Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Computational Investigations of Coumarin Derivatives as Cyclindependent Kinase 9 Inhibitors Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation

Author(s): Sisi Liu, Yaxin Li*, Xilin Wei, Ran Zhang, Yifan Zhang and Chunyan Guo

Volume 18, Issue 5, 2022

Published on: 27 September, 2022

Page: [363 - 380] Pages: 18

DOI: 10.2174/1573409918666220817100959

Price: $65

Abstract

Background: Cyclin-dependent Kinase 9 as one of the serine/threonine protein kinases has become an important target for the treatment of cancer especially driven by transcriptional dysregulation.

Objective: This thesis was conducted to elucidate the structure-activity relationship and interaction mode of coumarin compounds acting on CDK9.

Methods: Three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulation were conducted to reveal the structural requirements for bioactivities. The 3D-QSAR model was constructed to find the features required for different substituents on the coumarin scaffold. Molecular docking and molecular dynamics simulation were employed to generate the binding mode and stability of CDK9.

Results: The Q2 and R2 values of the CoMFA model were calculated as 0.52 and 0.999, while those for the CoMSIA model were 0.606 and 0.998. It is believed that the significant statistical parameters of CoMFA and CoMSIA models revealed high activity-descriptor relationship efficiency. Therefore, we considered the 3D-QSAR model to be robust and accurate. The contour maps provided a deep structure-activity relationship and valuable clues for rational modification. Based on the contour maps, 4 novel CDK9 inhibitors which were predicted to have satisfactory pharmacokinetic characteristics were designed and exhibited better-predicted activities. Subsequently, molecular docking was employed to generate the binding mode of CDK9. Furthermore, 50 ns MD simulation was of great help in verifying the accuracy of docking results and the stability of the complexes.

Conclusion: The study is a valuable insight for further research on novel and effective inhibitors targeting CDK9.

Keywords: Coumarin, CDK9, 3D-QSAR, molecular docking, molecular dynamics simulation, ADMET.

Graphical Abstract
[1]
Tutone, M.; Almerico, A.M. Recent advances on CDK inhibitors: An insight by means of in silico methods. Eur. J. Med. Chem., 2017, 142(142), 300-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.067] [PMID: 28802482]
[2]
Duronio, R.J.; Xiong, Y. Signaling pathways that control cell proliferation. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a008904.
[http://dx.doi.org/10.1101/cshperspect.a008904] [PMID: 23457258]
[3]
Liang, K.; Gao, X.; Gilmore, J.M.; Florens, L.; Washburn, M.P.; Smith, E.; Shilatifard, A. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell. Biol., 2015, 35(6), 928-938.
[http://dx.doi.org/10.1128/MCB.01426-14] [PMID: 25561469]
[4]
Bartkowiak, B.; Liu, P.; Phatnani, H.P.; Fuda, N.J.; Cooper, J.J.; Price, D.H.; Adelman, K.; Lis, J.T.; Greenleaf, A.L. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev., 2010, 24(20), 2303-2316.
[http://dx.doi.org/10.1101/gad.1968210] [PMID: 20952539]
[5]
Martin, M.P.; Endicott, J.A.; Noble, M.E.M. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays Biochem., 2017, 61(5), 439-452.
[http://dx.doi.org/10.1042/EBC20170040] [PMID: 29118092]
[6]
Michowski, W.; Chick, J.M.; Chu, C.; Kolodziejczyk, A.; Wang, Y.; Suski, J.M.; Abraham, B.; Anders, L.; Day, D.; Dunkl, L.M.; Li Cheong Man, M.; Zhang, T.; Laphanuwat, P.; Bacon, N.A.; Liu, L.; Fassl, A.; Sharma, S.; Otto, T.; Jecrois, E.; Han, R.; Sweeney, K.E.; Marro, S.; Wernig, M.; Geng, Y.; Moses, A.; Li, C.; Gygi, S.P.; Young, R.A.; Sicinski, P. Cdk1 controls global epigenetic landscape in embryonic stem cells. Mol. Cell, 2020, 78(3), 459-476.e13.
[http://dx.doi.org/10.1016/j.molcel.2020.03.010] [PMID: 32240602]
[7]
Zhang, L.; Li, X. DEAD-Box RNA helicases in cell cycle control and clinical therapy. Cells, 2021, 10(6), 1540.
[http://dx.doi.org/10.3390/cells10061540] [PMID: 34207140]
[8]
Li, B.; Li, A.; You, Z.; Xu, J.; Zhu, S. Epigenetic silencing of CDKN1A and CDKN2B by SNHG1 promotes the cell cycle, migration and epithelial-mesenchymal transition progression of hepatocellular carcinoma. Cell Death Dis., 2020, 11(10), 823.
[http://dx.doi.org/10.1038/s41419-020-03031-6] [PMID: 33009370]
[9]
Zhao, H.; Li, S.; Wang, G.; Zhao, W.; Zhang, D.; Wang, F.; Li, W.; Sun, L. Study of the mechanism by which dinaciclib induces apoptosis and cell cycle arrest of lymphoma Raji cells through a CDK1-involved pathway. Cancer Med., 2019, 8(9), 4348-4358.
[http://dx.doi.org/10.1002/cam4.2324] [PMID: 31207099]
[10]
Pal-Ghosh, R.; Xue, D.; Warburton, R.; Hill, N.; Polgar, P.; Wilson, J.L. CDC2 is an important driver of vascular smooth muscle cell proliferation via FOXM1 and PLK1 in pulmonary arterial hypertension. Int. J. Mol. Sci., 2021, 22(13), 6943.
[http://dx.doi.org/10.3390/ijms22136943] [PMID: 34203295]
[11]
Paparidis, N.F.; Durvale, M.C.; Canduri, F. The emerging picture of CDK9/P-TEFb: More than 20 years of advances since PITALRE. Mol. Biosyst., 2017, 13(2), 246-276.
[http://dx.doi.org/10.1039/C6MB00387G] [PMID: 27833949]
[12]
Baumli, S.; Lolli, G.; Lowe, E.D.; Troiani, S.; Rusconi, L.; Bullock, A.N.; Debreczeni, J.E.; Knapp, S.; Johnson, L.N. The structure of P-TEFb (CDK9clin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J., 2008, 27, 1907-1918.
[http://dx.doi.org/10.1038/emboj.2008.121] [PMID: 18566585]
[13]
Nguyen, M.D.; Mushynski, W.E.; Julien, J.P. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ., 2002, 9(12), 1294-1306.
[http://dx.doi.org/10.1038/sj.cdd.4401108] [PMID: 12478466]
[14]
Baumli, S.; Lolli, G.; Lowe, E.D.; Troiani, S.; Rusconi, L.; Bullock, A.N.; Debreczeni, J.E.; Knapp, S.; Johnson, L.N. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J., 2008, 27(13), 1907-1918.
[http://dx.doi.org/10.1038/emboj.2008.121] [PMID: 18566585]
[15]
Walsby, E.; Pratt, G.; Shao, H.; Abbas, A.Y.; Fischer, P.M.; Bradshaw, T.D.; Brennan, P.; Fegan, C.; Wang, S.; Pepper, C. A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 2014, 5(2), 375-385.
[http://dx.doi.org/10.18632/oncotarget.1568] [PMID: 24495868]
[16]
Wu, T.; Qin, Z.; Tian, Y.; Wang, J.; Xu, C.; Li, Z.; Bian, J. Recent developments in the biology and medicinal chemistry of CDK9 Inhibitors: An update. J. Med. Chem., 2020, 63(22), 13228-13257.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00744] [PMID: 32866383]
[17]
Mandal, R.; Becker, S.; Strebhardt, K. Targeting CDK9 for anti-cancer therapeutics. Cancers (Basel), 2021, 13(9), 2181.
[http://dx.doi.org/10.3390/cancers13092181] [PMID: 34062779]
[18]
Lu, Y.; Tang, L.; Zhang, Q.; Zhang, Z.; Wei, W. MicroRNA-613 inhibits the progression of gastric cancer by targeting CDK9. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 980-984.
[http://dx.doi.org/10.1080/21691401.2017.1351983] [PMID: 28701053]
[19]
Wang, J.; Dean, D.C.; Hornicek, F.J.; Shi, H.; Duan, Z. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. FASEB J., 2019, 33(5), 5990-6000.
[http://dx.doi.org/10.1096/fj.201801789RR] [PMID: 30726104]
[20]
Rahaman, M.H.; Kumarasiri, M.; Mekonnen, L.B.; Yu, M.; Diab, S.; Albrecht, H.; Milne, R.W.; Wang, S. Targeting CDK9: A promising therapeutic opportunity in prostate cancer. Endocr. Relat. Cancer, 2016, 23(12), T211-T226.
[http://dx.doi.org/10.1530/ERC-16-0299] [PMID: 27582311]
[21]
Borowczak, J.; Szczerbowski, K.; Stec, E.; Grzanka, D.; Szylberg, Ł. CDK9: Therapeutic perspective in HCC therapy. Curr. Cancer Drug Targets, 2020, 20(5), 318-324.
[http://dx.doi.org/10.2174/1568009620666200212124357] [PMID: 32048975]
[22]
Kim, W.; Haws, H.; Peterson, P.; Whatcott, C.J.; Weitman, S.; Warner, S.L.; Bearss, D.J.; Siddiqui-Jain, A. TP-1287, an oral prodrug of the cyclin-dependent kinase-9 inhibitor alvocidib. Cancer Res., 2017, 77, 5133.
[23]
Poulsen, A.; William, A.; Blanchard, S.; Nagaraj, H.; Williams, M.; Wang, H.; Lee, A.; Sun, E.; Teo, E.L.; Tan, E.; Goh, K.C.; Dymock, B. Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3). J. Mol. Model., 2013, 19(1), 119-130.
[http://dx.doi.org/10.1007/s00894-012-1528-7] [PMID: 22820730]
[24]
Cidado, J.; Boiko, S.; Proia, T.; Ferguson, D.; Criscione, S.W.; San Martin, M.; Pop-Damkov, P.; Su, N.; Roamio Franklin, V.N.; Sekhar Reddy Chilamakuri, C.; D’Santos, C.S.; Shao, W.; Saeh, J.C.; Koch, R.; Weinstock, D.M.; Zinda, M.; Fawell, S.E.; Drew, L. AZD4573 is a highly selective CDK9 inhibitor that suppresses Mcl-1 and induces apoptosis in hematologic cancer cells. Clin. Cancer Res., 2020, 26(4), 922-934.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1853] [PMID: 31699827]
[25]
Johnson, A.J.; Yeh, Y.Y.; Smith, L.L.; Wagner, A.J.; Hessler, J.; Gupta, S.; Flynn, J.; Jones, J.; Zhang, X.; Bannerji, R.; Grever, M.R.; Byrd, J.C. The novel cyclin-dependent kinase inhibitor dinaciclib (SCH727965) promotes apoptosis and abrogates microenvironmental cytokine protection in chronic lymphocytic leukemia cells. Leukemia, 2012, 26(12), 2554-2557.
[http://dx.doi.org/10.1038/leu.2012.144] [PMID: 22791353]
[26]
Morales, F.; Giordano, A. Overview of CDK9 as a target in cancer research. Cell Cycle, 2016, 15(4), 519-527.
[http://dx.doi.org/10.1080/15384101.2016.1138186] [PMID: 26766294]
[27]
Xu, J.; Li, H.; Wang, X.; Huang, J.; Li, S.; Liu, C.; Dong, R.; Zhu, G.; Duan, C.; Jiang, F.; Zhang, Y.; Zhu, Y.; Zhang, T.; Chen, Y.; Tang, W.; Lu, T. Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity. Eur. J. Med. Chem., 2020, 200, 112424.
[http://dx.doi.org/10.1016/j.ejmech.2020.112424] [PMID: 32447197]
[28]
Yim, D.; Singh, R.P.; Agarwal, C.; Lee, S.; Chi, H.; Agarwal, R. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res., 2005, 65(3), 1035-1044.
[PMID: 15705905]
[29]
Abdel Latif, N.A.; Batran, R.Z.; Khedr, M.A.; Abdalla, M.M. 3-Substituted-4-hydroxycoumarin as a new scaffold with potent CDK inhibition and promising anticancer effect: Synthesis, molecular modeling and QSAR studies. Bioorg. Chem., 2016, 67, 116-129.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.005] [PMID: 27372186]
[30]
Singh, R.K.; Lange, T.S.; Kim, K.K.; Brard, L. A coumarin derivative (RKS262) inhibits cell-cycle progression, causes pro-apoptotic signaling and cytotoxicity in ovarian cancer cells. Invest. New Drugs, 2011, 29(1), 63-72.
[http://dx.doi.org/10.1007/s10637-009-9335-4] [PMID: 19865799]
[31]
Bana, E.; Sibille, E.; Valente, S.; Cerella, C.; Chaimbault, P.; Kirsch, G.; Dicato, M.; Diederich, M.; Bagrel, D. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol. Carcinog., 2015, 54(3), 229-241.
[http://dx.doi.org/10.1002/mc.22094] [PMID: 24155226]
[32]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[33]
Clark, M.; Cramer, R.D.; Opdenbosch, N.V. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem., 1989, 10(8), 982-1012.
[http://dx.doi.org/10.1002/jcc.540100804]
[34]
Vanommeslaeghe, K.; Guvench, O.; MacKerell, A.D. Jr Molecular mechanics. Curr. Pharm. Des., 2014, 20(20), 3281-3292.
[http://dx.doi.org/10.2174/13816128113199990600] [PMID: 23947650]
[35]
Purcell, W.P.; Singer, J.A. A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J. Chem. Eng. Data, 1967, 12(2), 235-246.
[http://dx.doi.org/10.1021/je60033a020]
[36]
Keretsu, S.; Bhujbal, S.P.; Cho, S.J. Docking and 3D-QSAR studies of hydrazone and triazole derivatives for selective inhibition of GRK2 over ROCK2. Lett. Drug Des. Discov., 2019, 17(5), 618-632.
[http://dx.doi.org/10.2174/1570180816666190618105320]
[37]
Lobo, M.J.; Ray, R.; Shenoy, G.G. Gaining deeper insights into the surface binding of bedaquiline analogues with the ATP synthase subunit C of Mycobacterium tuberculosis using molecular docking, molecular dynamics simulation and 3D-QSAR techniques. New J. Chem., 2020, 44(43), 18831-18852.
[http://dx.doi.org/10.1039/D0NJ02062A]
[38]
Wang, F.F.; Yang, W.; Shi, Y.H.; Le, G.W. in silico study on β-aminoketone derivatives as thyroid hormone receptor inhibitors: A combined 3D-QSAR and molecular docking study. J. Biomol. Struct. Dyn., 2016, 34(12), 2619-2631.
[http://dx.doi.org/10.1080/07391102.2015.1124806] [PMID: 26618241]
[39]
Ståhle, L.; Wold, S. Multivariate data analysis and experimental design in biomedical research. Prog. Med. Chem., 1988, 25, 291-338.
[http://dx.doi.org/10.1016/S0079-6468(08)70281-9] [PMID: 3076969]
[40]
Jujjavarapu, S.E.; Dhagat, S. in silico discovery of novel ligands for antimicrobial lipopeptides for computer-aided drug design. Probiotics Antimicrob. Proteins, 2018, 10(2), 129-141.
[http://dx.doi.org/10.1007/s12602-017-9356-9] [PMID: 29218506]
[41]
Wold, S. Validation of QSAR's. Quant. Struct. Act. relat., 1991, 10(3), 191-193.
[42]
Wang, J.L.; Cheng, L.P.; Wang, T.C.; Deng, W.; Wu, F.H. Molecular modeling study of CP-690550 derivatives as JAK3 kinase inhibitors through combined 3D-QSAR, molecular docking, and dynamics simulation techniques. J. Mol. Graph. Model., 2017, 72, 178-186.
[http://dx.doi.org/10.1016/j.jmgm.2016.12.020] [PMID: 28107751]
[43]
Xie, A.; Sivaprakasam, P.; Doerksen, R.J. 3D-QSAR analysis of antimalarial farnesyltransferase inhibitors based on a 2,5-diaminobenzophenone scaffold. Bioorg. Med. Chem., 2006, 14(21), 7311-7323.
[http://dx.doi.org/10.1016/j.bmc.2006.06.041] [PMID: 16837204]
[44]
Ul-Haq, Z.; Ashraf, S.; Bkhaitan, M.M. Molecular dynamics simulations reveal structural insights into inhibitor binding modes and mechanism of casein kinase II inhibitors. J. Biomol. Struct. Dyn., 2019, 37(5), 1120-1135.
[http://dx.doi.org/10.1080/07391102.2018.1450166] [PMID: 29527958]
[45]
Roy, K. On some aspects of validation of predictive quantitative structure-activity relationship models. Expert Opin. Drug Discov., 2007, 2(12), 1567-1577.
[http://dx.doi.org/10.1517/17460441.2.12.1567] [PMID: 23488901]
[46]
Kayikci, M.; Venkatakrishnan, A.J.; Scott-Brown, J.; Ravarani, C.N.J.; Flock, T.; Babu, M.M. Visualization and analysis of non-covalent contacts using the protein contacts atlas. Nat. Struct. Mol. Biol., 2018, 25(2), 185-194.
[http://dx.doi.org/10.1038/s41594-017-0019-z] [PMID: 29335563]
[47]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[48]
Baumli, S.; Hole, A.J.; Noble, M.E.M.; Endicott, J.A. The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508. ACS Chem. Biol., 2012, 7(5), 811-816.
[http://dx.doi.org/10.1021/cb2004516] [PMID: 22292676]
[49]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[50]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[51]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[52]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[53]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[54]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[55]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[56]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[57]
Berk, B.; Kaynar, G.; Ertas, M.; Biltekin, S.N. Molecular modelling and compound activity of the escherichia coli and staphylococcus aureus DNA gyrase B ATPase site. Acta Pharm. Sci., 2017, 55(1), 97-117.
[http://dx.doi.org/10.23893/1307-2080.APS.0557]
[58]
Ertl, P.; Schuhmann, T. A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod., 2019, 82(5), 1258-1263.
[http://dx.doi.org/10.1021/acs.jnatprod.8b01022] [PMID: 30933507]
[59]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[60]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[61]
Kaminski, G.A.; Friesner, R.A.; Tirado-rives, J.; Jorgensen, W.L. Comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B, 2001, 105(28), 6474-6487.
[http://dx.doi.org/10.1021/jp003919d]
[62]
Tripuraneni, N.S.; Azam, M.A. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors. J. Biomol. Struct. Dyn., 2016, 34(11), 2481-2492.
[http://dx.doi.org/10.1080/07391102.2015.1119732] [PMID: 26587754]
[63]
Pradiba, D.; Aarthy, M.; Shunmugapriya, V.; Singh, S.K.; Vasanthi, M. Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. J. Biomol. Struct. Dyn., 2018, 36(14), 3718-3739.
[http://dx.doi.org/10.1080/07391102.2017.1397058] [PMID: 29068268]
[64]
Pradhan, D.; Priyadarshini, V.; Munikumar, M.; Swargam, S.; Umamaheswari, A.; Bitla, A. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of leptospira spp.: Homology modeling, docking, and molecular dynamics study. J. Biomol. Struct. Dyn., 2014, 32(2), 171-185.
[http://dx.doi.org/10.1080/07391102.2012.758056] [PMID: 23383626]
[65]
Badhani, B.; Kakkar, R. in silico studies on potential MCF-7 inhibitors: A combination of pharmacophore and 3D-QSAR modeling, virtual screening, molecular docking, and pharmacokinetic analysis. J. Biomol. Struct. Dyn., 2017, 35(9), 1950-1967.
[http://dx.doi.org/10.1080/07391102.2016.1202863] [PMID: 27401212]
[66]
Guttikonda, V.; Raavi, D.; Maadwar, S.K.; Gade, D.R. Molecular insights of benzodipyrazole as CDK2 inhibitors: Combined molecular docking, molecular dynamics, and 3D QSAR studies. J. Recept. Signal Transduct. Res., 2015, 35(5), 439-449.
[http://dx.doi.org/10.3109/10799893.2015.1018433] [PMID: 25902329]
[67]
Tropsha, A.; Gramatica, P.; Gombar, V.K. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci., 2003, 22(1), 69-77.
[http://dx.doi.org/10.1002/qsar.200390007]
[68]
Zeng, X.; Qu, R.; Feng, M.; Chen, J.; Wang, L.; Wang, Z. Photodegradation of polyfluorinated dibenzo-p-Dioxins in organic solvents: Experimental and theoretical studies. Environ. Sci. Technol., 2016, 50(15), 8128-8134.
[http://dx.doi.org/10.1021/acs.est.6b02682] [PMID: 27380414]
[69]
Waller, C.L.; Oprea, T.I.; Giolitti, A.; Marshall, G.R. Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J. Med. Chem., 1993, 36(26), 4152-4160.
[http://dx.doi.org/10.1021/jm00078a003] [PMID: 8277496]
[70]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[71]
Bose, P.; Simmons, G.L.; Grant, S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin. Investig. Drugs, 2013, 22(6), 723-738.
[http://dx.doi.org/10.1517/13543784.2013.789859] [PMID: 23647051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy