Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

西地那非通过TGF-β1/Smad2/3途径抑制宫颈癌的生长和上皮细胞向间质转化

卷 23, 期 2, 2023

发表于: 07 September, 2022

页: [145 - 158] 页: 14

弟呕挨: 10.2174/1568009622666220816114543

open access plus

Open Access Journals Promotions 2
摘要

目的:本研究旨在探索宫颈癌新的潜在治疗方法。宫颈癌是女性第二大常见癌症,在全球造成25万人死亡。宫颈癌患者主要采用铂类化合物治疗,铂类化合物往往会引起严重的毒性反应。此外,长期使用铂类化合物可降低癌细胞对化疗的敏感性,增加宫颈癌的耐药性。因此,探索新的治疗方案对宫颈癌有重要意义。 目的:探讨西地那非对宫颈癌生长及上皮-间充质转化(EMT)的影响。 方法:用西地那非对HeLa和SiHa细胞进行不同时间的处理。进行细胞活力、克隆性、伤口愈合和Transwell检测。检测宫颈癌标本中转化生长因子-β1 (TGF-β1)、转化生长因子-β I型受体(TβRI)、磷酸化(p-) Smad2和p- smad3的水平。TGF-β1、Smad2、Smad3在HeLa细胞中过表达,检测EMT标记蛋白表达及细胞活力、菌落形成等变化。最后,利用HeLa细胞建立西地那非治疗裸鼠异种移植模型。记录小鼠存活率及肿瘤大小。 结果:高浓度西地那非(1.0~2.0 μM)可降低细胞活力,降低HeLa和SiHa细胞的菌落数量,降低HeLa和SiHa细胞的侵袭/迁移能力,呈剂量依赖性和时间依赖性。宫颈癌标本及宫颈癌细胞株中TGF-β1、TβRI、p-Smad2、pSmad3的表达均显著增强。西地那非抑制TGF-β1诱导的EMT标记蛋白(Snail、vimentin、Twist、E-cadherin和N-cadherin)和p-Smad2/3的表达。TGF-β1、Smad2和Smad3的过表达逆转了西地那非对HeLa细胞EMT、生存能力、集落形成、迁移和侵袭能力的影响。在体内研究中,西地那非显著提高了小鼠存活率并抑制了异种移植物的生长。 结论:西地那非通过调控TGF-β1/Smad2/3通路抑制人宫颈癌细胞的增殖、侵袭能力和EMT。

关键词: 西地那非,宫颈癌,上皮细胞向间质转化,侵袭,迁移,铂。

图形摘要
[1]
Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[2]
Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res., 2020, 32(6), 720-728.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.06.05] [PMID: 33446995]
[3]
Cutts, F.T.; Franceschi, S.; Goldie, S.; Castellsague, X.; de Sanjose, S.; Garnett, G.; Edmunds, W.J.; Claeys, P.; Goldenthal, K.L.; Harper, D.M.; Markowitz, L. Human papillomavirus and HPV vaccines: A review. Bull. World Health Organ., 2007, 85(9), 719-726.
[http://dx.doi.org/10.2471/BLT.06.038414] [PMID: 18026629]
[4]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[5]
Zhang, J.; Gao, Y. Long non-coding RNA MEG3 inhibits cervical cancer cell growth by promoting degradation of P-STAT3 protein via ubiquitination. Cancer Cell Int., 2019, 19, 19-0893.
[http://dx.doi.org/10.1186/s12935-019-0893-z]
[6]
Monie, A.; Hung, C.F.; Roden, R.; Wu, T.C. Cervarix: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics, 2008, 2(1), 97-105.
[PMID: 19707432]
[7]
Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4), e43.
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[8]
Chopra, D.; Rehan, H.S.; Sharma, V.; Mishra, R. Chemotherapy-induced adverse drug reactions in oncology patients: A prospective observational survey. Indian J. Med. Paediatr. Oncol., 2016, 37(1), 42-46.
[http://dx.doi.org/10.4103/0971-5851.177015] [PMID: 27051157]
[9]
Yu, H.; Wang, H.; Qie, A.; Wang, J.; Liu, Y.; Gu, G.; Yang, J.; Zhang, H.; Pan, W.; Tian, Z.; Wang, C. FGF13 enhances resistance to platinum drugs by regulating hCTR1 and ATP7A via a microtubule-stabilizing effect. Cancer Sci., 2021, 112(11), 4655-4668.
[http://dx.doi.org/10.1111/cas.15137] [PMID: 34533854]
[10]
Peak, T.C.; Richman, A.; Gur, S.; Yafi, F.A.; Hellstrom, W.J. The role of PDE5 inhibitors and the NO/cGMP pathway in cancer. Sex. Med. Rev., 2016, 4(1), 74-84.
[http://dx.doi.org/10.1016/j.sxmr.2015.10.004] [PMID: 27872007]
[11]
Das, A.; Durrant, D.; Salloum, F.N.; Xi, L.; Kukreja, R.C. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol. Ther., 2015, 147, 12-21.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.003] [PMID: 25444755]
[12]
Iratni, R.; Ayoub, M.A. Sildenafil in combination therapy against cancer: A literature review. Curr. Med. Chem., 2021, 28(11), 2248-2259.
[http://dx.doi.org/10.2174/0929867327666200730165338] [PMID: 32744956]
[13]
Yi, X.; Li, X.; Zhou, Y.; Ren, S.; Wan, W.; Feng, G.; Jiang, X. Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int. J. Mol. Med., 2014, 34(2), 381-390.
[http://dx.doi.org/10.3892/ijmm.2014.1782] [PMID: 24840640]
[14]
Wu, L; Zhang, Q; Mo, W; Feng, J; Li, S; Li, J Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways Sci Rep, 2017, 7, 017-09673.
[15]
Chandra Jena, B.; Kanta Das, C.; Banerjee, I.; Das, S.; Bharadwaj, D.; Majumder, R.; Mandal, M. Paracrine TGF-β1 from breast cancer contributes to chemoresistance in cancer associated fibroblasts via upregulation of the p44/42 MAPK signaling pathway. Biochem. Pharmacol., 2021, 186, 114474.
[http://dx.doi.org/10.1016/j.bcp.2021.114474] [PMID: 33607074]
[16]
Zong, L; Chen, K; Jiang, Z; Chen, X; Sun, L; Ma, J Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-β1 signaling in pancreatic cancer. J Exp Clin Cancer Res, 2017, 36, 017-0655.
[http://dx.doi.org/10.1186/s13046-017-0655-5]
[17]
Cheng, Y; Guo, Y; Zhang, Y; You, K; Li, Z; Geng, L. MicroRNA- 106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res, 2016, 35, 016-0290.
[http://dx.doi.org/10.1186/s13046-016-0290-6]
[18]
Cheng, K.Y.; Hao, M. Mammalian target of rapamycin (mTOR) regulates transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition via decreased pyruvate Kinase M2 (PKM2) expression in cervical cancer cells. Med. Sci. Monit., 2017, 23, 2017-2028.
[http://dx.doi.org/10.12659/MSM.901542] [PMID: 28446743]
[19]
Tjiong, M.Y.; van der Vange, N.; ter Schegget, J.S.; Burger, M.P.; ten Kate, F.W.; Out, T.A. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine, 2001, 14(6), 357-360.
[http://dx.doi.org/10.1006/cyto.2001.0909] [PMID: 11497498]
[20]
Ju, W.; Luo, X.; Zhang, N. LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci. Rep., 2019, 39(4), BSR20180878.
[http://dx.doi.org/10.1042/BSR20180878] [PMID: 30910843]
[21]
Li, Y.; Chen, D.; Gao, X.; Li, X.; Shi, G. LncRNA NEAT1 regulates cell viability and invasion in esophageal squamous cell carcinoma through the miR-129/CTBP2 axis. Dis. Markers, 2017, 2017, 5314649.
[http://dx.doi.org/10.1155/2017/5314649] [PMID: 29147064]
[22]
Ashinuma, H.; Takiguchi, Y.; Kitazono, S.; Kitazono-Saitoh, M.; Kitamura, A.; Chiba, T.; Tada, Y.; Kurosu, K.; Sakaida, E.; Sekine, I.; Tanabe, N.; Iwama, A.; Yokosuka, O.; Tatsumi, K. Antiproliferative action of metformin in human lung cancer cell lines. Oncol. Rep., 2012, 28(1), 8-14.
[PMID: 22576795]
[23]
Meng, Y.; Li, Q.; Li, L.; Ma, R. The long non-coding RNA CRNDE promotes cervical cancer cell growth and metastasis. Biol. Chem., 2017, 399(1), 93-100.
[http://dx.doi.org/10.1515/hsz-2017-0199] [PMID: 29194035]
[24]
Kim, Y.I.; Ryu, J.S.; Yeo, J.E.; Choi, Y.J.; Kim, Y.S.; Ko, K.; Koh, Y.G. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem. Biophys. Res. Commun., 2014, 450(4), 1593-1599.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.045] [PMID: 25035928]
[25]
de Carvalho, M.A.J.; Chaves-Filho, A.; de Souza, A.G.; de Carvalho Lima, C.N.; de Lima, K.A.; Rios Vasconcelos, E.R.; Feitosa, M.L.; Souza Oliveira, J.V.; de Souza, D.A.A.; Macedo, D.S.; de Souza, F.C.F.; de França Fonteles, M.M. Proconvulsant effects of sildenafil citrate on pilocarpine-induced seizures: Involvement of cholinergic, nitrergic and pro-oxidant mechanisms. Brain Res. Bull., 2019, 149, 60-74.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.008] [PMID: 31004733]
[26]
Islam, B.N.; Sharman, S.K.; Hou, Y.; Bridges, A.E.; Singh, N.; Kim, S.; Kolhe, R.; Trillo-Tinoco, J.; Rodriguez, P.C.; Berger, F.G.; Sridhar, S.; Browning, D.D. Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev. Res. (Phila.), 2017, 10(7), 377-388.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0015] [PMID: 28468928]
[27]
Booth, L.; Roberts, J.L.; Cruickshanks, N.; Tavallai, S.; Webb, T.; Samuel, P.; Conley, A.; Binion, B.; Young, H.F.; Poklepovic, A.; Spiegel, S.; Dent, P. PDE5 inhibitors enhance celecoxib killing in multiple tumor types. J. Cell. Physiol., 2015, 230(5), 1115-1127.
[http://dx.doi.org/10.1002/jcp.24843] [PMID: 25303541]
[28]
Chen, L.; Liu, Y.; Becher, A.; Diepold, K.; Schmid, E.; Fehn, A.; Brunner, C.; Rouhi, A.; Chiosis, G.; Cronauer, M.; Seufferlein, T.; Azoitei, N. Sildenafil triggers tumor lethality through altered expression of HSP90 and degradation of PKD2. Carcinogenesis, 2020, 41(10), 1421-1431.
[http://dx.doi.org/10.1093/carcin/bgaa001] [PMID: 31917403]
[29]
Booth, L.; Roberts, J.L.; Cruickshanks, N.; Conley, A.; Durrant, D.E.; Das, A.; Fisher, P.B.; Kukreja, R.C.; Grant, S.; Poklepovic, A.; Dent, P. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol. Pharmacol., 2014, 85(3), 408-419.
[http://dx.doi.org/10.1124/mol.113.090043] [PMID: 24353313]
[30]
Guimarães, D.A.; Rizzi, E.; Ceron, C.S.; Martins-Oliveira, A.; Gerlach, R.F.; Shiva, S.; Tanus-Santos, J.E. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension. Redox Biol., 2015, 6, 386-395.
[http://dx.doi.org/10.1016/j.redox.2015.08.017] [PMID: 26343345]
[31]
Bae, E.H.; Kim, I.J.; Joo, S.Y.; Kim, E.Y.; Kim, C.S.; Choi, J.S.; Ma, S.K.; Kim, S.H.; Lee, J.U.; Kim, S.W. Renoprotective effects of sildenafil in DOCA-salt hypertensive rats. Kidney Blood Press. Res., 2012, 36(1), 248-257.
[http://dx.doi.org/10.1159/000343414] [PMID: 23171857]
[32]
Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue Physiology. Cold Spring Harb. Perspect. Biol., 2016, 8(5), a021873.
[http://dx.doi.org/10.1101/cshperspect.a021873] [PMID: 27141051]
[33]
Gao, C.; Lin, X.; Fan, F.; Liu, X.; Wan, H.; Yuan, T.; Zhao, X.; Luo, Y. Status of higher TGF-β1 and TGF-β2 levels in the aqueous humour of patients with diabetes and cataracts. BMC Ophthalmol., 2022, 22(1), 156.
[http://dx.doi.org/10.1186/s12886-022-02317-x] [PMID: 35379202]
[34]
Huang, M.; Fu, M.; Wang, J.; Xia, C.; Zhang, H.; Xiong, Y.; He, J.; Liu, J.; Liu, B.; Pan, S.; Liu, F. TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α. Biochem. Pharmacol., 2021, 188, 114527.
[http://dx.doi.org/10.1016/j.bcp.2021.114527] [PMID: 33741330]
[35]
Principe, D.R.; Doll, J.A.; Bauer, J.; Jung, B.; Munshi, H.G.; Bartholin, L.; Pasche, B.; Lee, C.; Grippo, P.J. TGF-β Duality of function between tumor prevention and carcinogenesis. J. Natl. Cancer Inst., 2014, 106(2), djt369.
[http://dx.doi.org/10.1093/jnci/djt369] [PMID: 24511106]
[36]
Bai, X.; Yi, M.; Jiao, Y.; Chu, Q.; Wu, K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. OncoTargets Ther., 2019, 12, 9527-9538.
[http://dx.doi.org/10.2147/OTT.S224013] [PMID: 31807028]
[37]
Yang, L.; Pang, Y.; Moses, H.L. TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 2010, 31(6), 220-227.
[http://dx.doi.org/10.1016/j.it.2010.04.002] [PMID: 20538542]
[38]
Sun, H.; Miao, C.; Liu, W.; Qiao, X.; Yang, W.; Li, L.; Li, C. TGF-β1/TβRII/Smad3 signaling pathway promotes VEGF expression in oral squamous cell carcinoma tumor-associated macrophages. Biochem. Biophys. Res. Commun., 2018, 497(2), 583-590.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.104] [PMID: 29462614]
[39]
Wang, G.X.; Xu, J.; Xie, R. The role of TGF-β in gastrointestinal cancers. J. Cancer Sci. Ther., 2018, 10(11), 345-350.
[http://dx.doi.org/10.4172/1948-5956.1000566]
[40]
Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother., 2018, 101, 670-681.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[41]
Wang, B.; Ge, Z.; Wu, Y.; Zha, Y.; Zhang, X.; Yan, Y.; Xie, Y. MFGE8 is down-regulated in cardiac fibrosis and attenuates endothelial-mesenchymal transition through Smad2/3-Snail signalling pathway. J. Cell. Mol. Med., 2020, 24(21), 12799-12812.
[http://dx.doi.org/10.1111/jcmm.15871] [PMID: 32945126]
[42]
Chou, W.C.; Prokova, V.; Shiraishi, K.; Valcourt, U.; Moustakas, A.; Hadzopoulou-Cladaras, M.; Zannis, V.I.; Kardassis, D. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol. Biol. Cell, 2003, 14(3), 1279-1294.
[http://dx.doi.org/10.1091/mbc.e02-07-0375] [PMID: 12631740]
[43]
Zhang, L.; Li, Z.; Fan, Y.; Li, H.; Li, Z.; Li, Y. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling. Int. J. Biochem. Cell Biol., 2015, 64, 202-211.
[http://dx.doi.org/10.1016/j.biocel.2015.04.012] [PMID: 25934251]
[44]
Liu, L.; Wang, Y.; Yan, R.; Li, S.; Shi, M.; Xiao, Y.; Guo, B. Oxymatrine inhibits renal tubular emt induced by high glucose via upregulation of SnoN and inhibition of TGF-β1/smad signaling pathway. PLoS One, 2016, 11(3), e0151986.
[http://dx.doi.org/10.1371/journal.pone.0151986] [PMID: 27010330]
[45]
Kim, J.; Kong, J.; Chang, H.; Kim, H.; Kim, A. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget, 2016, 7(51), 85021-85032.
[http://dx.doi.org/10.18632/oncotarget.13116] [PMID: 27829223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy