Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Identification of Potential Drug Therapy for Dermatofibrosarcoma Protuberans with Bioinformatics and Deep Learning Technology

Author(s): Muge Liu, Fan Yang and Yingbin Xu*

Volume 18, Issue 5, 2022

Published on: 27 September, 2022

Page: [393 - 405] Pages: 13

DOI: 10.2174/1573409918666220816112206

Price: $65

Abstract

Background: Dermatofibrosarcoma protuberans (DFSP) is a rare mesenchymal tumor that is primarily treated with surgery. Targeted therapy is a promising approach to help reduce the high rate of recurrence. This study aims to identify the potential target genes and explore the candidate drugs acting on them effectively with computational methods.

Methods: Identification of genes associated with DFSP was conducted using the text mining tool pubmed2ensembl. Further gene screening was carried out by conducting Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein-Protein Interaction (PPI) network was constructed by using the Search Tools for the Retrieval of Interacting (STRING) database and visualized in Cytoscape. The gene candidates were identified after a literature review. Drugs targeting these genes were selected from Pharmaprojects. The binding affinity scores of Drug-Target Interaction (DTI) were predicted by a deep learning algorithm Deep Purpose.

Results: A total of 121 genes were found to be associated with DFSP by text mining. The top 3 statistically functionally enriched pathways of GO and KEGG analysis included 36 genes, and 18 hub genes were further screened out by constructing a PPI networking and literature retrieval. A total of 42 candidate drugs targeted at hub genes were found by Pharmaprojects under our restrictions. Finally, 10 drugs with top affinity scores were predicted by DeepPurpose, including 3 platelet-derived growth factor receptor beta kinase (PDGFRB) inhibitors, 2 platelet-derived growth factor receptor alpha kinase (PDGFRA) inhibitors, 2 Erb-B2 receptor tyrosine kinase 2 (ErbB-2) inhibitors, 1 tumor protein p53 (TP53) stimulant, 1 vascular endothelial growth factor receptor (VEGFR) antagonist, and 1 prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitor.

Conclusion: Text mining and bioinformatics are useful methods for gene identification in drug discovery. DeepPurpose is an efficient and operative deep learning tool for predicting the DTI and selecting the drug candidates.

Keywords: Dermatofibrosarcoma protuberans, drug discovery, text mining, deep learning, deep purpose, DTI.

« Previous
Graphical Abstract
[1]
MOORE, K.; CHANG, M.S.; WEISS, J.; Suzanne, M.O.; Rebecca, I.H.; WEISS, J. Racial and ethnic differences in the surgical treatment of dermatofibrosarcoma protuberans: A retrospective cohort analysis. J. Am. Acad. Dermatol., 2021, 87(1), 245-247.
[http://dx.doi.org/10.1016/j.jaad.2021.08.010]
[2]
DURACK, A.; GRAN, S.; GARDINER, M.D. A 10-year review of surgical management of dermatofibrosarcoma protuberans. Br. J. Dermatol., 2021, 184(4), 731-739.
[http://dx.doi.org/10.1111/bjd.19346]
[3]
BUCK, D.W.; KIM, J.Y.S; ALAM, M; Vinay, R; Sarah, J; Caitlin, M.C; Gregory, A.D; Jeffrey, D.W Multidisciplinary approach to the management of dermatofibrosarcoma protuberans. J. Am. Acad. Dermatol., 2012, 67(5), 861-866.
[http://dx.doi.org/10.1016/j.jaad.2012.01.039]
[4]
Kim, J.; Yasuda, M.; Suto, M.; Chikako, K.; Sei-Ichiro, M.; Masahiko, O.; Osamu, I. Unresectable local recurrence of dermatofibrosarcoma protuberans with fibrosarcomatous change treated with carbon-ion radiotherapy after neoadjuvant chemotherapy. J. Dermatol., 2019, 46(12), e457-e458.
[http://dx.doi.org/10.1111/1346-8138.15056]
[5]
Brough, K.R.; Youssef, M.J.; Winchester, D.S.; Christian, L.B.; Basel, A.S.; Randall, K.R.; Basel, A.S.; Basel, A.S. Mohs Micrographic surgery for dermatofibrosarcoma protuberans in 7 Patients Aged 10 years and younger. J. Am. Acad. Dermatol., 2021, 86(6), 1429-1431.
[http://dx.doi.org/10.1016/j.jaad.2021.06.856]
[6]
David, M.P.; Funderburg, A.; Selig, J.P.; David, B.; Pip, C.; Lee, C.; Gayle, D.; Lori, H.; Tammi, H.; Jerad, M.G. Perspectives of patients with dermatofibrosarcoma protuberans on diagnostic delays, surgical outcomes, and nonprotuberance. JAMA Netw. Open, 2019, 2(8), e1910413.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.10413]
[7]
Kurlander, D.E.; Martires, K.J.; Chen, Y.; Jill, S.B.S.; Jeremy, S.B. Risk of subsequent primary malignancies after dermatofibrosarcoma protuberans diagnosis: A national study. J. Am. Acad. Dermatol., 2013, 68(5), 790-796.
[http://dx.doi.org/10.1016/j.jaad.2012.10.040]
[8]
Park, S.; Cho, S.; Kim, M.; Ji, U.P.; Eui, C.J.; Euno, C.; Jeong, H.P.; Cheol, L.; Mee, S.C. Dermatofibrosarcoma protuberans: A retrospective study of clinicopathologic features and related Akt/MTOR, STAT3, ERK, Cyclin D1, and PD-L1 expression. J. Am. Acad. Dermatol., 2018, 79(5), 843-852.
[http://dx.doi.org/10.1016/j.jaad.2018.05.016]
[9]
Navarrete-Dechent, C.; Mori, S.; Barker, C.A.; Mark, A.D.; Kishwer, S.N. Imatinib treatment for locally advanced or metastatic dermatofibrosarcoma protuberans: A systematic review. JAMA Dermatol., 2019, 155(3), 361-369.
[http://dx.doi.org/10.1001/jamadermatol.2018.4940]
[10]
Ugure, S.; Mentzel, T.; Utikal, J.; Peter, H.; Peter, M.; Claudia, P.; Meinhard, S.; Axel, H.; Rüdiger, H.; Eckhardt, K.; Ivonne, K.; Martin, L.; Jürgen, C.B.; Philip, S.; Dirk, S. Neoadjuvant imatinib in advanced primary or locally recurrent dermatofibrosarcoma protuberans: A multicenter phase II DeCOG trial with long-term follow-up. Clin. Cancer Res., 2014, 20(2), 499-510.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1411]
[11]
Martínez-Trufero, J.; Cruz, J.; Gómez-Mateo, M.C.; Daniel, B.; Luis, J.F.; Javier, L.; Ana, S.; Xavier, G.D.M.; Rosa, A.; Raquel, C.; Hernández-León, C.N.; Gloria, M.; Nadia, H.; Andrés, R.; Virginia, M.; Jose, M.A.; Cristina, M.; Claudia, M.V.M.; Javier, M.B. Uncommon and peculiar soft tissue sarcomas: Multidisciplinary review and practical recommendations for diagnosis and treatment. Spanish group for sarcoma research (GEIS – GROUP). Part I. Cancer Treat. Rev., 2021, 99, 102259.
[http://dx.doi.org/10.1016/j.ctrv.2021.102259]
[12]
What is the best surgical treatment for dermatofibrosarcoma protuberans? Br. J. Dermatol., 2021, 184(4), e126-e147.
[http://dx.doi.org/10.1111/bjd.19837] [PMID: 33835484]
[13]
Jackson, K.; Nahata, M.C. Rising cost of anticancer medications in the United States. Ann. Pharmacother., 2017, 51(8), 706-710.
[http://dx.doi.org/10.1177/1060028017702406] [PMID: 28707550]
[14]
Cavasotto, C.N.; Di Filippo, J.I.; Cavasotto, C.N. Artificial intelligence in the early stages of drug discovery. Arch. Biochem. Biophys., 2021, 698, 108730.
[http://dx.doi.org/10.1016/j.abb.2020.108730]
[15]
Abel, R.; Wang, L.; Harder, E.D. Advancing drug discovery through enhanced free energy calculations. Acc. Chem. Res., 2017, 50(7), 1625-1632.
[http://dx.doi.org/10.1021/acs.accounts.7b00083]
[16]
Rebholz-Schuhmann, D.; Oellrich, A.; Hoehndorf, R. Text-mining solutions for biomedical research: Enabling integrative biology. Nat. Rev. Genet., 2012, 13(12), 829-839.
[http://dx.doi.org/10.1038/nrg3337] [PMID: 23150036]
[17]
Wainberg, M.; Merico, D.; Delong, A.; Brendan, J.F. Deep learning in biomedicine. Nat. Biotechnol., 2018, 36(9), 829-838.
[http://dx.doi.org/10.1038/nbt.4233]
[18]
Chandrasekaran, S.N.; Ceulemans, H.; Boyd, J.D.; Carpenter, A.E. Image-based profiling for drug discovery: Due for a machine-learning upgrade? Nat. Biotechnol., 2018, 36(9), 829-838.
[http://dx.doi.org/10.1038/s41573-020-00117-w]
[19]
Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics, 2018, 34(17), i821-i829.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[20]
Huang, K.; Fu, T.; Glass, K.N.; Marinka, Z.; Cao, X.; Jimeng, S. DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics, 2021, 36(22–23), 5545-5547.
[http://dx.doi.org/10.1093/bioinformatics/btaa1005]
[21]
Jones, A.V.; Cross, N.C. Oncogenic derivatives of platelet-derived growth factor receptors. Cell. Mol. Life Sci., 2004, 61(23), 2912-2923.
[http://dx.doi.org/10.1007/s00018-004-4272-z] [PMID: 15583853]
[22]
Roskoski, R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol. Res., 2018, 129, 65-83.
[http://dx.doi.org/10.1016/j.phrs.2018.01.021]
[23]
Nakamura, I.; Kariya, Y.; Okada, E. A novel chromosomal translocation associated with COL1A2- PDGFB gene fusion in dermatofibrosarcoma protuberans: PDGF expression as a new diagnostic tool. JAMA Dermatology, 2015, 151(12), 1330-1337.
[http://dx.doi.org/10.1001/jamadermatol.2015.2389]
[24]
Takahira, T.; Oda, Y.; Tamiya, S.; Koichi, H.; Hidetaka, Y.; Chikashi, K.; Teiyu, I.; Naomi, T.; Yukihide, I.; Masazumi, T. Detection of COL1A1-PDGFB fusion transcripts and PDGFB/PDGFRB MRNA expression in dermatofibrosarcoma protuberans. Mod. Pathol., 2007, 20(6), 668-675.
[http://dx.doi.org/10.1038/modpathol.3800783]
[25]
Kashima, A.; Yamashita, A.; Moriguchi, S.; Marutsuka, K.; Tsumori, K.; Yoshizato, K.; Ishihara, A.; Setoyama, M.; Asada, Y. Detection of COL1A1-PDGFB fusion transcripts and platelet-derived growth factor α and β receptors in giant cell fibroblastoma of the postsacrococcygeal region. Br. J. Dermatol., 2006, 154(5), 983-987.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07146.x]
[26]
Edelweiss, M.; Malpica, A. Dermatofibrosarcoma protuberans of the vulva: A clinicopathologic and immunohistochemical study of 13 cases. Am. J. Surg. Pathol., 2010, 34(3), 393-400.
[http://dx.doi.org/10.1097/PAS.0b013e3181cf7fc1] [PMID: 20139758]
[27]
HIRAKI-HOTOKEBUCHI, Y.; YAMADA, Y.; KOHASHI, K.; Hidetaka, Y.; Makoto, E.; Nokitaka, S.; Kuma, Y.; Nokitaka, S.; Takamichi, I.; Yukihide, I.; Masutaka, F.; Yoshinao, O. Alteration of PDGFRβ-Akt-MTOR pathway signaling in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Hum. Pathol., 2017, 67, 60-68.
[http://dx.doi.org/10.1016/j.humpath.2017.07.001]
[28]
Beaziz, Y.; Battistella, M.; Delyon, J.; Cécile, F.; Oren, M.; Cécile, P.; Christine, L.M.; Laetitia, D.M.; Nicole, B-S.; Matthieu, R-R.; Anouk, W.P.; Delphine, K.; Céleste, L.; Barouyr, B. Long-term outcome of neoadjuvant tyrosine kinase inhibitors followed by complete surgery in locally advanced dermatofibrosarcoma protuberans. Cancers, 2021, 13(9), 2224.
[http://dx.doi.org/10.3390/cancers13092224]
[29]
Foster, H.; Knox, S.; Ganti, A.K.; Brian, J.H.; Michael, K.; Ketki, T.; Ralph, L.; Anil, P. HER-2 / neu overexpression detected by immunohistochemistry in soft tissue sarcomas 2003, 26(2), 188-191.
[30]
Abbott, J.J.; Oliveira, A.M.; Nascimento, A.G. The prognostic significance of fibrosarcomatous transformation in dermatofibrosarcoma protuberans. Am. J. Surg. Pathol., 2006, 30(4), 436-443.
[http://dx.doi.org/10.1097/00000478-200604000-00002] [PMID: 16625088]
[31]
Jung, I.; Gurzu, S.; Turdean, S.; Diana, C.; Danut, I.S.; Mircea, G.; Tivadar, B. Relationship of endothelial area with VEGF-A, COX-2, Maspin, c-KIT, and DOG-1 immunoreactivity in liposarcomas versus non-lipomatous soft tissue tumors. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1776-1782.
[32]
Yuan, Z.; Zhu, Z.; Zhu, F.; Yuan, Z.; Feixue, D.; Yinmin, W.; Xiuxia, W.; Xusong, L.; Jun, Y.; Fei, L.; Di, S. Impact of human adipose tissue-derived stem cells on dermatofibrosarcoma protuberans cells in an indirect co-culture: An in vitro study. Stem Cell Res. Ther., 2021, 12(1), 1-16.
[http://dx.doi.org/10.1186/s13287-021-02512-5]
[33]
Adler, N.; Tsabari, C.; Sulkes, J.; Dean, A.E.; Meora, F. Cyclooxygenase-2 expression in dermatofibroma and dermatofibrosarcoma protuberans. J. Cutaneous Pathol., 2008, 35(6), 532-535.
[http://dx.doi.org/10.1111/j.1600-0560.2007.00855.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy