.; Kumar, A.; Uddin, M.S.; Bungau, S. The interplay of ABC transporters in Aβ translocation and cholesterol metabolism: Implicating their roles in Alzheimer’s disease. Mol. Neurobiol., 2021, 58(4), 1564-1582.
[http://dx.doi.org/10.1007/s12035-020-02211-x] [PMID: 33215389]
[100]
García-Varela, L.; Mossel, P.; Benadiba, M.; Savolainen, H.; Colabufo, N.A.; Windhorst, A.D.; Elsinga, P.; Waarde, A.V.; Luurtsema, G. imaging of ABC transporters at the blood-brain barrier. In: In: PET and SPECT of Neurobiological Systems;; Dierckx, R.A.; Otte, A.; de Vries, E.F.; van Waarde, A.; Lammertsma, A.A., Eds.; Springer: Cham, 2021; pp. 809-850.
[http://dx.doi.org/10.1007/978-3-030-53176-8_22]
[101]
Storck, S.E.; Kurtyka, M.; Pietrzik, C.U. Brain endothelial LRP1 maintains blood–brain barrier integrity. Fluids Barriers CNS, 2021, 18(1), 27.
[http://dx.doi.org/10.1186/s12987-021-00260-5] [PMID: 34147102]
[102]
Al Rihani, S.B.; Darakjian, L.I.; Deodhar, M.; Dow, P.; Turgeon, J.; Michaud, V. Disease-induced modulation of drug transporters at the blood-brain barrier level. Int. J. Mol. Sci., 2021, 22(7), 3742.
[http://dx.doi.org/10.3390/ijms22073742] [PMID: 33916769]
[103]
Torres-Vergara, P.; Penny, J. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells. J. Pharm. Pharmacol., 2018, 70(6), 713-722.
[http://dx.doi.org/10.1111/jphp.12893] [PMID: 29492971]
[104]
Wang, F.; Ji, S.; Wang, M.; Liu, L.; Li, Q.; Jiang, F.; Cen, J.; Ji, B. HMGB1 promoted P-glycoprotein at the blood-brain barrier in MCAO rats via TLR4/NF-κB signaling pathway. Eur. J. Pharmacol., 2020, 880, 173189.
[http://dx.doi.org/10.1016/j.ejphar.2020.173189] [PMID: 32417325]
[105]
Disdier, C.; Stonestreet, B.S. Blood-brain barrier: Effects of inflammatory stress.. In: Fink, G.; Ed. : Stress: Physiology, Biochemistry, and Pathology; Academic Press. Cambridge,;; Masschusetts, 2019, pp. 325-336.
[106]
Kumar, V. Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol., 2019, 332, 16-30.
[http://dx.doi.org/10.1016/j.jneuroim.2019.03.012] [PMID: 30928868]
[107]
Jacobo-Albavera, L.; Domínguez-Pérez, M.; Medina-Leyte, D.J.; González-Garrido, A.; Villarreal-Molina, T. The role of the ATP-binding cassette A1 (ABCA1) in human disease. Int. J. Mol. Sci., 2021, 22(4), 1593.
[http://dx.doi.org/10.3390/ijms22041593] [PMID: 33562440]
[108]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ran-sohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigen-desch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[109]
Dantzer, R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol. Rev., 2018, 98(1), 477-504.
[http://dx.doi.org/10.1152/physrev.00039.2016] [PMID: 29351513]
[110]
Aleksandrova, N.P.; Klinnikova, A.A.; Danilova, G.A. Cyclooxygenase and nitric oxide synthase pathways mediate the respiratory effects of TNF-α in rats. Respir. Physiol. Neurobiol., 2021, 284, 103567.
[http://dx.doi.org/10.1016/j.resp.2020.103567] [PMID: 33161117]
[111]
Chang, R.C-C.; Ho, Y.S. Introductory chapter: Concept of neuroprotection- A new perspective. In: Chang, R.C.-C.; Ho, Y.S. Neuroprotection; IntechOpen: London, UK,; , 2019, pp. 1-9.
[112]
Veleri, S.; Punnakkal, P.; Dunbar, G.L.; Maiti, P. Molecular insights into the roles of rab proteins in intracellular dynamics and neuro-degenerative diseases. Neuromol. Med., 2018, 20(1), 18-36.
[http://dx.doi.org/10.1007/s12017-018-8479-9] [PMID: 29423895]
[113]
Verscheijden, L.F.M.; van Hattem, A.C.; Pertijs, J.C.L.M.; de Jongh, C.A.; Verdijk, R.M.; Smeets, B.; Koenderink, J.B.; Russel, F.G.M.; de Wildt, S.N. Developmental patterns in human blood–brain barrier and blood-cerebrospinal fluid barrier ABC drug transporter expression. Histochem. Cell Biol., 2020, 154(3), 265-273.
[http://dx.doi.org/10.1007/s00418-020-01884-8] [PMID: 32448916]
[114]
Agrawal, S.; Garg, A.; Varshney, V. Recent updates on applications of lipid-based nanoparticles for site- specific drug delivery. Pharm. Nanotechnol., 2022, 10(1), 24-41.
[http://dx.doi.org/10.2174/2211738510666220304111848] [PMID: 35249522]
[115]
Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater., 2018, 30(46), 1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[116]
Łukawski, K.; Czuczwar, S.J. Emerging therapeutic targets for epilepsy: Preclinical insights. Expert Opin. Ther. Targets, 2022, 26(3), 193-206.
[http://dx.doi.org/10.1080/14728222.2022.2039120] [PMID: 35130119]
[117]
Cannon, R.E.; Richards, A.C.; Trexler, A.W.; Juberg, C.T.; Sinha, B.; Knudsen, G.A.; Birnbaum, L.S. Effect of GenX on P-Glycoprotein, breast cancer resistance protein, and multidrug resistance–associated protein 2 at the blood-brain barrier. Environ. Health Perspect., 2020, 128(3), 037002.
[http://dx.doi.org/10.1289/EHP5884] [PMID: 32212926]
[118]
Uprety, A.; Kang, Y.; Kim, S.Y. Blood-brain barrier dysfunction as a potential therapeutic target for neurodegenerative disorders. Arch. Pharm. Res., 2021, 44(5), 487-498.
[http://dx.doi.org/10.1007/s12272-021-01332-8] [PMID: 34028650]
[119]
Gulati, A.; Hornick, M.G.; Briyal, S.; Lavhale, M.S. A novel neuroregenerative approach using ET(B) receptor agonist, IRL-1620, to treat CNS disorders. Physiol. Res., 2018, 67(Suppl. 1), S95-S113.
[http://dx.doi.org/10.33549/physiolres.933859] [PMID: 29947531]
[120]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[121]
Ding, Y.; Zhong, Y.; Baldeshwiler, A.; Abner, E.L.; Bauer, B.; Hartz, A.M.S. Protecting P-glycoprotein at the blood-brain barrier from degradation in an Alzheimer’s disease mouse model. Fluids Barriers CNS, 2021, 18(1), 10.
[http://dx.doi.org/10.1186/s12987-021-00245-4] [PMID: 33676539]
[122]
Pahlajani, S.; Najjar, S. Neurovascular dysfunction with BBB hyperpermeability related to the pathophysiology of major depressive disor-der. In: Baune, B.T. Ed.Inflammation and Immunity in Depression; Academic Press: Cambridge, Massachusetts, 2018, pp. 61-83.
[http://dx.doi.org/10.1016/B978-0-12-811073-7.00004-0]
[123]
Pisoni, A.; Strawbridge, R.; Hodsoll, J.; Powell, T.R.; Breen, G.; Hatch, S.; Hotopf, M.; Young, A.H.; Cleare, A.J. Growth factor proteins and treatment-resistant depression: A place on the path to precision. Front. Psychiatry, 2018, 9, 386.
[http://dx.doi.org/10.3389/fpsyt.2018.00386] [PMID: 30190686]
[124]
Zhou, X.; Smith, Q.R.; Liu, X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(4), e1695.
[http://dx.doi.org/10.1002/wnan.1695] [PMID: 33470550]
[125]
Murozono, M.; Kobayashi, T.; Sekine, S.; Kakinuma, T. Influence of p-glycoprotein on brain Bcl-2 family proteins and cytokines in tran-sient cerebral ischemia. Neuroendocrinol. Lett., 2020, 41(5), 231-238.
[PMID: 33315338]
[126]
Martin, E.W.; Pacholewska, A.; Patel, H.; Dashora, H.; Sung, M.H. Integrative analysis suggests cell type-specific decoding of NF-κB dy-namics. Sci. Signal., 2020, 13(620), eaax7195.
[http://dx.doi.org/10.1126/scisignal.aax7195] [PMID: 32098801]
[127]
Qosa, H.; Miller, D.S.; Pasinelli, P.; Trotti, D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological dis-orders. Brain Res., , 2015, 1628((Pt B)), 298-316. http://dx.doi.org/10.1016/j.brainres.2015.07.005 PMID: 26187753,
[128]
Alajangi, H.K.; Kaur, M.; Sharma, A.; Rana, S.; Thakur, S.; Chatterjee, M.; Singla, N.; Jaiswal, P.K.; Singh, G.; Barnwal, R.P. Blood-brain barrier: Emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol. Brain, 2022, 15(1), 49.
[http://dx.doi.org/10.1186/s13041-022-00937-4] [PMID: 35650613]
[129]
Pathan, N.; Shende, P. Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier. J. Control. Release, 2021, 335, 398-407.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.046] [PMID: 34087246]
[130]
Voirin, A.C.; Perek, N.; Roche, F. Inflammatory stress induced by a combination of cytokines (IL-6, IL-17, TNF-α) leads to a loss of integrity on bEnd.3 endothelial cells in vitro BBB model. Brain Res., 2020, 1730, 146647.
[http://dx.doi.org/10.1016/j.brainres.2020.146647] [PMID: 31911168]
[131]
Eustaquio Do Imperio, G.; Lye, P.; Bloise, E.; Matthews, S.G. Function of multidrug resistance transporters is disrupted by infection mim-ics in human brain endothelial cells. Tissue Barriers, 2021, 9(2), 1860616.
[http://dx.doi.org/10.1080/21688370.2020.1860616] [PMID: 33427563]
[132]
Mesev, E.V.; Miller, D.S.; Cannon, R.E. Ceramide 1-phosphate increases P-glycoprotein transport activity at the blood-brain barrier via prostaglandin E2 signaling. Mol. Pharmacol., 2017, 91(4), 373-382.
[http://dx.doi.org/10.1124/mol.116.107169] [PMID: 28119480]
[133]
Mercogliano, M.F.; Bruni, S.; Elizalde, P.V.; Schillaci, R. Tumor necrosis factor α blockade: An opportunity to tackle breast cancer. Front. Oncol., 2020, 10, 584.
[http://dx.doi.org/10.3389/fonc.2020.00584] [PMID: 32391269]
[134]
MacKnight, H.P.; Stephenson, D.J.; Hoeferlin, L.A.; Benusa, S.D.; DeLigio, J.T.; Maus, K.D.; Ali, A.N.; Wayne, J.S.; Park, M.A.; Hinchcliffe, E.H.; Brown, R.E.; Ryan, J.J.; Diegelmann, R.F.; Chalfant, C.E. The interaction of ceramide 1-phosphate with group IVA cyto-solic phospholipase A 2 coordinates acute wound healing and repair. Sci. Signal., 2019, 12(610), eaav5918.
[http://dx.doi.org/10.1126/scisignal.aav5918] [PMID: 31796632]
[135]
Park, S.A.; Jeong, M.S.; Ha, K.T.; Jang, S.B. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep., 2018, 51(2), 73-78.
[http://dx.doi.org/10.5483/BMBRep.2018.51.2.233] [PMID: 29397867]
[136]
Mesquita, J.; Castro-de-Sousa, J.P.; Vaz-Pereira, S.; Neves, A.; Passarinha, L.A.; Tomaz, C.T. Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev., 2018, 39, 102-115.
[http://dx.doi.org/10.1016/j.cytogfr.2017.11.005] [PMID: 29248329]
[137]
Erickson, M.A.; Banks, W.A. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: Bases for physiological regula-tion, disease states, and pharmacological interventions. Pharmacol. Rev., 2018, 70(2), 278-314.
[http://dx.doi.org/10.1124/pr.117.014647] [PMID: 29496890]
[138]
Hoshi, Y.; Uchida, Y.; Tachikawa, M.; Ohtsuki, S.; Couraud, P.O.; Suzuki, T.; Terasaki, T. Oxidative stress-induced activation of Abl and Src kinases rapidly induces P-glycoprotein internalization via phosphorylation of caveolin-1 on tyrosine-14, decreasing cortisol efflux at the blood-brain barrier. J. Cereb. Blood Flow Metab., 2020, 40(2), 420-436.
[http://dx.doi.org/10.1177/0271678X18822801] [PMID: 30621530]
[139]
Solár, P.; Zamani, A.; Lakatosová, K.; Joukal, M. The blood–brain barrier and the neurovascular unit in subarachnoid hemorrhage: Mo-lecular events and potential treatments. Fluids Barriers CNS, 2022, 19(1), 29.
[http://dx.doi.org/10.1186/s12987-022-00312-4] [PMID: 35410231]
[140]
Wang, X.; Campos, C.R.; Peart, J.C.; Smith, L.K.; Boni, J.L.; Cannon, R.E.; Miller, D.S. Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J. Neurosci., 2014, 34(25), 8585-8593.
[http://dx.doi.org/10.1523/JNEUROSCI.2935-13.2014] [PMID: 24948812]
[141]
Wine, O.; Osornio Vargas, A.; Campbell, S.M.; Hosseini, V.; Koch, C.R.; Shahbakhti, M. Cold climate impact on air-pollution-related health outcomes: A scoping review. Int. J. Environ. Res. Public Health, 2022, 19(3), 1473.
[http://dx.doi.org/10.3390/ijerph19031473] [PMID: 35162495]
[142]
Gómez-Budia, M.; Konttinen, H.; Saveleva, L.; Korhonen, P.; Jalava, P.I.; Kanninen, K.M.; Malm, T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem. Int., 2020, 136, 104715.
[http://dx.doi.org/10.1016/j.neuint.2020.104715] [PMID: 32169588]
[143]
Oudin, A. Short review: Air pollution, noise and lack of greenness as risk factors for Alzheimer’s disease- epidemiologic and experi-mental evidence. Neurochem. Int., 2020, 134, 104646.
[http://dx.doi.org/10.1016/j.neuint.2019.104646] [PMID: 31866324]
[144]
Ma, T.; Yazdi, MD.; Schwartz, J.; Réquia, WJ.; Di, Q.; Wei, Y.; Chang, HH.; Vaccarino, V.; Liu, P.; Shi, L. Long-term air pollution exposure and incident stroke in American older adults: A national cohort study; Global Epidemiology, 2022, p. 100073.
[http://dx.doi.org/10.1016/j.gloepi.2022.100073]
[145]
Ehsanifar, M.; Banihashemian, S.S.; Ehsanifar, M. Exposure to air pollution nanoparticles: Oxidative stress and neuroinfl ammation. J. ISSN., 2021, 2766, 2276.
[146]
a) Hussain, Z.; Thu, H.E.; Elsayed, I.; Abourehab, M.A.S.; Khan, S.; Sohail, M.; Sarfraz, R.M.; Farooq, M.A. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, un-derlying mechanism, and future prospects. J. Control. Release, 2020, 328, 873-894.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.053 ] [PMID: 33137366];
b) Dazert, P.; Suofu, Y.; Grube, M.; Popa-Wagner, A.; Kroemer, H.K.; Jedlitschky, G.; Kessler, C. Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience, 2006, 142(4), 1071-1079.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.056] [PMID: 16997484]
[147]
Nguyen, H.L.; Ruhoff, A.M.; Fath, T.; Jones, N.M. Hypoxic postconditioning enhances functional recovery following endothelin-1 in-duced middle cerebral artery occlusion in conscious rats. Exp. Neurol., 2018, 306, 177-189.
[http://dx.doi.org/10.1016/j.expneurol.2018.05.018] [PMID: 29778441]
[148]
a) Williams, E.I.; Betterton, R.D.; Davis, T.P.; Ronaldson, P.T. Transporter-mediated delivery of small molecule drugs to the brain: A critical mechanism that can advance therapeutic development for ischemic stroke. Pharmaceutics, 2020, 12(2), 154.
[http://dx.doi.org/10.3390/pharmaceutics12020154] [PMID: 32075088];
b) Spudich, A.; Kilic, E.; Xing, H.; Kilic, U.; Rentsch, K.M.; Wunderli-Allenspach, H.; Bassetti, C.L.; Hermann, D.M. Inhibition of multi-drug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat. Neurosci., 2006, 9(4), 487-488.
[http://dx.doi.org/10.1038/nn1676] [PMID: 16565717]
[149]
Qosa, H.; Abuasal, B.S.; Romero, I.A.; Weksler, B.; Couraud, P.O.; Keller, J.N.; Kaddoumi, A. Differences in amyloid-β clearance across mouse and human blood-brain barrier models: Kinetic analysis and mechanistic modeling. Neuropharmacology, 2014, 79, 668-678.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.023] [PMID: 24467845]
[150]
García-Varela, L.; Rodríguez-Pérez, M.; Custodia, A.; Moraga-Amaro, R.; Colabufo, N.A.; Aguiar, P.; Sobrino, T.; Dierckx, R.A.J.O.; van Waarde, A.; Elsinga, P.H.; Luurtsema, G. In vivo induction of P-glycoprotein function can be measured with [18F] MC225 and PET. Mol. Pharm., 2021, 18(8), 3073-3085.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00302] [PMID: 34228458]
[151]
Shan, Y.; Cen, Y.; Zhang, Y.; Tan, R.; Zhao, J.; Nie, Z.; Zhang, J.; Yu, S. Effect of P-glycoprotein inhibition on the penetration of ceftriax-one across the blood-brain barrier. Neurochem. Res., 2022, 47(3), 634-643.
[http://dx.doi.org/10.1007/s11064-021-03472-1] [PMID: 34694535]
[152]
Mahringer, A.; Bernd, A.; Miller, D.S.; Fricker, G. Aryl hydrocarbon receptor ligands increase ABC transporter activity and protein ex-pression in killifish (Fundulus heteroclitus) renal proximal tubules. Biol. Chem., 2019, 400(10), 1335-1345.
[http://dx.doi.org/10.1515/hsz-2018-0425] [PMID: 30913027]
[153]
Oliviero, F.; Lukowicz, C.; Boussadia, B.; Forner-Piquer, I.; Pascussi, J.M.; Marchi, N.; Mselli-Lakhal, L. Constitutive androstane recep-tor: A peripheral and a neurovascular stress or environmental sensor. Cells, 2020, 9(11), 2426.
[http://dx.doi.org/10.3390/cells9112426] [PMID: 33171992]
[154]
Mazaira, G.I.; Zgajnar, N.R.; Lotufo, C.M.; Daneri-Becerra, C.; Sivils, J.C.; Soto, O.B.; Cox, M.B.; Galigniana, M.D. The nuclear receptor field: A historical overview and future challenges. Nucl. Receptor Res., 2018, 5, 5.
[http://dx.doi.org/10.11131/2018/101320] [PMID: 30148160]
[155]
Banerjee, M.; Robbins, D.; Chen, T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov. Today, 2015, 20(5), 618-628.
[http://dx.doi.org/10.1016/j.drudis.2014.11.011] [PMID: 25463033]
[156]
Silva, J.; Khoja, S.; Asatryan, L.; Pacifici, E.; Davies, D.L. A novel pharmacotherapy approach using P-glycoprotein (PGP/ABCB1) efflux inhibitor combined with ivermectin to reduce alcohol drinking and preference in mice. Alcohol, 2020, 86, 1-8.
[http://dx.doi.org/10.1016/j.alcohol.2020.03.013] [PMID: 32278067]
[157]
Zhang, H.; Xu, H.; Ashby, C.R., Jr; Assaraf, Y.G.; Chen, Z.S.; Liu, H.M. Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp). Med. Res. Rev., 2021, 41(1), 525-555.
[http://dx.doi.org/10.1002/med.21739] [PMID: 33047304]
[158]
Herde, M.K.; Bohmbach, K.; Domingos, C.; Vana, N.; Komorowska-Müller, J.A.; Passlick, S.; Schwarz, I.; Jackson, C.J.; Dietrich, D.; Schwarz, M.K.; Henneberger, C. Local efficacy of glutamate uptake decreases with synapse size. Cell Rep., 2020, 32(12), 108182.
[http://dx.doi.org/10.1016/j.celrep.2020.108182] [PMID: 32966786]
[159]
Hayashi, T. Post‐translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br. J. Pharmacol., 2021, 178(4), 784-797.
[http://dx.doi.org/10.1111/bph.15050] [PMID: 32159240]
[160]
Hartz, A.M.S.; Rempe, R.G.; Soldner, E.L.B.; Pekcec, A.; Schlichtiger, J.; Kryscio, R.; Bauer, B. Cytosolic phospholipase A2 is a key regu-lator of blood‐brain barrier function in epilepsy. FASEB J., 2019, 33(12), 14281-14295.
[http://dx.doi.org/10.1096/fj.201901369RR] [PMID: 31661303]
[161]
Enrique, A.V.; Di Ianni, M.E.; Goicoechea, S.; Lazarowski, A.; Valle-Dorado, M.G.; Costa, J.J.L.; Rocha, L.; Girardi, E.; Talevi, A. New anticonvulsant candidates prevent P-glycoprotein (P-gp) overexpression in a pharmacoresistant seizure model in mice. Epilepsy Behav.,, 2021, 121((Pt B),), 106451.. http://dx.doi.org/10.1016/j.yebeh.2019.106451 PMID: 31420290
[162]
Rawat, C.; Kukal, S.; Dahiya, U.R.; Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy manage-ment. J. Neuroinflammation, 2019, 16(1), 197.
[http://dx.doi.org/10.1186/s12974-019-1592-3] [PMID: 31666079]
[163]
Hoshi, Y.; Uchida, Y.; Kuroda, T.; Tachikawa, M.; Couraud, P.O.; Suzuki, T.; Terasaki, T. Distinct roles of ezrin, radixin and moesin in maintaining the plasma membrane localizations and functions of human blood-brain barrier transporters. J. Cereb. Blood Flow Metab., 2020, 40(7), 1533-1545.
[http://dx.doi.org/10.1177/0271678X19868880] [PMID: 31409174]
[164]
Salvamoser, J.D.; Avemary, J.; Luna-Munguia, H.; Pascher, B.; Getzinger, T.; Pieper, T.; Kudernatsch, M.; Kluger, G.; Potschka, H. Glu-tamate-mediated down-regulation of the multidrug-resistance protein BCRP/ABCG2 in porcine and human brain capillaries. Mol. Pharm., 2015, 12(6), 2049-2060.
[http://dx.doi.org/10.1021/mp500841w] [PMID: 25898179]
[165]
Luna-Munguia, H.; Salvamoser, J.D.; Pascher, B.; Pieper, T.; Getzinger, T.; Kudernatsch, M.; Kluger, G.; Potschka, H. Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J. Pharmacol. Exp. Ther., 2015, 352(2), 368-378.
[http://dx.doi.org/10.1124/jpet.114.218180] [PMID: 25503388]
[166]
Jha, N.K.; Kar, R.; Niranjan, R. ABC transporters in neurological disorders: An important gateway for botanical compounds mediated neuro-therapeutics. Curr. Top. Med. Chem., 2019, 19(10), 795-811.
[http://dx.doi.org/10.2174/1568026619666190412121811] [PMID: 30977450]
[167]
Mohi-ud-din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[168]
Mousavi, S.F.; Hasanpour, K.; Nazarzadeh, M.; Adli, A.; Bazghandi, M.S.; Asadi, A.; Rad, A.; Gholami, O. ABCG2, SCN1A and CYP3A5 genes polymorphism and drug-resistant epilepsy in children: A case-control study. Seizure, 2022, 97, 58-62.
[http://dx.doi.org/10.1016/j.seizure.2022.03.009] [PMID: 35338956]
[169]
Zan, X.; Yue, G.; Hao, Y.; Sima, X. A systematic review and meta-analysis of the association of ABCC2/ABCG2 polymorphisms with antiepileptic drug responses in epileptic patients. Epilepsy Res., 2021, 175, 106678.
[http://dx.doi.org/10.1016/j.eplepsyres.2021.106678] [PMID: 34087576]
[170]
Pérez-Pérez, D.; Frías-Soria, C.L.; Rocha, L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav., , 2021, 121((Pt B),), 106430.. http://dx.doi.org/10.1016/j.yebeh.2019.07.031 PMID: 31378558
[171]
Brown, M.G.; Sillau, S.; McDermott, D.; Ernst, L.D.; Spencer, D.C.; Englot, D.J.; González, H.F.J.; Datta, P.; Karakis, I.; Becker, D.; Rol-ston, J.D.; Arain, A.; Rao, V.R.; Doherty, M.; Urban, A.; Drees, C. Concurrent brain-responsive and vagus nerve stimulation for treatment of drug-resistant focal epilepsy. Epilepsy Behav., 2022, 129, 108653.
[http://dx.doi.org/10.1016/j.yebeh.2022.108653] [PMID: 35305525]
[172]
Sato, R.; Ohmori, K.; Umetsu, M.; Takao, M.; Tano, M.; Grant, G.; Porter, B.; Bet, A.; Terasaki, T.; Uchida, Y. An atlas of the quantitative protein expression of anti-epileptic-drug transporters, metabolizing enzymes and tight junctions at the blood–brain barrier in epileptic pa-tients. Pharmaceutics, 2021, 13(12), 2122.
[http://dx.doi.org/10.3390/pharmaceutics13122122] [PMID: 34959403]
[173]
Kelly, G.C.; Watase, C.K.; Ho, D.H. Blood-brain barrier function as a biomarker in toxicology: Impact of environmental toxicants. Biomarkers in Toxicology;; Patel, V.B.; Preedy,, V.R.;; Rajendram, R., Eds.; Springer: Cham,, 2022, pp. 1-25.
[174]
Campos-Bedolla, P.; Feria-Romero, I.; Orozco-Suárez, S. Factors not considered in the study of drug‐resistant epilepsy: Drugresistant epilepsy: Assessment of neuroinflammation. Epilepsia Open,, 2022, (epi4.), 12590.. [Online Ahead of Print]
[http://dx.doi.org/10.1002/epi4.12590] [PMID: 35247028]
[175]
Löscher, W.; Friedman, A. Structural, molecular, and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: A cause, consequence, or both. Int. J. Mol. Sci., 2020, 21(2), 591.
[http://dx.doi.org/10.3390/ijms21020591] [PMID: 31963328]
[176]
Servilha-Menezes, G.; Garcia-Cairasco, N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance.Epilepsia Open,, 2022, (epi4.), 12588.. [Online Ahead of Print] http://dx.doi.org/10.1002/epi4.12588 PMID: 35253410,
[177]
Fei, Z.; Hu, M.; Baum, L.; Kwan, P.; Hong, T.; Zhang, C. The potential role of human multidrug resistance protein 1 (MDR1) and multi-drug resistance-associated protein 2 (MRP2) in the transport of Huperzine A in vitro. Xenobiotica, 2020, 50(3), 354-362.
[http://dx.doi.org/10.1080/00498254.2019.1623935] [PMID: 31132291]
[178]
Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int., 2018, 103, 110-120.
[http://dx.doi.org/10.1016/j.foodres.2017.10.010] [PMID: 29389596]
[179]
Ferreira, A.; Rodrigues, M.; Meirinho, S.; Fortuna, A.; Falcão, A.; Alves, G. Silymarin as a flavonoid-type P-glycoprotein inhibitor with impact on the pharmacokinetics of carbamazepine, oxcarbazepine and phenytoin in rats. Drug Chem. Toxicol., 2021, 44(5), 458-469.
[http://dx.doi.org/10.1080/01480545.2019.1601736] [PMID: 31020859]
[180]
Merelli, A.; Ramos, A.J.; Lazarowski, A.; Auzmendi, J. Convulsive stress mimics brain hypoxia and promotes the P-glycoprotein (P-gp) and erythropoietin receptor overexpression. Recombinant human erythropoietin effect on P-gp activity. Front. Neurosci., 2019, 13, 750.
[http://dx.doi.org/10.3389/fnins.2019.00750] [PMID: 31379495]
[181]
Sajid, A.; Lusvarghi, S.; Ambudkar, S.V. The P‐glycoprotein multidrug transporter.In: You, G.; Morris, M.E.; Eds. Drug Transporters: Molecular Characterization and Role in Drug Disposition; Wiley Online Library: Hoboken, New Jersey, USA, 2022, pp. 199-211.
[182]
Bankstahl, J.P.; Bankstahl, M. Imaging mechanisms of drug resistance in experimental models of epilepsy. In:.Imaging Biomarkers in Epilepsy,; Bernasconi, A.; Bernasconi, N.; Koepp, M., Eds.; Cambridge University Press: Cambridge,, 2019, p. 148.
[http://dx.doi.org/10.1017/9781316257951.015]
[183]
Dai, Y.; Ni, S.; Wu, F.; Guo, S.; Zhao, X.; Wang, J. ABCB1 gene polymorphisms impact the effect of high‐dose intravenous methylprednisolone therapy on optic neuritis associated with AQP4‐IGG ‐positive neuromyelitis optica spectrum disorder. J. Clin. Pharm. Ther., 2022, ( jcpt.), 13675.. http://dx.doi.org/10.1111/jcpt.13675 PMID: 35488449
[184]
Fan, Y.X.; Zhang, Z.; Meng, J.R.; Yin, S.J.; Wang, P.; Zhou, T.; Huang, Y.H.; Meng, R.; He, G.H. Association of ABCB1 polymorphisms with carbamazepine metabolism and resistance in epilepsy: A meta-analysis. Epilepsy Res., 2021, 177, 106785.
[http://dx.doi.org/10.1016/j.eplepsyres.2021.106785] [PMID: 34653781]
[185]
Bezhentsev, V.; Ivanov, S.; Kumar, S.; Goel, R.; Poroikov, V. Identification of potential drug targets for treatment of refractory epilepsy using network pharmacology. J. Bioinform. Comput. Biol., 2018, 16(1), 1840002.
[http://dx.doi.org/10.1142/S0219720018400024] [PMID: 29361895]
[186]
Naimo, G.D.; Guarnaccia, M.; Sprovieri, T.; Ungaro, C.; Conforti, F.L.; Andò, S.; Cavallaro, S. A systems biology approach for personal-ized medicine in refractory epilepsy. Int. J. Mol. Sci., 2019, 20(15), 3717.
[http://dx.doi.org/10.3390/ijms20153717] [PMID: 31366017]
[187]
Abd Elmagid, D.S.; Abdelsalam, M.; Magdy, H.; Tharwat, N. The association between MDR1 C3435T genetic polymorphism and the risk of multidrug-resistant epilepsy in Egyptian children. Egypt. J. Med. Hum. Genet., 2021, 22(1), 1-7.
[188]
Gericke, B.; Borsdorf, S.; Wienböker, I.; Noack, A.; Noack, S.; Löscher, W. Similarities and differences in the localization, trafficking, and function of P-glycoprotein in MDR1-EGFP-transduced rat versus human brain capillary endothelial cell lines. Fluids Barriers CNS, 2021, 18(1), 36.
[http://dx.doi.org/10.1186/s12987-021-00266-z] [PMID: 34344390]
[189]
Auzmendi, J.; Akyuz, E.; Lazarowski, A. The role of Pglycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav.,, 2021, 121((Pt B)), 106590.. http://dx.doi.org/10.1016/j.yebeh.2019.106590 PMID: 31706919
[190]
Hartl, E.; Seethaler, M.; Lauseker, M.; Rémi, J.; Vollmar, C.; Noachtar, S. Impact of withdrawal of antiepileptic medication on the duration of focal onset seizures. Seizure, 2019, 67, 40-44.
[http://dx.doi.org/10.1016/j.seizure.2019.03.005] [PMID: 30875668]
[191]
Toll, S.J.; Qiu, F.; Huang, Y.; Habgood, M.D.; Dziegielewska, K.M.; Nie, S.; Saunders, N.R. Entry of antiepileptic drugs (valproate and lamotrigine) into the developing rat brain. F1000 Res., 2021, 10, 384.
[http://dx.doi.org/10.12688/f1000research.52607.1] [PMID: 34249340]
[192]
Grewal, G.; Kukal, S.; Kanojia, N.; Madan, K.; Saso, L.; Kukreti, R. In vitro assessment of the effect of antiepileptic drugs on expression and function of ABC transporters and their interactions with ABCC2. Molecules, 2017, 22(10), 1484.
[http://dx.doi.org/10.3390/molecules22101484] [PMID: 28961159]
[193]
Puris, E.; Fricker, G.; Gynther, M. Targeting transporters for drug delivery to the brain: Can we do better? Pharm. Res., 2022, 39(7), 1415-1455.
[http://dx.doi.org/10.1007/s11095-022-03241-x] [PMID: 35359241]
[194]
Weidner, L.D.; Kannan, P.; Mitsios, N.; Kang, S.J.; Hall, M.D.; Theodore, W.H.; Innis, R.B.; Mulder, J. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia, 2018, 59(8), 1507-1517.
[http://dx.doi.org/10.1111/epi.14505] [PMID: 30030837]
[195]
Heinrich, A.; Zhong, X.; Rasmussen, T.P. Variability in expression of the human MDR1 drug efflux transporter and genetic variation of the ABCB1 gene: Implications for drug-resistant epilepsy. Curr. Opin. Toxicol., 2018, 11-12, 35-42.
[http://dx.doi.org/10.1016/j.cotox.2018.12.004] [PMID: 31602418]
[196]
Chawla, R.; Rani, V.; Mishra, M.; Kumar, K. Integrated role of nanotechnology and pharmacogenetics in diagnosis and treatment of dis-eases. In: Khalil, I.A.; Ed. Pharmacogenetics,IntechOpen: London, UK, 2021, p. 11.
[197]
Huttunen, K.M.; Terasaki, T.; Urtti, A.; Montaser, A.B.; Uchida, Y. Pharmacoproteomics of brain barrier transporters and substrate design for the brain targeted drug delivery. Pharm. Res., 2022, 1-30.
[http://dx.doi.org/10.1007/s11095-022-03193-2] [PMID: 35257288]
[198]
Bayrak, B. A review on epilepsy and planned pregnancy in patients with epilepsy. Int. J. PharmATA., 2021, 1(1), 33-37.
[199]
Sheng, J.; Liu, S.; Qin, H.; Li, B.; Zhang, X. Drug-resistant epilepsy and surgery. Curr. Neuropharmacol., 2018, 16(1), 17-28.
[PMID: 28474565]
[200]
Rukasha, T;I; Woolley, S.; Kyriacou, T.; Collins, T. Evaluation of wearable electronics for epilepsy: A systematic review. Electronics (Basel), 2020, 9(6), 968.
[http://dx.doi.org/10.3390/electronics9060968]
[201]
Shringarpure, M.; Gharat, S.; Momin, M.; Omri, A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin. Drug Deliv., 2021, 18(2), 169-185.
[http://dx.doi.org/10.1080/17425247.2021.1823965] [PMID: 32921169]
[202]
Falcicchia, C.; Simonato, M.; Verlengia, G. New tools for epilepsy therapy. Front. Cell. Neurosci., 2018, 12, 147.
[http://dx.doi.org/10.3389/fncel.2018.00147] [PMID: 29896092]
[203]
Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based Blood-Brain-Barrier (BBB) crossing strategies. Biomaterials, 2019, 224, 119491.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119491] [PMID: 31546096]
[204]
Upadhaya, P.G.; Pulakkat, S.; Patravale, V.B. Nose-to-brain delivery: Exploring newer domains for glioblastoma multiforme management. Drug Deliv. Transl. Res., 2020, 10(4), 1044-1056.
[http://dx.doi.org/10.1007/s13346-020-00747-y] [PMID: 32221847]
[205]
El-Enin, H.A. AL-Shanbari, A.H. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm. J., 2018, 26(6), 790-800.
[http://dx.doi.org/10.1016/j.jsps.2018.04.004] [PMID: 30202219]
[206]
Jabir, N.; Tabrez, S.; Firoz, C.K.; Zaidi, S.; Baeesa, S.; Gan, S.; Shakil, S.; Kamal, M. A synopsis of nano-technological approaches toward anti-epilepsy therapy: Present and future research implications. Curr. Drug Metab., 2015, 16(5), 336-345.
[http://dx.doi.org/10.2174/1389200215666141125142605] [PMID: 25429676]
[207]
Krukemeyer, M.G.; Krenn, V.; Huebner, F.; Wagner, W.; Resch, R. History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. J. Nanomed. Nanotechnol., 2015, 6(6), 336.
[208]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[209]
Shen, Z.; Wu, H.; Yang, S.; Ma, X.; Li, Z.; Tan, M.; Wu, A. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells. Biomaterials, 2015, 70, 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.022] [PMID: 26295434]
[210]
Shen, Z.; Chen, T.; Ma, X.; Ren, W.; Zhou, Z.; Zhu, G.; Zhang, A.; Liu, Y.; Song, J.; Li, Z.; Ruan, H.; Fan, W.; Lin, L.; Munasinghe, J.; Chen, X.; Wu, A. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T 1-weighted magnetic resonance imaging and chemotherapy. ACS Nano, 2017, 11(11), 10992-11004.
[http://dx.doi.org/10.1021/acsnano.7b04924] [PMID: 29039917]
[211]
Huynh, M.; Marcu, L.G.; Giles, E.; Short, M.; Matthews, D.; Bezak, E. Are further studies needed to justify the use of proton therapy for paediatric cancers of the central nervous system? A review of current evidence. Radiother. Oncol., 2019, 133, 140-148.
[http://dx.doi.org/10.1016/j.radonc.2019.01.009] [PMID: 30935570]
[212]
Parodi, A.; Rudzińska, M.; Deviatkin, A.; Soond, S.; Baldin, A.; Zamyatnin, A., Jr Established and emerging strategies for drug delivery across the blood-brain barrier in brain cancer. Pharmaceutics, 2019, 11(5), 245.
[http://dx.doi.org/10.3390/pharmaceutics11050245] [PMID: 31137689]
[213]
Zhu, Y.; Liu, C.; Pang, Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules, 2019, 9(12), 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[214]
Raliya, R.; Saha, D.; Chadha, T.S.; Raman, B.; Biswas, P. Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Sci. Rep., 2017, 7(1), 44718.
[http://dx.doi.org/10.1038/srep44718] [PMID: 28300204]
[215]
Selvaraj, K.; Gowthamarajan, K.; Karri, V.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2088-2095.
[PMID: 29282995]
[216]
Luo, Y.; Yang, H.; Zhou, Y.F.; Hu, B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J. Control. Release, 2020, 317, 195-215.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.037] [PMID: 31794799]
[217]
Musumeci, T.; Bonaccorso, A.; Puglisi, G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: An overview. Pharmaceutics, 2019, 11(3), 118.
[http://dx.doi.org/10.3390/pharmaceutics11030118] [PMID: 30871237]
[218]
Fan, Y.; Chen, M.; Zhang, J.; Maincent, P.; Xia, X.; Wu, W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(5), 433-467.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697]
[219]
Kozlovskaya, L.; Abou-Kaoud, M.; Stepensky, D. Quantitative analysis of drug delivery to the brain via nasal route. J. Control. Release, 2014, 189, 133-140.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.053] [PMID: 24997277]
[220]
Potdar, M.B.; Jain, N.K. A study on the nose to brain drug delivery system. Ann. Pharma Res., 2021, 9(10), 558-566.
[221]
Schmidt, D.; Schachter, S.C. Drug treatment of epilepsy in adults.BMJ,, 2014, 348((feb28 2),) g254. http://dx.doi.org/10.1136/bmj.g254 PMID: 24583319
[222]
Abou-Khalil, B.W. Update on antiepileptic drugs 2019. Continuum (Minneap. Minn.), 2019, 25(2), 508-536.
[http://dx.doi.org/10.1212/CON.0000000000000715] [PMID: 30921021]
[223]
Schulze-Bonhage, A.A. 2017 review of pharmacotherapy for treating focal epilepsy: Where are we now and how will treatment develop? Expert Opin. Pharmacother., 2017, 18(17), 1845-1853.
[http://dx.doi.org/10.1080/14656566.2017.1391788] [PMID: 29140112]
[224]
Rodriguez-Rodriguez, R.; Quader, S. Selective targeting of neurons using nanomedicine-based strategies: Open questions and new oppor-tunities. Nanomedicine (Lond.), 2022, 17(8), 495-498.
[http://dx.doi.org/10.2217/nnm-2021-0486] [PMID: 35225686]
[225]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem., 2018, 6, 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[226]
Rosillo-de la Torre, A.; Luna-Bárcenas, G.; Orozco-Suárez, S.; Salgado-Ceballos, H.; García, P.; Lazarowski, A.; Rocha, L. Pharma-coresistant epilepsy and nanotechnology. Front. Biosci. (Elite Ed.), 2014, E6(2), 329-340.
[http://dx.doi.org/10.2741/709] [PMID: 24896209]
[227]
Alshweiat, A.; Ambrus, R.; Csóka, I.I. Intranasal nanoparticulate systems as alternative route of drug delivery. Curr. Med. Chem., 2019, 26(35), 6459-6492.
[http://dx.doi.org/10.2174/0929867326666190827151741] [PMID: 31453778]
[228]
Nguyen, T.T.; Dung Nguyen, T.T.; Vo, T.K.; Tran, N.M.A.; Nguyen, M.K.; Van Vo, T.; Van Vo, G. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother., 2021, 143, 112117.
[http://dx.doi.org/10.1016/j.biopha.2021.112117] [PMID: 34479020]
[229]
Samaridou, E.; Alonso, M.J. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg. Med. Chem., 2018, 26(10), 2888-2905.
[http://dx.doi.org/10.1016/j.bmc.2017.11.001] [PMID: 29170026]
[230]
Poovaiah, N.; Davoudi, Z.; Peng, H.; Schlichtmann, B.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Treatment of neurodegenerative disor-ders through the blood-brain barrier using nanocarriers. Nanoscale, 2018, 10(36), 16962-16983.
[http://dx.doi.org/10.1039/C8NR04073G] [PMID: 30182106]
[231]
Hong, S.S.; Oh, K.T.; Choi, H.G.; Lim, S.J. Liposomal formulations for nose-to-brain delivery: Recent advances and future perspectives. Pharmaceutics, 2019, 11(10), 540.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[232]
Basu, S.; Holbrook, L.T.; Kudlaty, K.; Fasanmade, O.; Wu, J.; Burke, A.; Langworthy, B.W.; Farzal, Z.; Mamdani, M.; Bennett, W.D.; Fine, J.P.; Senior, B.A.; Zanation, A.M.; Ebert, C.S., Jr; Kimple, A.J.; Thorp, B.D.; Frank-Ito, D.O.; Garcia, G.J.M.; Kimbell, J.S. Numerical evaluation of spray position for improved nasal drug delivery. Sci. Rep., 2020, 10(1), 10568.
[http://dx.doi.org/10.1038/s41598-020-66716-0] [PMID: 32601278]
[233]
Borrajo, M.L.; Alonso, M.J. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv. Transl. Res., 2022, 12(4), 862-880.
[http://dx.doi.org/10.1007/s13346-021-01086-2] [PMID: 34731414]
[234]
Alam, T.; Pandit, J.; Vohora, D.; Aqil, M.; Ali, A.; Sultana, Y. Optimization of nanostructured lipid carriers of lamotrigine for brain deliv-ery: In vitro characterization and in vivo efficacy in epilepsy. Expert Opin. Drug Deliv., 2015, 12(2), 181-194.
[http://dx.doi.org/10.1517/17425247.2014.945416] [PMID: 25164097]
[235]
Khan, N.; Shah, F.A.; Rana, I.; Ansari, M.M.; Din, F.; Rizvi, S.Z.H.; Aman, W.; Lee, G.Y.; Lee, E.S.; Kim, J.K.; Zeb, A. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int. J. Pharm., 2020, 577, 119033.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119033] [PMID: 31954864]
[236]
Scioli Montoto, S.; Sbaraglini, M.L.; Talevi, A.; Couyoupetrou, M.; Di Ianni, M.; Pesce, G.O.; Alvarez, V.A.; Bruno-Blanch, L.E.; Castro, G.R.; Ruiz, M.E.; Islan, G.A. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical character-ization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2018, 167, 73-81.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.052] [PMID: 29627680]
[237]
Mura, P.; Maestrelli, F.; Cirri, M.; Mennini, N. Multiple roles of chitosan in mucosal drug delivery: An updated review. Mar. Drugs, 2022, 20(5), 335.
[http://dx.doi.org/10.3390/md20050335] [PMID: 35621986]
[238]
El-Zaafarany, G.M.; Soliman, M.E.; Mansour, S.; Awad, G.A.S. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies. Int. J. Pharm., 2016, 503(1-2), 127-140.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.038] [PMID: 26924357]
[239]
Praveen, A.; Aqil, M.; Imam, S.S.; Ahad, A.; Moolakkadath, T.; Ahmad, F.J. Lamotrigine encapsulated intra-nasal nanoliposome formula-tion for epilepsy treatment: Formulation design, characterization and nasal toxicity study. Colloids Surf. B Biointerfaces, 2019, 174, 553-562.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.025] [PMID: 30502666]
[240]
Iqbal, R.; Ahmed, S.; Jain, G.K.; Vohora, D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain target-ed nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int. J. Pharm., 2019, 565, 20-32.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.076] [PMID: 31051232]
[241]
Costa, C.; Moreira, J.N.; Amaral, M.H.; Sousa , Lobo J.M.; Silva, A.C. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J. Control. Release, 2019, 295, 187-200.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.049] [PMID: 30610952]
[242]
Bonferoni, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics, 2019, 11(2), 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[243]
Chatzitaki, A.T.; Jesus, S.; Karavasili, C.; Andreadis, D.; Fatouros, D.G.; Borges, O. Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. Int. J. Pharm., 2020, 589, 119776.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119776] [PMID: 32818538]
[244]
Ahmad, N.; Ahmad, R.; Al Qatifi, S.; Alessa, M.; Al Hajji, H.; Sarafroz, M. A bioanalytical UHPLC based method used for the quantifica-tion of Thymoquinone-loaded-PLGA-nanoparticles in the treatment of epilepsy. BMC Chem., 2020, 14(1), 10.
[http://dx.doi.org/10.1186/s13065-020-0664-x] [PMID: 32083254]
[245]
Sharma, D.; Maheshwari, D.; Philip, G.; Rana, R.; Bhatia, S.; Singh, M.; Gabrani, R.; Sharma, S.K.; Ali, J.; Sharma, R.K.; Dang, S. Formula-tion and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: In vitro and in vivo evaluation. BioMed Res. Int., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/156010] [PMID: 25126544]
[246]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J.; Rashed, H.M.; Ibrahim, A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: In vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmaco-dynamics studies. Drug Deliv., 2016, 23(9), 3681-3695.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[247]
Yu, A.; Lv, J.; Yuan, F.; Xia, Z.; Fan, K.; Chen, G.; Ren, J.; Lin, C.; Wei, S.; Yang, F. mPEG-PLA/TPGS mixed micelles via intranasal ad-ministration improved the bioavailability of lamotrigine in the hippocampus. Int. J. Nanomedicine, 2017, 12, 8353-8362.
[http://dx.doi.org/10.2147/IJN.S145488] [PMID: 29200847]
[248]
Natsheh, H.; Touitou, E. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfac-tants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties. Molecules, 2020, 25(13), 2959.
[http://dx.doi.org/10.3390/molecules25132959] [PMID: 32605117]
[249]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J. Transferosomes for trans-nasal brain delivery of clonazepam: Preparation, optimization, ex-vivo cytotoxicity and pharmacodynamic study. J. Pharm. Res., 2017, 1(2), 1-5.
[250]
Sonvico, F.; Clementino, A.; Buttini, F.; Colombo, G.; Pescina, S.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Nicoli, S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics, 2018, 10(1), 34.
[http://dx.doi.org/10.3390/pharmaceutics10010034] [PMID: 29543755]
[251]
Bahadur, S.; Naurange, T.; Baghel, P.; Sahu, M.; Yadu, K. Targeting the brain: Various approaches and science involved. ScienceRise. Pharm. Sci., 2020, 5(27), 4-16.
[http://dx.doi.org/10.15587/2519-4852.2020.210824]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy