Review Article

血管抑素M:动脉粥样硬化新靶点的风险和优势

卷 23, 期 14, 2022

发表于: 13 September, 2022

页: [1345 - 1369] 页: 25

弟呕挨: 10.2174/1389450123666220811101032

价格: $65

摘要

背景:心血管疾病(CVD)是世界范围内死亡的主要原因。据预测,到2030年,每年约有2360万人死于心血管疾病。因此,非常需要一种有效的治疗方法来对抗这种疾病。欧洲心血管靶点发现(CarTarDis)联盟将Oncostatin M (OSM)确定为动脉粥样硬化的潜在治疗靶点。调节OSM(一种白细胞介素(IL)-6家族细胞因子)的益处已经被用于多种适应症的研究。然而,正如数十年的高流失率所强调的那样,药物靶标的成功取决于疗效和不良事件风险之间的微妙平衡。因此,安全问题不应被忽视。 目的:在这篇综述中,对动脉粥样硬化治疗中的OSM抑制进行了风险/优势分析。首先,描述了OSM信号的特征及其在动脉粥样硬化中的作用。接下来,概述在体外,在体内,和临床发现有关的好处和风险调节OSM在主要器官系统提供。基于OSM的生物学功能和表达谱以及药物干预研究,对抑制该靶点的安全问题进行了识别、评估,并对目标人群进行了排序。 结论:虽然OSM可能对动脉粥样硬化有治疗价值,但药物开发也应关注消除本文所确定的主要安全问题的风险:组织重构、血管生成、出血、贫血和NMDA-和谷氨酸诱导的神经毒性。为了获得最佳的治疗效果,可能需要密切监测和/或排除有各种共病的患者。

关键词: onscoatin M, OSM,动脉粥样硬化,风险-优势分析,靶标安全性评估,风险评估。

« Previous
图形摘要
[1]
Deller MC, Hudson KR, Ikemizu S, Bravo J, Yvonne Jones E, Heath JK. Crystal structure and functional dissection of the cytostatic cytokine oncostatin M. Structure 2000; 8: 863-74.
[http://dx.doi.org/10.1016/S0969-2126(00)00176-3]
[2]
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18(12): 773-89.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[3]
Garbers C, Hermanns HM, Schaper F, et al. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23(3): 85-97.
[http://dx.doi.org/10.1016/j.cytogfr.2012.04.001] [PMID: 22595692]
[4]
Taga T, Kishimoto T. GP130 and the interleukin-6 family of cytokines. Annu Rev Immunol 1997; 15: 797-819.
[5]
West NR. Coordination of immune-stroma crosstalk by IL-6 family cytokines. Front Immunol 2019; 10: 1093.
[6]
Mosley B, De Imus C, Friend D, et al. Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation. J Biol Chem 1996; 271(51): 32635-43.
[http://dx.doi.org/10.1074/jbc.271.51.32635] [PMID: 8999038]
[7]
Adrian-Segarra JM, Sreenivasan K, Gajawada P, Lörchner H, Braun T, Pöling J. The AB loop of oncostatin M (OSM) determines species-specific signaling in humans and mice. J Biol Chem 2018; 293(52): 20181-99.
[http://dx.doi.org/10.1074/jbc.RA118.004375] [PMID: 30373773]
[8]
Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 2004; 5(7): 752-60.
[http://dx.doi.org/10.1038/ni1084] [PMID: 15184896]
[9]
Gibbs BF, Patsinakidis N, Raap U. Role of the pruritic cytokine IL-31 in autoimmune skin diseases. Front Immunol 2019; 10: 1383.
[http://dx.doi.org/10.3389/fimmu.2019.01383] [PMID: 31281316]
[10]
Walker EC, Johnson RW, Hu Y, et al. Murine oncostatin m acts via leukemia inhibitory factor receptor to phosphorylate Signal Transducer and Activator of Transcription 3 (STAT3) but not STAT1, an effect that protects bone mass. J Biol Chem 2016; 291(41): 21703-16.
[http://dx.doi.org/10.1074/jbc.M116.748483] [PMID: 27539849]
[11]
Walker EC, McGregor NE, Poulton IJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 2010; 120(2): 582-92.
[http://dx.doi.org/10.1172/JCI40568] [PMID: 20051625]
[12]
Stephens JM, Elks CM, Oncostatin M, Oncostatin M. Potential implications for malignancy and metabolism. Curr Pharm Des 2017; 23(25): 3645-57.
[http://dx.doi.org/10.2174/1381612823666170704122559] [PMID: 28677505]
[13]
West NR, Owens BMJ, Hegazy AN. The oncostatin M-stromal cell axis in health and disease. Scand J Immunol 2018; 88(3): e12694.
[http://dx.doi.org/10.1111/sji.12694] [PMID: 29926972]
[14]
Guo S, Li ZZ, Gong J, et al. Oncostatin M confers neuroprotection against ischemic stroke. J Neurosci 2015; 35(34): 12047-62.
[http://dx.doi.org/10.1523/JNEUROSCI.1800-15.2015 ] [PMID: 26311783]
[15]
Zhang X, Zhu D, Wei L, et al. OSM enhances angiogenesis and improves cardiac function after myocardial infarction. Biomed Res Int 2015; 2015: 317905.
[http://dx.doi.org/10.1155/2015/317905]
[16]
Stawski L, Trojanowska M. Oncostatin M and its role in fibrosis Connective Tissue Research. Taylor and Francis Ltd 2019; Vol. 60: pp. 40-9.
[17]
West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 2017; 23(5): 579-89.
[http://dx.doi.org/10.1038/nm.4307] [PMID: 28368383]
[18]
van Keulen D, Pouwer MG, Pasterkamp G, et al. Inflammatory cytokine oncostatin M induces endothelial activation in macro- and microvascular endothelial cells and in APOE*3Leiden. CETP mice. PLoS One 2018; 13(10): e0204911.
[http://dx.doi.org/10.1371/journal.pone.0204911] [PMID: 30273401]
[19]
Song P, Fang Z, Wang H, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: A systematic review, meta-analysis, and modelling study. Lancet Glob Health 2020; 8(5): e721-9.
[http://dx.doi.org/10.1016/S2214-109X(20)30117-0 ] [PMID: 32353319]
[20]
Roberts RA. Understanding drug targets: No such thing as bad news. Drug Discov Today 2018; 23(12): 1925-8.
[http://dx.doi.org/10.1016/j.drudis.2018.05.028] [PMID: 29803936]
[21]
Hornberg JJ, Mow T. How can we discover safer drugs? Future Med Chem Future Sci 2014; 6: 481-3.
[22]
Venhorst J, Verschuren L, Thougaard AV, Hornberg JJ, Rankouhi TR. Predicting the safety of drug targets. In: Carini C, Fidock M, van Gool A, Eds. In: Handbook of Biomarkers and Precision Medicine. (1st.), Routledge CRC Press, Chapman and Hall/CRC 2019.
[http://dx.doi.org/10.1201/9780429202872-8]
[23]
Emmerich CH, Gamboa LM, Hofmann MCJ, et al. Improving target assessment in biomedical research: The GOT-IT recommendations. Nat Rev Drug Discov 2021; 20(1): 64-81.
[http://dx.doi.org/10.1038/s41573-020-0087-3] [PMID: 33199880]
[24]
Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362(6423): 801-9.
[http://dx.doi.org/10.1038/362801a0] [PMID: 8479518]
[25]
Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5(1): 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[26]
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118(4): 535-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611 ] [PMID: 26892956]
[27]
Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013; 93(3): 1317-542.
[http://dx.doi.org/10.1152/physrev.00004.2012] [PMID: 23899566]
[28]
Nishibe T, Parry G, Ishida A, et al. Oncostatin M promotes biphasic tissue factor expression in smooth muscle cells: Evidence for Erk-1/2 activation. Blood 2001; 97(3): 692-9.
[http://dx.doi.org/10.1182/blood.v97.3.692] [PMID: 11157486]
[29]
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN Inflamm 2013; 2013: 512103.
[http://dx.doi.org/10.1155/2013/512103] [PMID: 24381786]
[30]
Albasanz-Puig A, Murray J, Preusch M, et al. Oncostatin M is expressed in atherosclerotic lesions: A role for Oncostatin M in the pathogenesis of atherosclerosis. Atherosclerosis 2011; 216(2): 292-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.02.003] [PMID: 21376322]
[31]
Demyanets S, Kaun C, Rychli K, et al. Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ. Basic Res Cardiol 2011; 106(2): 217-31.
[http://dx.doi.org/10.1007/s00395-010-0141-0] [PMID: 21174212]
[32]
Ichiki T, Jougasaki M, Setoguchi M, et al. Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am J Physiol - Hear Circ Physiol 2008; 294(2): H750-63.
[http://dx.doi.org/10.1152/ajpheart.00161.2007]
[33]
Kapoor D, Trikha D, Vijayvergiya R, Kaul D, Dhawan V. Conventional therapies fail to target inflammation and immune imbalance in subjects with stable coronary artery disease: A system-based approach. Atherosclerosis 2014; 237(2): 623-31.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.009 ] [PMID: 25463097]
[34]
Zhang X, Li J, Qin JJ, et al. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 2017; 58(5): 895-906.
[http://dx.doi.org/10.1194/jlr.M074112] [PMID: 28258089]
[35]
Tabibiazar R, Wagner RA, Ashley EA, et al. Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease. Physiol Genomics 2005; 22(2): 213-26.
[http://dx.doi.org/10.1152/physiolgenomics.00001.2005 ] [PMID: 15870398]
[36]
Li X, Zhang X, Wei L, Xia Y, Guo X. Relationship between serum oncostatin M levels and degree of coronary stenosis in patients with coronary artery disease. Clin Lab 2014; 60(1): 113-8.
[http://dx.doi.org/10.7754/Clin.Lab.2013.121245] [PMID: 24600984]
[37]
Vasse M, Pourtau J, Trochon V, et al. Oncostatin M induces angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999; 19(8): 1835-42.
[http://dx.doi.org/10.1161/01.atv.19.8.1835] [PMID: 10446061]
[38]
Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol 2017; 12: 18-34.
[39]
Fossey SL, Bear MD, Kisseberth WC, Pennell M, London CA. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 2011; 11: 125.
[http://dx.doi.org/10.1186/1471-2407-11-125] [PMID: 21481226]
[40]
Rychli K, Kaun C, Hohensinner PJ, et al. The inflammatory mediator oncostatin M induces angiopoietin 2 expression in endothelial cells in vitro and in vivo. J Thromb Haemost 2010; 8(3): 596-604.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03741.x ] [PMID: 20088942]
[41]
Mirshahi F, Vasse M, Tedgui A, et al. Oncostatin M induces procoagulant activity in human vascular smooth muscle cells by modulating the balance between tissue factor and tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2002; 13(5): 449-55.
[http://dx.doi.org/10.1097/00001721-200207000-00010 ] [PMID: 12138373]
[42]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301 ] [PMID: 26892962]
[43]
Modur V, Feldhaus MJ, Weyrich AS, et al. Oncostatin M is a proinflammatory mediator in vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules. J Clin Invest 1997; 100: 158-68.
[http://dx.doi.org/10.1172/JCI119508]
[44]
Schnittker D, Kwofie K, Ashkar A, Trigatti B, Richards CD. Oncostatin M and TLR-4 ligand synergize to induce MCP-1, IL-6, and VEGF in human aortic adventitial fibroblasts and smooth muscle cells. Mediators Inflamm 2013; 2013: 317503.
[45]
Setiadi H, Yago T, Liu Z, McEver RP. Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv 2019; 3(2): 168-83.
[http://dx.doi.org/10.1182/bloodadvances.2018026294 ] [PMID: 30670533]
[46]
Chen Q, Lv J, Yang W, et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019; 9(22): 6424-42.
[http://dx.doi.org/10.7150/thno.35528] [PMID: 31588227]
[47]
Yang X, Jia J, Yu Z, et al. Inhibition of JAK2/STAT3/SOCS3 signaling attenuates atherosclerosis in rabbit. BMC Cardiovasc Disord 2020; 20(1): 133.
[http://dx.doi.org/10.1186/s12872-020-01391-7] [PMID: 32169038]
[48]
NCT03816891 Study to assess the efficacy, safety, and tolerability of vixarelimab in reducing pruritus in Prurigo nodularis. ClinicalTrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03816891
[49]
Nnane IP, Han C, Jiao Q, Tam SH, Davis HM, Xu Z. Modification of the Fc region of a human anti-oncostatin M monoclonal antibody for higher affinity to FcRn receptor and extension of half-life in cynomolgus monkeys. Basic Clin Pharmacol Toxicol 2017; 121(1): 13-21.
[http://dx.doi.org/10.1111/bcpt.12761] [PMID: 28132416]
[50]
Reid J, Zamuner S, Edwards K, et al. in vivo affinity and target engagement in skin and blood in a first-time-in-human study of an anti-oncostatin M monoclonal antibody. Br J Clin Pharmacol 2018; 84(10): 2280-91.
[http://dx.doi.org/10.1111/bcp.13669] [PMID: 29900565]
[51]
Choy EH, Bendit M, McAleer D, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of an anti- oncostatin M monoclonal antibody in rheumatoid arthritis: Results from phase II randomized, placebo-controlled trials. Arthritis Res Ther 2013; 15(5): R132.
[http://dx.doi.org/10.1186/ar4312] [PMID: 24286335]
[52]
Gruson D, Ferracin B, Ahn SA, Rousseau MF. Elevation of plasma oncostatin M in heart failure. Future Cardiol 2017; 13(3): 219-27.
[http://dx.doi.org/10.2217/fca-2016-0063] [PMID: 28585906]
[53]
Kubin T, Pöling J, Kostin S, et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 2011; 9(5): 420-32.
[http://dx.doi.org/10.1016/j.stem.2011.08.013] [PMID: 22056139]
[54]
Xie J, Zhu S, Dai Q, et al. Oncostatin M was associated with thrombosis in patients with atrial fibrillation. Medicine (Baltimore) 2017; 96(18): e6806.
[http://dx.doi.org/10.1097/MD.0000000000006806 ] [PMID: 28471981]
[55]
Pöling J, Gajawada P, Richter M, et al. Therapeutic targeting of the oncostatin M receptor-β prevents inflammatory heart failure. Basic Res Cardiol 2014; 109(1): 396.
[http://dx.doi.org/10.1007/s00395-013-0396-3] [PMID: 24292852]
[56]
Sun D, Li S, Wu H, et al. Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity. J Cell Mol Med 2015; 19(6): 1296-307.
[http://dx.doi.org/10.1111/jcmm.12501] [PMID: 25752217]
[57]
Fan X, Hughes BG, Ali MAM, Chan BYH, Launier K, Schulz R. Matrix metalloproteinase-2 in oncostatin M-induced sarcomere degeneration in cardiomyocytes. Am J Physiol - Hear Circ Physiol 2016; 311(1): 183-9.
[58]
Azevedo PS, Polegato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016; 106(1): 62-9.
[http://dx.doi.org/10.5935/abc.20160005] [PMID: 26647721]
[59]
Hu J, Zhang L, Zhao Z, et al. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1951-61.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.004] [PMID: 27825852]
[60]
Abe H, Takeda N, Isagawa T, et al. Macrophage hypoxia signaling regulates cardiac fibrosis via oncostatin M. Nat Commun 2019; 10(1): 2824.
[http://dx.doi.org/10.1038/s41467-019-10859-w] [PMID: 31249305]
[61]
Li Y, Feng J, Song S, et al. Gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 2020; 142(10): 967-82.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044484] [PMID: 32600062]
[62]
Dai X, Wiernek S, Evans JP, Runge MS. Genetics of coronary artery disease and myocardial infarction. World J Cardiol 2016; 8(1): 1-23.
[http://dx.doi.org/10.4330/wjc.v8.i1.1] [PMID: 26839654]
[63]
NCT03041025 Proof of mechanism study of GSK2330811 in diffuse cutaneous systemic sclerosis. Clinical trialsgov Bethesda (MD): National Library of Medicine (US) 2021. Available from: https://clinicaltrials.gov/ct2/show/results/NCT03041025
[64]
Sebestyén V, Szűcs G, Páll D, et al. Electrocardiographic markers for the prediction of ventricular arrhythmias in patients with systemic sclerosis. Rheumatology 2020; 59(3): 478-86.
[http://dx.doi.org/10.1093/rheumatology/kez644] [PMID: 31943100]
[65]
Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol 2014; 6(9): 993-1005.
[http://dx.doi.org/10.4330/wjc.v6.i9.993] [PMID: 25276300]
[66]
Willeit K, Kiechl S. Atherosclerosis and atrial fibrillation-two closely intertwined diseases. Atherosclerosis 2014; 233(2): 679-81.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.082 ] [PMID: 24569021]
[67]
Schoepe R, McQuillan S, Valsan D, Teehan G. Atherosclerotic renal artery stenosis. Adv Exp Med Biol 2017; 956: 209-13.
[68]
de Leeuw PW, Postma CT, Spiering W, Kroon AA. Atherosclerotic renal artery stenosis: Should we intervene earlier? Curr Hypertens Rep 2018; 20(4): 35.
[http://dx.doi.org/10.1007/s11906-018-0829-3] [PMID: 29637445]
[69]
Manavathongchai S, Bian A, Rho YH, et al. Inflammation and hypertension in rheumatoid arthritis. J Rheumatol 2013; 40(11): 1806-11.
[http://dx.doi.org/10.3899/jrheum.130394] [PMID: 23996293]
[70]
Chen SH, Benveniste EN, Oncostatin M, Oncostatin M. A pleiotropic cytokine in the central nervous system. Cytokine Growth Factor Rev 2004; 15(5): 379-91.
[http://dx.doi.org/10.1016/j.cytogfr.2004.06.002] [PMID: 15450253]
[71]
Wang W, Wang WH, Azadzoi KM, Su N, Dai P, Sun J, et al. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci Rep 2015; 2016(6): 1-14.
[PMID: 26935990]
[72]
Esashi E, Ito H, Minehata K, Saito S, Morikawa Y, Miyajima A. Oncostatin M deficiency leads to thymic hypoplasia, accumulation of apoptotic thymocytes and glomerulonephritis. Eur J Immunol 2009; 39(6): 1664-70.
[http://dx.doi.org/10.1002/eji.200839149] [PMID: 19384873]
[73]
Tanaka M, Hirabayashi Y, Sekiguchi T, Inoue T, Katsuki M, Miyajima A. Targeted disruption of oncostatin M receptor results in altered hematopoiesis. Blood 2003; 102(9): 3154-62.
[http://dx.doi.org/10.1182/blood-2003-02-0367] [PMID: 12855584]
[74]
Matthews VB, Knight B, Tirnitz-Parker JEE, Boon J, Olynyk JK, Yeoh GCT. Oncostatin M induces an acute phase response but does not modulate the growth or maturation-status of liver progenitor (oval) cells in culture. Exp Cell Res 2005; 306(1): 252-63.
[http://dx.doi.org/10.1016/j.yexcr.2005.02.010] [PMID: 15878349]
[75]
Richards CD, Brown TJ, Shoyab M, Baumann H, Gauldie J. Recombinant oncostatin M stimulates the production of acute phase proteins in HepG2 cells and rat primary hepatocytes in vitro. J Immunol 1992; 148(6): 1731-6.
[PMID: 1371787]
[76]
Richards CD, Kerr C, Tanaka M, et al. Regulation of tissue inhibitor of metalloproteinase-1 in fibroblasts and acute phase proteins in hepatocytes in vitro by mouse oncostatin M, cardiotrophin-1, and IL-6. J Immunol 1997; 159(5): 2431-7.
[PMID: 9278335]
[77]
Ruprecht K, Kuhlmann T, Seif F, et al. Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 2001; 60(11): 1087-98.
[http://dx.doi.org/10.1093/jnen/60.11.1087] [PMID: 11706938]
[78]
Sugaya M, Fang L, Cardones AR, et al. Oncostatin M enhances CCL21 expression by microvascular endothelial cells and increases the efficiency of dendritic cell trafficking to lymph nodes. J Immunol 2006; 177(11): 7665-72.
[http://dx.doi.org/10.4049/jimmunol.177.11.7665] [PMID: 17114436]
[79]
Korzus E, Nagase H, Rydell R, Travis J. The mitogen-activated protein kinase and JAK-STAT signaling pathways are required for an oncostatin M-responsive element-mediated activation of matrix metalloproteinase 1 gene expression. J Biol Chem 1997; 272(2): 1188-96.
[http://dx.doi.org/10.1074/jbc.272.2.1188] [PMID: 8995420]
[80]
Ikeda S, Sato K, Takeda M, et al. Oncostatin M is a novel biomarker for coronary artery disease - A possibility as a screening tool of silent myocardial ischemia for diabetes mellitus. Int J Cardiol Heart Vasc 2021; 35: 100829.
[http://dx.doi.org/10.1016/j.ijcha.2021.100829] [PMID: 34235245]
[81]
Huang J, Khademi M, Fugger L, et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc Natl Acad Sci USA 2020; 117(23): 12952-60.
[http://dx.doi.org/10.1073/pnas.1912839117] [PMID: 32457139]
[82]
Reale M, Iarlori C, Gambi F, Lucci I, Salvatore M, Gambi D. Acetylcholinesterase inhibitors effects on oncostatin-M, interleukin-1 β and interleukin-6 release from lymphocytes of Alzheimer’s disease patients. Exp Gerontol 2005; 40(3): 165-71.
[http://dx.doi.org/10.1016/j.exger.2004.12.003] [PMID: 15763393]
[83]
Znoyko I, Sohara N, Spicer SS, Trojanowska M, Reuben A. Expression of oncostatin M and its receptors in normal and cirrhotic human liver. J Hepatol 2005; 43(5): 893-900.
[http://dx.doi.org/10.1016/j.jhep.2005.04.020] [PMID: 16169119]
[84]
Foglia B, Sutti S, Pedicini D, et al. Oncostatin M, a profibrogenic mediator overexpressed in non-alcoholic fatty liver disease, stimulates migration of hepatic myofibroblasts. Cells 2019; 9(1): E28.
[http://dx.doi.org/10.3390/cells9010028] [PMID: 31861914]
[85]
Sanchez-Infantes D, White UA, Elks CM, et al. Oncostatin M is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99(2): E217-25.
[http://dx.doi.org/10.1210/jc.2013-3555] [PMID: 24297795]
[86]
Piquer-Garcia I, Campderros L, Taxerås SD, et al. A role for oncostatin M in the impairment of glucose homeostasis in obesity. J Clin Endocrinol Metab 2020; 105(3): dgz090.
[http://dx.doi.org/10.1210/clinem/dgz090] [PMID: 31606738]
[87]
Hurst SM, McLoughlin RM, Monslow J, et al. Secretion of oncostatin M by infiltrating neutrophils: Regulation of IL-6 and chemokine expression in human mesothelial cells. J Immunol 2002; 169(9): 5244-51.
[http://dx.doi.org/10.4049/jimmunol.169.9.5244] [PMID: 12391243]
[88]
Elbjeirami WM, Truong LD, Tawil A, et al. Early differential expression of oncostatin M in obstructive nephropathy. J Interferon Cytokine Res 2010; 30(7): 513-23.
[http://dx.doi.org/10.1089/jir.2009.0105] [PMID: 20626292]
[89]
Beigel F, Friedrich M, Probst C, et al. Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members. PLoS One 2014; 9(4): e93498.
[http://dx.doi.org/10.1371/journal.pone.0093498] [PMID: 24710357]
[90]
Verstockt B, Verstockt S, Dehairs J, et al. Low TREM1 expression in whole blood predicts anti-TNF response in inflammatory bowel disease. EBioMedicine 2019; 40: 733-42.
[http://dx.doi.org/10.1016/j.ebiom.2019.01.027] [PMID: 30685385]
[91]
Lee HM, Cho JG, Kang HJ, et al. Expression of oncostatin M in chronic obstructive sialadenitis of the submandibular gland. Ann Otol Rhinol Laryngol 2008; 117(5): 347-52.
[http://dx.doi.org/10.1177/000348940811700504] [PMID: 18564531]
[92]
Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol 2015; 136(3): 737-746.e4.
[http://dx.doi.org/10.1016/j.jaci.2015.01.043] [PMID: 25840724]
[93]
Boniface K, Diveu C, Morel F, et al. Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation. J Immunol 2007; 178(7): 4615-22.
[http://dx.doi.org/10.4049/jimmunol.178.7.4615] [PMID: 17372020]
[94]
Grenier A, Combaux D, Chastre J, et al. Oncostatin M production by blood and alveolar neutrophils during acute lung injury. Lab Invest 2001; 81(2): 133-41.
[http://dx.doi.org/10.1038/labinvest.3780220] [PMID: 11232634]
[95]
Simpson JL, Baines KJ, Boyle MJ, Scott RJ, Gibson PG, Oncostatin M. (OSM) is increased in asthma with incompletely reversible airflow obstruction. Exp Lung Res 2009; 35(9): 781-94.
[http://dx.doi.org/10.3109/01902140902906412] [PMID: 19916861]
[96]
Pothoven KL, Norton JE, Suh LA, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol 2017; 139(6): 1966-1978.e9.
[http://dx.doi.org/10.1016/j.jaci.2016.10.039] [PMID: 27993536]
[97]
Kang HJ, Kang JS, Lee SH, et al. Upregulation of oncostatin m in allergic rhinitis. Laryngoscope 2005; 115(12): 2213-6.
[http://dx.doi.org/10.1097/01.mlg.0000187819.89889.4a] [PMID: 16369169]
[98]
Baines KJ, Simpson JL, Gibson PG. Innate immune responses are increased in chronic obstructive pulmonary disease. PLoS One 2011; 6(3): e18426.
[http://dx.doi.org/10.1371/journal.pone.0018426] [PMID: 21483784]
[99]
Mozaffarian A, Brewer AW, Trueblood ES, et al. Mechanisms of oncostatin M-induced pulmonary inflammation and fibrosis. J Immunol 2008; 181(10): 7243-53.
[http://dx.doi.org/10.4049/jimmunol.181.10.7243] [PMID: 18981146]
[100]
Mashimo K, Usui-Ouchi A, Ito Y, et al. Role of oncostatin M in the pathogenesis of vernal keratocon junctivitis: Focus on tissue remodeling. Jpn J Ophthalmol 2021; 65(1): 144-53.
[http://dx.doi.org/10.1007/s10384-020-00791-8] [PMID: 33403505]
[101]
Guihard P, Boutet MA, Brounais-Le Royer B, et al. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol 2015; 185(3): 765-75.
[http://dx.doi.org/10.1016/j.ajpath.2014.11.008] [PMID: 25559270]
[102]
Cross A, Edwards SW, Bucknall RC, Moots RJ. Secretion of oncostatin M by neutrophils in rheumatoid arthritis. Arthritis Rheum 2004; 50(5): 1430-6.
[http://dx.doi.org/10.1002/art.20166] [PMID: 15146412]
[103]
Manicourt DH, Poilvache P, Van Egeren A, Devogelaer JP, Lenz ME, Thonar EJMA. Synovial fluid levels of tumor necrosis factor α and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis. Arthritis Rheum 2000; 43(2): 281-8.
[http://dx.doi.org/10.1002/1529-0131(200002)43:2<281::AID-ANR7>3.0.CO;2-7] [PMID: 10693867]
[104]
Cawston TE, Curry VA, Summers CA, et al. The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. Arthritis Rheum 1998; 41(10): 1760-71.
[http://dx.doi.org/10.1002/1529-0131(199810)41:10<1760::AID-ART8>3.0.CO;2-M] [PMID: 9778217]
[105]
Yang X, Shao C, Duan L, et al. Oncostatin M promotes hepatic progenitor cell activation and hepatocarcinogenesis via macrophage-derived tumor necrosis factor-α. Cancer Lett 2021; 517: 46-54.
[http://dx.doi.org/10.1016/j.canlet.2021.05.039] [PMID: 34102284]
[106]
Tawara K, Bolin C, Koncinsky J, et al. OSM potentiates preintravasation events, increases CTC counts, and promotes breast cancer metastasis to the lung. Breast Cancer Res 2018; 20(1): 53.
[http://dx.doi.org/10.1186/s13058-018-0971-5] [PMID: 29898744]
[107]
Hanisch A, Dieterich KD, Dietzmann K, et al. Expression of members of the interleukin-6 family of cytokines and their receptors in human pituitary and pituitary adenomas. J Clin Endocrinol Metab 2000; 85(11): 4411-4.
[http://dx.doi.org/10.1210/jcem.85.11.7122] [PMID: 11095488]
[108]
Royuela M, Ricote M, Parsons MS, García-Tuñón I, Paniagua R, de Miguel MP. Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol 2004; 202(1): 41-9.
[http://dx.doi.org/10.1002/path.1476] [PMID: 14694520]
[109]
Wallace PM, MacMaster JF, Rouleau KA, et al. Regulation of inflammatory responses by oncostatin M. J Immunol 1999; 162(9): 5547-55.
[PMID: 10228036]
[110]
Langdon C, Kerr C, Hassen M, Hara T, Arsenault AL, Richards CD. Murine oncostatin M stimulates mouse synovial fibroblasts in vitro and induces inflammation and destruction in mouse joints in vivo. Am J Pathol 2000; 157(4): 1187-96.
[http://dx.doi.org/10.1016/S0002-9440(10)64634-2] [PMID: 11021823]
[111]
Houben E, Hellings N, Broux B. Oncostatin M, an underestimated player in the central nervous system. Front Immunol 2019; 10: 1165.
[http://dx.doi.org/10.3389/fimmu.2019.01165] [PMID: 31191538]
[112]
Elks CM, Stephens JM, Stephens JM. Oncostatin M modulation of lipid storage. Biology (Basel) 2015; 4(1): 151-60.
[http://dx.doi.org/10.3390/biology4010151] [PMID: 25689119]
[113]
Janssens K, Maheshwari A, Van den Haute C, et al. Oncostatin M protects against demyelination by inducing a protective microglial phenotype. Glia 2015; 63(10): 1729-37.
[http://dx.doi.org/10.1002/glia.22840] [PMID: 25921393]
[114]
Deerhake ME, Danzaki K, Inoue M, et al. Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity 2021; 54(3): 484-498.e8.
[http://dx.doi.org/10.1016/j.immuni.2021.01.004] [PMID: 33581044]
[115]
Sanchez AL, Langdon CM, Akhtar M, et al. Adenoviral transfer of the murine oncostatin M gene suppresses dextran-sodium sulfate-induced colitis. J Interferon Cytokine Res 2003; 23(4): 193-201.
[http://dx.doi.org/10.1089/107999003765027393] [PMID: 12856331]
[116]
Kim WM, Kaser A, Blumberg RS. A role for oncostatin M in inflammatory bowel disease. Nat Med 2017; 23(5): 535-6.
[http://dx.doi.org/10.1038/nm.4338] [PMID: 28475567]
[117]
Takata F, Sumi N, Nishioku T, et al. Oncostatin M induces functional and structural impairment of blood-brain barriers comprised of rat brain capillary endothelial cells. Neurosci Lett 2008; 441(2): 163-6.
[http://dx.doi.org/10.1016/j.neulet.2008.06.030] [PMID: 18603369]
[118]
Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res 2018; 371(2): 322-9.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.022] [PMID: 30142324]
[119]
Weissman S, Sinh P, Mehta TI, et al. Atherosclerotic cardiovascular disease in inflammatory bowel disease: The role of chronic inflammation. World J Gastrointest Pathophysiol 2020; 11(5): 104-13.
[http://dx.doi.org/10.4291/wjgp.v11.i5.104] [PMID: 32832194]
[120]
Sanjadi M, Rezvanie Sichanie Z, Totonchi H, Karami J, Rezaei R, Aslani S. Atherosclerosis and autoimmunity: A growing relationship. Int J Rheum Dis 2018; 21(5): 908-21.
[http://dx.doi.org/10.1111/1756-185X.13309] [PMID: 29671956]
[121]
Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M in hematopoietic organs. Dev Dyn 2002; 225(3): 327-31.
[http://dx.doi.org/10.1002/dvdy.10156] [PMID: 12412016]
[122]
Sato F, Miyaoka Y, Miyajima A, Tanaka M. Oncostatin M maintains the hematopoietic microenvironment in the bone marrow by modulating adipogenesis and osteogenesis. PLoS One 2014; 9(12): e116209.
[http://dx.doi.org/10.1371/journal.pone.0116209] [PMID: 25551451]
[123]
Okaya A, Kitanaka J, Kitanaka N, et al. Oncostatin M inhibits proliferation of rat oval cells, OC15-5, inducing differentiation into hepatocytes. Am J Pathol 2005; 166(3): 709-19.
[http://dx.doi.org/10.1016/S0002-9440(10)62292-4] [PMID: 15743783]
[124]
Mukouyama Y, Hara T, Xu M, et al. in vitro expansion of murine multipotential hematopoietic progenitors from the embryonic aorta-gonad-mesonephros region. Immunity 1998; 8(1): 105-14.
[http://dx.doi.org/10.1016/S1074-7613(00)80463-X] [PMID: 9462516]
[125]
Miyajima A, Kinoshita T, Tanaka M, Kamiya A, Mukouyama Y, Hara T. Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev 2000; 11(3): 177-83.
[http://dx.doi.org/10.1016/S1359-6101(00)00003-4] [PMID: 10817961]
[126]
Boisset JC, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 2010; 464(7285): 116-20.
[http://dx.doi.org/10.1038/nature08764] [PMID: 20154729]
[127]
Wallace PM, MacMaster JF, Rillema JR, Peng J, Burstein SA, Shoyab M. Thrombocytopoietic properties of oncostatin M. Blood 1995; 86(4): 1310-5.
[http://dx.doi.org/10.1182/blood.V86.4.1310.bloodjournal8641310] [PMID: 7632937]
[128]
Wallace PM, Macmaster JF, Rillema JR, et al. in vivo properties of oncostatin M. Ann N Y Acad Sci 1995; 762: 42-54.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb32313.x] [PMID: 7545375]
[129]
Kinoshita T, Miyajima A, Nakahata T. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. Japanese J Clin Immunol 1998; 21: 215-24.
[130]
Minehata K, Takeuchi M, Hirabayashi Y, et al. Oncostatin m maintains the hematopoietic microenvironment and retains hematopoietic progenitors in the bone marrow. Int J Hematol 2006; 84(4): 319-27.
[http://dx.doi.org/10.1532/IJH97.06090] [PMID: 17118758]
[131]
NCT04138043. Safety, Tolerability, Pharmacokinetics, Pharmacodynamics of GSK2330811 in Healthy Japanese Participants. ClinicalTrialsgov Bethesda (MD): National Library of Medicine (US) 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04138043
[132]
Kong W, Abidi P, Kraemer FB, Jiang JD, Liu J. In vivo activities of cytokine oncostatin m in the regulation of plasma lipid levels. J Lipid Res 2005; 46(6): 1163-71.
[http://dx.doi.org/10.1194/jlr.M400425-JLR200] [PMID: 15772430]
[133]
Zhou Y, Abidi P, Kim A, et al. Transcriptional activation of hepatic ACSL3 and ACSL5 by oncostatin m reduces hypertriglyceridemia through enhanced β-oxidation. Arterioscler Thromb Vasc Biol 2007; 27(10): 2198-205.
[http://dx.doi.org/10.1161/ATVBAHA.107.148429] [PMID: 17761945]
[134]
Turner J, Parsi M, Badireddy M. Anemia. StatPearls. Treasure Island, FL: StatPearls Publishing 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499994/
[135]
Jankowsky JL, Patterson PH. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 1999; 159(2): 333-46.
[http://dx.doi.org/10.1006/exnr.1999.7137] [PMID: 10506506]
[136]
Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: Comparison with neuronal degeneration and microglial activation. Neuroscience 2003; 122(2): 329-48.
[http://dx.doi.org/10.1016/S0306-4522(03)00593-1] [PMID: 14614900]
[137]
Ensoli F, Fiorelli V, Lugaresi A, et al. Lymphomononuclear cells from multiple sclerosis patients spontaneously produce high levels of oncostatin M, tumor necrosis factors α and β and interferon γ. Mult Scler 2002; 8(4): 284-8.
[http://dx.doi.org/10.1191/1352458502ms817oa] [PMID: 12166497]
[138]
Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M receptor β in a specific subset of nociceptive sensory neurons. Eur J Neurosci 2003; 17(11): 2287-98.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02681.x] [PMID: 12814362]
[139]
Morikawa Y, Tamura S, Minehata K, Donovan PJ, Miyajima A, Senba E. Essential function of oncostatin m in nociceptive neurons of dorsal root ganglia. J Neurosci 2004; 24(8): 1941-7.
[http://dx.doi.org/10.1523/JNEUROSCI.4975-03.2004] [PMID: 14985435]
[140]
Morikawa Y. Oncostatin M in the development of the nervous system. Anat Sci Int 2005; 80(1): 53-9.
[http://dx.doi.org/10.1111/j.1447-073x.2005.00100.x] [PMID: 15794131]
[141]
Langeslag M, Constantin CE, Andratsch M, Quarta S, Mair N, Kress M. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons. Mol Pain 2011; 7(1): 102.
[http://dx.doi.org/10.1186/1744-8069-7-102] [PMID: 22196363]
[142]
Ito Y, Yamamoto M, Li M, et al. Temporal expression of mRNAs for neuropoietic cytokines, interleukin-11 (IL-11), oncostatin M (OSM), cardiotrophin-1 (CT-1) and their receptors (IL-11Ralpha and OSMRbeta) in peripheral nerve injury. Neurochem Res 2000; 25(8): 1113-8.
[http://dx.doi.org/10.1023/A:1007674113440] [PMID: 11055749]
[143]
Slaets H, Nelissen S, Janssens K, et al. Oncostatin M reduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury. Mol Neurobiol 2014; 50(3): 1142-51.
[http://dx.doi.org/10.1007/s12035-014-8795-5] [PMID: 24996996]
[144]
Weiss TW, Samson AL, Niego B, et al. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006; 20(13): 2369-71.
[http://dx.doi.org/10.1096/fj.06-5850fje] [PMID: 17023520]
[145]
Moidunny S, Dias RB, Wesseling E, et al. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010; 114(6): 1667-77.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06881.x] [PMID: 20598020]
[146]
Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog Neurobiol 2014; 115(C): 157-88.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.006] [PMID: 24361499]
[147]
Peytrignet S, Denton CP, Lunt M, et al. Disability, fatigue, pain and their associates in early diffuse cutaneous systemic sclerosis: The European scleroderma observational study. Rheumatology (Oxford) 2018; 57(2): 370-81.
[http://dx.doi.org/10.1093/rheumatology/kex410] [PMID: 29207002]
[148]
Sousa-Neves J, Cerqueira M, Santos-Faria D, Afonso C, Teixeira F. Neuropathic pain in systemic sclerosis patients: A cross-sectional study. Reumatol Clin 2019; 15(6): e99-e101.
[http://dx.doi.org/10.1016/j.reumae.2017.12.010] [PMID: 29397326]
[149]
NHS UK Treatment - Rheumatoid arthritis 2019. Available from: https://www.nhs.uk/conditions/rheumatoid-arthritis/treatment/
[150]
Henkel J, Gärtner D, Dorn C, et al. Oncostatin M produced in Kupffer cells in response to PGE2: Possible contributor to hepatic insulin resistance and steatosis. Lab Invest 2011; 91(7): 1107-17.
[http://dx.doi.org/10.1038/labinvest.2011.47] [PMID: 21519329]
[151]
Hamada T, Sato A, Hirano T, et al. Oncostatin M gene therapy attenuates liver damage induced by dimethylnitrosamine in rats. Am J Pathol 2007; 171(3): 872-81.
[http://dx.doi.org/10.2353/ajpath.2007.060972] [PMID: 17640959]
[152]
Nakamura K, Nonaka H, Saito H, Tanaka M, Miyajima A. Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice. Hepatology 2004; 39(3): 635-44.
[http://dx.doi.org/10.1002/hep.20086] [PMID: 14999682]
[153]
Lázaro CA, Croager EJ, Mitchell C, et al. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology 2003; 38(5): 1095-106.
[http://dx.doi.org/10.1053/jhep.2003.50448] [PMID: 14578848]
[154]
Kamiya A, Kinoshita T, Ito Y, et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 1999; 18(8): 2127-36.
[http://dx.doi.org/10.1093/emboj/18.8.2127] [PMID: 10205167]
[155]
Lu Q, Shen H, Yu H, et al. F4/80+ kupffer cell-derived oncostatin m sustains the progression phase of liver regeneration through inhibition of tgf-β2 pathway. Molecules 2021; 26(8): 2231.
[http://dx.doi.org/10.3390/molecules26082231] [PMID: 33924385]
[156]
Matsuda R, Yamamichi N, Shimamoto T, et al. Gastroesophageal reflux disease-related disorders of systemic sclerosis based on the analysis of 66 patients. Digestion 2018; 98(4): 201-8.
[http://dx.doi.org/10.1159/000489848] [PMID: 30045036]
[157]
Ostovaneh MR, Ambale-Venkatesh B, Fuji T, et al. Association of liver fibrosis with cardiovascular diseases in the general population: The multi-ethnic study of atherosclerosis (MESA). Circ Cardiovasc Imaging 2018; 11(3): e007241.
[http://dx.doi.org/10.1161/CIRCIMAGING.117.007241] [PMID: 29523555]
[158]
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017; 8(1): 126-36.
[http://dx.doi.org/10.3945/an.116.013961] [PMID: 28096133]
[159]
Kanda J, Uchiyama T, Tomosugi N, Higuchi M, Uchiyama T, Kawabata H. Oncostatin M and leukemia inhibitory factor increase hepcidin expression in hepatoma cell lines. Int J Hematol 2009; 90(5): 545-52.
[http://dx.doi.org/10.1007/s12185-009-0443-x] [PMID: 19915946]
[160]
Chung B, Verdier F, Matak P, Deschemin JC, Mayeux P, Vaulont S. Oncostatin M is a potent inducer of hepcidin, the iron regulatory hormone. FASEB J 2010; 24(6): 2093-103.
[http://dx.doi.org/10.1096/fj.09-152561] [PMID: 20124431]
[161]
Andrews NC. Anemia of inflammation: The cytokine-hepcidin link. J Clin Invest 2004; 113(9): 1251-3.
[http://dx.doi.org/10.1172/JCI21441] [PMID: 15124013]
[162]
Kraml P. The role of iron in the pathogenesis of atherosclerosis. Physiol Res 2017; 66 (Suppl. 1): S55-67.
[http://dx.doi.org/10.33549/physiolres.933589] [PMID: 28379030]
[163]
Dabbagh AJ, Shwaery GT, Keaney JF Jr, Frei B. Effect of iron overload and iron deficiency on atherosclerosis in the hypercholesterolemic rabbit. Arterioscler Thromb Vasc Biol 1997; 17(11): 2638-45.
[http://dx.doi.org/10.1161/01.ATV.17.11.2638] [PMID: 9409237]
[164]
Sanchez-Infantes D, Stephens JM. Adipocyte oncostatin receptor regulates adipose tissue homeostasis and inflammation. Front Immunol 2021; 11: 612013.
[http://dx.doi.org/10.3389/fimmu.2020.612013] [PMID: 33854494]
[165]
Liu J, Grove RI, Vestal RE. Oncostatin M activates low density lipoprotein receptor gene transcription in sterol-repressed liver cells. Cell Growth Differ 1994; 5(12): 1333-8.
[PMID: 7696181]
[166]
Grove RI, Mazzucco CE, Radka SF, Shoyab M, Kiener PA. Oncostatin M up-regulates low density lipoprotein receptors in HepG2 cells by a novel mechanism. J Biol Chem 1991; 266(27): 18194-9.
[http://dx.doi.org/10.1016/S0021-9258(18)55254-6] [PMID: 1655740]
[167]
Miyaoka Y, Tanaka M, Naiki T, Miyajima A. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. J Biol Chem 2006; 281(49): 37913-20.
[http://dx.doi.org/10.1074/jbc.M606089200] [PMID: 17028188]
[168]
White UA, Stewart WC, Mynatt RL, Stephens JM. Neuropoietin attenuates adipogenesis and induces insulin resistance in adipocytes. J Biol Chem 2008; 283(33): 22505-12.
[http://dx.doi.org/10.1074/jbc.M710462200] [PMID: 18562323]
[169]
Song HY, Jeon ES, Kim JI, Jung JS, Kim JH. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 2007; 101(5): 1238-51.
[http://dx.doi.org/10.1002/jcb.21245] [PMID: 17226768]
[170]
Nawa K, Ikeno H, Matsuhashi N, Ogasawara T, Otsuka E. Discovering small molecules that inhibit adipogenesis and promote osteoblastogenesis: Unique screening and Oncostatin M-like activity. Differentiation 2013; 86(1-2): 65-74.
[http://dx.doi.org/10.1016/j.diff.2013.07.005] [PMID: 23995451]
[171]
Komori T, Tanaka M, Furuta H, Akamizu T, Miyajima A, Morikawa Y. Oncostatin M is a potential agent for the treatment of obesity and related metabolic disorders: A study in mice. Diabetologia 2015; 58(8): 1868-76.
[http://dx.doi.org/10.1007/s00125-015-3613-9] [PMID: 25972231]
[172]
Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y. Deficiency of oncostatin M receptor β (OSMRβ) exacerbates high-fat diet-induced obesity and related metabolic disorders in mice. J Biol Chem 2014; 289(20): 13821-37.
[http://dx.doi.org/10.1074/jbc.M113.542399] [PMID: 24695736]
[173]
Elks CM, Zhao P, Grant RW, et al. Loss of oncostatin M signaling in adipocytes induces insulin resistance and adipose tissue inflammation in vivo. J Biol Chem 2016; 291(33): 17066-76.
[http://dx.doi.org/10.1074/jbc.M116.739110] [PMID: 27325693]
[174]
Obtaining and loading phenotype annotations from the international mouse phenotyping consortium (IMPC) database. Mouse Genome Informatics website 2014. Available from: http://www.informatics.jax.org/reference/J:211773
[175]
Komori T, Tanaka M, Senba E, Miyajima A, Morikawa Y. Lack of oncostatin M receptor β leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype. J Biol Chem 2013; 288(30): 21861-75.
[http://dx.doi.org/10.1074/jbc.M113.461905] [PMID: 23760275]
[176]
Stephens JM, Bailey JL, Hang H, et al. Adipose tissue dysfunction occurs independently of obesity in adipocyte-specific oncostatin receptor knockout mice. Obesity (Silver Spring) 2018; 26(9): 1439-47.
[http://dx.doi.org/10.1002/oby.22254] [PMID: 30226002]
[177]
Luo P, Wang PX, Li ZZ, et al. Hepatic oncostatin M receptor β regulates obesity-induced steatosis and insulin resistance. Am J Pathol 2016; 186(5): 1278-92.
[http://dx.doi.org/10.1016/j.ajpath.2015.12.028] [PMID: 26976243]
[178]
Mellinger JL, Pencina KM, Massaro JM, et al. Hepatic steatosis and cardiovascular disease outcomes: An analysis of the Framingham heart study. J Hepatol 2015; 63(2): 470-6.
[http://dx.doi.org/10.1016/j.jhep.2015.02.045] [PMID: 25776891]
[179]
Reardon CA, Lingaraju A, Schoenfelt KQ, et al. Obesity and insulin resistance promote atherosclerosis through an IFNg-regulated macrophage protein network. Cell Rep 2018; 23(10): 3021-30.
[http://dx.doi.org/10.1016/j.celrep.2018.05.010] [PMID: 29874587]
[180]
Pollack V, Sarközi R, Banki Z, Feifel E, Wehn S, Gstraunthaler G, et al. Oncostatin M-induced effects on EMT in human proximal tubular cells: Differential role of ERK signaling. Am J Physiol -. Ren Physiol 2007; 293(5): 1714-26.
[http://dx.doi.org/10.1152/ajprenal.00130.2007]
[181]
Sarközi R, Flucher K, Haller VM, Pirklbauer M, Mayer G, Schramek H. Oncostatin M inhibits TGF-β1-induced CTGF expression via STAT3 in human proximal tubular cells. Biochem Biophys Res Commun 2012; 424(4): 801-6.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.042] [PMID: 22814105]
[182]
Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR, et al. Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 2018; 244(2): 227-41.
[http://dx.doi.org/10.1002/path.5007] [PMID: 29160908]
[183]
Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38(1): 14.
[http://dx.doi.org/10.1186/s41232-018-0070-0] [PMID: 30123390]
[184]
Liu Q, Du Y, Li K, et al. Anti-OSM antibody inhibits tubulointerstitial lesion in a murine model of lupus nephritis. Mediators Inflamm 2017; 2017: 3038514.
[http://dx.doi.org/10.1155/2017/3038514] [PMID: 28626343]
[185]
Weinstein JR, Anderson S. The aging kidney: Physiological changes. Adv Chronic Kidney Dis 2010; 17: 302-7.
[http://dx.doi.org/10.1053/j.ackd.2010.05.002]
[186]
Bachetti T, Rosamilia F, Bartolucci M, et al. The osmr gene is involved in hirschsprung associated enterocolitis susceptibility through an altered downstream signaling. Int J Mol Sci 2021; 22(8): 3831.
[http://dx.doi.org/10.3390/ijms22083831] [PMID: 33917126]
[187]
Vossenkamper A, Foster K, Nevin K, Tannahill G, Flint S, McDonald TT. DOP18 OSM neutralisation in IBD mucosal explant cultures reduces pro-inflammatory cytokine production. J Crohn’s Colitis 2019; 13 (Suppl. 1): S037.
[188]
McFarlane IM, Bhamra MS, Kreps A, et al. Gastrointestinal manifestations of systemic sclerosis. Rheumatol Curr Res 2018; 8(1): 1-15.
[http://dx.doi.org/10.4172/2161-1149.1000235]
[189]
Goren I, Kämpfer H, Müller E, Schiefelbein D, Pfeilschifter J, Frank S. Oncostatin M expression is functionally connected to neutrophils in the early inflammatory phase of skin repair: Implications for normal and diabetes-impaired wounds. J Invest Dermatol 2006; 126(3): 628-37.
[http://dx.doi.org/10.1038/sj.jid.5700136] [PMID: 16410783]
[190]
Ganesh K, Das A, Dickerson R, et al. Prostaglandin E2 induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. J Immunol 2012; 189(5): 2563-73.
[http://dx.doi.org/10.4049/jimmunol.1102762] [PMID: 22844123]
[191]
Duncan MR, Hasan A, Berman B. Oncostatin M stimulates collagen and glycosaminoglycan production by cultured normal dermal fibroblasts: Insensitivity of sclerodermal and keloidal fibroblasts. J Invest Dermatol 1995; 104(1): 128-33.
[http://dx.doi.org/10.1111/1523-1747.ep12613623] [PMID: 7798630]
[192]
Watt FM, Fujiwara H. Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 2011; 3(4): a005124.
[http://dx.doi.org/10.1101/cshperspect.a005124] [PMID: 21441589]
[193]
Rabeony H, Petit-Paris I, Garnier J, et al. Inhibition of keratinocyte differentiation by the synergistic effect of IL-17A, IL-22, IL-1α TNFα and oncostatin M. PLoS One 2014; 9(7): e101937.
[http://dx.doi.org/10.1371/journal.pone.0101937] [PMID: 25010647]
[194]
Gazel A, Rosdy M, Bertino B, Tornier C, Sahuc F, Blumenberg M. A characteristic subset of psoriasis-associated genes is induced by oncostatin-M in reconstituted epidermis. J Invest Dermatol 2006; 126(12): 2647-57.
[http://dx.doi.org/10.1038/sj.jid.5700461] [PMID: 16917497]
[195]
Pohin M, Guesdon W, Mekouo AAT, et al. Oncostatin M overexpression induces skin inflammation but is not required in the mouse model of imiquimod-induced psoriasis-like inflammation. Eur J Immunol 2016; 46(7): 1737-51.
[http://dx.doi.org/10.1002/eji.201546216] [PMID: 27122058]
[196]
Luo XY, Liu Q, Yang H, et al. OSMR gene effect on the pathogenesis of chronic autoimmune Urticaria via the JAK/STAT3 pathway. Mol Med 2018; 24(1): 28.
[http://dx.doi.org/10.1186/s10020-018-0025-6] [PMID: 30134804]
[197]
Nakashima C, Otsuka A, Kabashima K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp Dermatol 2018; 27(4): 327-31.
[http://dx.doi.org/10.1111/exd.13533] [PMID: 29524262]
[198]
Arita K, South AP, Hans-Filho G, et al. Oncostatin M receptor-β mutations underlie familial primary localized cutaneous amyloidosis. Am J Hum Genet 2008; 82(1): 73-80.
[http://dx.doi.org/10.1016/j.ajhg.2007.09.002] [PMID: 18179886]
[199]
Lin MW, Lee DD, Liu TT, et al. Novel IL31RA gene mutation and ancestral OSMR mutant allele in familial primary cutaneous amyloidosis. Eur J Hum Genet 2010; 18(1): 26-32.
[http://dx.doi.org/10.1038/ejhg.2009.135] [PMID: 19690585]
[200]
Krieg T, Takehara K. Skin disease: A cardinal feature of systemic sclerosis. Rheumatology (Oxford) 2008; 2009(48) (Suppl. 3): 14-8.
[PMID: 19487217]
[201]
Richards CD, Botelho F. Oncostatin M in the regulation of connective tissue cells and macrophages in pulmonary disease. Biomedicines 2019; 7(4): E95.
[http://dx.doi.org/10.3390/biomedicines7040095] [PMID: 31817403]
[202]
Pothoven KL, Schleimer RP. The barrier hypothesis and oncostatin M: Restoration of epithelial barrier function as a novel therapeutic strategy for the treatment of type 2 inflammatory disease. Tissue Barriers 2017; 5(3): e1341367.
[http://dx.doi.org/10.1080/21688370.2017.1341367] [PMID: 28665760]
[203]
Dubey A, Izakelian L, Ayaub EA, et al. Separate roles of IL-6 and oncostatin M in mouse macrophage polarization in vitro and in vivo. Immunol Cell Biol 2018; 96(3): 257-72.
[http://dx.doi.org/10.1111/imcb.1035] [PMID: 29363180]
[204]
Wong S, Botelho FM, Rodrigues RM, Richards CD. Oncostatin M overexpression induces matrix deposition, STAT3 activation, and SMAD1 dysregulation in lungs of fibrosis-resistant BALB/c mice. Lab Invest 2014; 94(9): 1003-16.
[http://dx.doi.org/10.1038/labinvest.2014.81] [PMID: 24933422]
[205]
Miller M, Beppu A, Rosenthal P, et al. Fstl1 promotes asthmatic airway remodeling by inducing oncostatin M. J Immunol 2015; 195(8): 3546-56.
[http://dx.doi.org/10.4049/jimmunol.1501105] [PMID: 26355153]
[206]
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75(13): 2339-54.
[http://dx.doi.org/10.1007/s00018-018-2805-0] [PMID: 29594389]
[207]
Liu Y, Liu T, Wu J, Li T, Jiao X, Zhang H, et al. The correlation between FSTL1 expression and airway remodeling in asthmatics. Mediators Inflamm 2017; 2017: 7918472.
[http://dx.doi.org/10.1155/2017/7918472]
[208]
De Miguel MP, Regadera J, Martinez-Garcia F, Nistal M, Paniagua R. Oncostatin M in the normal human testis and several testicular disorders. J Clin Endocrinol Metab 1999; 84(2): 768-74.
[http://dx.doi.org/10.1210/jc.84.2.768] [PMID: 10022451]
[209]
de Miguel MP, de Boer-Brouwer M, de Rooij DG, Paniagua R, van Dissel-Emiliani FMF. Ontogeny and localization of an oncostatin M-like protein in the rat testis: Its possible role at the start of spermatogenesis. Cell Growth Differ 1997; 8(5): 611-8.
[PMID: 9149912]
[210]
Teerds KJ, van Dissel-Emiliani FMF, De Miguel MP, de Boer-Brouwer M, Körting LM, Rijntjes E. Oncostatin-M inhibits luteinizing hormone stimulated Leydig cell progenitor formation in vitro. Reprod Biol Endocrinol 2007; 5: 43.
[http://dx.doi.org/10.1186/1477-7827-5-43] [PMID: 17996055]
[211]
Abir R, Ao A, Jin S, et al. Immunocytochemical detection and reverse transcription polymerase chain reaction expression of oncostatin M (OSM) and its receptor (OSM-Rbeta) in human fetal and adult ovaries. Fertil Steril 2005; 83(4) (Suppl. 1): 1188-96.
[http://dx.doi.org/10.1016/j.fertnstert.2004.10.043] [PMID: 15831292]
[212]
Fu T, Zheng HT, Zhang HY, Chen ZC, Li B, Yang ZM. Oncostatin M expression in the mouse uterus during early pregnancy promotes embryo implantation and decidualization. FEBS Lett 2019; 593(15): 2040-50.
[http://dx.doi.org/10.1002/1873-3468.13468] [PMID: 31155707]
[213]
Ogata I, Shimoya K, Moriyama A, et al. Oncostatin M is produced during pregnancy by decidual cells and stimulates the release of HCG. Mol Hum Reprod 2000; 6(8): 750-7.
[http://dx.doi.org/10.1093/molehr/6.8.750] [PMID: 10908286]
[214]
Nwabuobi C, Arlier S, Schatz F, Guzeloglu-Kayisli O, Lockwood CJ, Kayisli UA. hCG: Biological functions and clinical applications. Int J Mol Sci 2017; 18(10): 1-15.
[http://dx.doi.org/10.3390/ijms18102037] [PMID: 28937611]
[215]
Keay SD, Vatish M, Karteris E, Hillhouse EW, Randeva HS. The role of hCG in reproductive medicine. BJOG 2004; 111(11): 1218-28.
[http://dx.doi.org/10.1111/j.1471-0528.2004.00412.x] [PMID: 15521866]
[216]
Hara T, Tamura K, de Miguel MP, et al. Distinct roles of oncostatin M and leukemia inhibitory factor in the development of primordial germ cells and sertoli cells in mice. Dev Biol 1998; 201(2): 144-53.
[http://dx.doi.org/10.1006/dbio.1998.8990] [PMID: 9740655]
[217]
Wang Y, Xie L, Tian E, et al. Oncostatin M inhibits differentiation of rat stem Leydig cells in vivo and in vitro. J Cell Mol Med 2019; 23(1): 426-38.
[http://dx.doi.org/10.1111/jcmm.13946] [PMID: 30320465]
[218]
Sharpe RM, Maddocks S, Kerr JB. Cell-cell interactions in the control of spermatogenesis as studied using Leydig cell destruction and testosterone replacement. Am J Anat 1990; 188(1): 3-20.
[http://dx.doi.org/10.1002/aja.1001880103] [PMID: 2161173]
[219]
Alenghat FJ. The prevalence of atherosclerosis in those with inflammatory connective tissue disease by race, age, and traditional risk factors. Sci Rep 2016; 6: 20303.
[http://dx.doi.org/10.1038/srep20303] [PMID: 26842423]
[220]
Kim H, Kim S, Han S, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health 2019; 19(1): 1112.
[http://dx.doi.org/10.1186/s12889-019-7439-0] [PMID: 31412823]
[221]
Echevarria F, Walker C, Abella S, Won M, Sappington R. Stressor-dependent alterations in glycoprotein 130: Implications for glial cell reactivity, cytokine signaling and ganglion cell health in glaucoma. J Clin Exp Ophthalmol 2013; 4(3): 1000286.
[PMID: 25018894]
[222]
Xia X, Wen R, Chou TH, Li Y, Wang Z, Porciatti V. Protection of pattern electroretinogram and retinal ganglion cells by oncostatin M after optic nerve injury. PLoS One 2014; 9(9): e108524.
[http://dx.doi.org/10.1371/journal.pone.0108524] [PMID: 25243471]
[223]
Xia X, Li Y, Huang D, et al. Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration. PLoS One 2011; 6(3): e18282.
[http://dx.doi.org/10.1371/journal.pone.0018282] [PMID: 21479182]
[224]
Yang JY, Lu B, Feng Q, et al. Retinal protection by sustained nanoparticle delivery of oncostatin m and ciliary neurotrophic factor into rodent models of retinal degeneration. Transl Vis Sci Technol 2021; 10(9): 6.
[http://dx.doi.org/10.1167/tvst.10.9.6] [PMID: 34347033]
[225]
Song X, Li P, Li Y, et al. Strong association of glaucoma with atherosclerosis. Sci Rep 2021; 11(1): 8792.
[http://dx.doi.org/10.1038/s41598-021-88322-4] [PMID: 33888852]
[226]
Sampath SC, Sampath SC, Ho ATV, et al. Induction of muscle stem cell quiescence by the secreted niche factor oncostatin M. Nat Commun 2018; 9(1): 1531.
[http://dx.doi.org/10.1038/s41467-018-03876-8] [PMID: 29670077]
[227]
Xiao F, Wang H, Fu X, et al. Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration. Cell Res 2011; 21(2): 350-64.
[http://dx.doi.org/10.1038/cr.2010.144] [PMID: 20956996]
[228]
Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 2011; 301(3): E504-10.
[http://dx.doi.org/10.1152/ajpendo.00520.2010] [PMID: 21653222]
[229]
Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α myokines and exercise. Bone 2015; 80: 115-25.
[http://dx.doi.org/10.1016/j.bone.2015.02.008] [PMID: 26453501]
[230]
Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 2016; 79: 14-23.
[http://dx.doi.org/10.1016/j.biocel.2016.08.003] [PMID: 27497989]
[231]
Kim H, Jo C, Jang BG, Oh U, Jo SA. Oncostatin M induces growth arrest of skeletal muscle cells in G1 phase by regulating cyclin D1 protein level. Cell Signal 2008; 20(1): 120-9.
[http://dx.doi.org/10.1016/j.cellsig.2007.09.004] [PMID: 17976956]
[232]
Miki Y, Morioka T, Shioi A, et al. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation. Biochem Biophys Res Commun 2019; 516(3): 951-6.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.143] [PMID: 31272716]
[233]
Latroche C, Weiss-Gayet M, Muller L, et al. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Reports 2017; 9(6): 2018-33.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.027] [PMID: 29198825]
[234]
NIH. Diffuse cutaneous systemic sclerosis National Center for Advancing Translational Sciences 2017. Available from: https://rarediseases.info.nih.gov/diseases/9751/diffuse-cutaneous-systemic-sclerosis
[235]
Fernandes TJ, Hodge JM, Singh PP, et al. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One 2013; 8(9): e73266.
[http://dx.doi.org/10.1371/journal.pone.0073266] [PMID: 24069182]
[236]
Persson E, Souza PPC, Floriano-Marcelino T, Conaway HH, Henning P, Lerner UH. Activation of Shc1 allows oncostatin M to induce RANKL and osteoclast formation more effectively than leukemia inhibitory factor. Front Immunol 2019; 10: 1164.
[http://dx.doi.org/10.3389/fimmu.2019.01164] [PMID: 31191537]
[237]
Zheng W, Guan J. Oncostatin M promotes the osteogenic differentiation of mouse MC3T3-E1osteoblasts through the regulation of monocyte chemotactic protein-1. Mol Med Rep 2018; 18(3): 2523-30.
[http://dx.doi.org/10.3892/mmr.2018.9261] [PMID: 30015860]
[238]
Johnson RW, Brennan HJ, Vrahnas C, et al. The primary function of gp130 signaling in osteoblasts is to maintain bone formation and strength, rather than promote osteoclast formation. J Bone Miner Res 2014; 29(6): 1492-505.
[http://dx.doi.org/10.1002/jbmr.2159] [PMID: 24339143]
[239]
Torossian F, Guerton B, Anginot A, et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2017; 2(21): 1-22.
[http://dx.doi.org/10.1172/jci.insight.96034] [PMID: 29093266]
[240]
Brady RD, Shultz SR, McDonald SJ, O’Brien TJ. Neurological heterotopic ossification: Current understanding and future directions. Bone 2018; 109: 35-42.
[http://dx.doi.org/10.1016/j.bone.2017.05.015] [PMID: 28526267]
[241]
Carmona-Fernandes D, Barreira SC, Leonardo N, et al. Atherosclerosis and bone loss in humans-results from deceased donors and from patients submitted to carotid endarterectomy. Front Med 2021; 8: 672496.
[http://dx.doi.org/10.3389/fmed.2021.672496] [PMID: 34095177]
[242]
Hui W, Bell M, Carroll G, Oncostatin M, Oncostatin M. (OSM) stimulates resorption and inhibits synthesis of proteoglycan in porcine articular cartilage explants. Cytokine 1996; 8(6): 495-500.
[http://dx.doi.org/10.1006/cyto.1996.0067] [PMID: 8818547]
[243]
Hui W, Rowan AD, Richards CD, Cawston TE. Oncostatin M in combination with tumor necrosis factor α induces cartilage damage and matrix metalloproteinase expression in vitro and in vivo. Arthritis Rheum 2003; 48(12): 3404-18.
[http://dx.doi.org/10.1002/art.11333] [PMID: 14673992]
[244]
Cawston TE, Ellis AJ, Humm G, Lean E, Ward D, Curry V. Interleukin-1 and oncostatin M in combination promote the release of collagen fragments from bovine nasal cartilage in culture. Biochem Biophys Res Commun 1995; 215(1): 377-85.
[http://dx.doi.org/10.1006/bbrc.1995.2476] [PMID: 7575616]
[245]
Barksby HE, Hui W, Wappler I, et al. Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: Implications for cartilage destruction and repair. Arthritis Rheum 2006; 54(2): 540-50.
[http://dx.doi.org/10.1002/art.21574] [PMID: 16447230]
[246]
Koshy PJT, Lundy CJ, Rowan AD, et al. The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: A time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum 2002; 46(4): 961-7.
[http://dx.doi.org/10.1002/art.10212] [PMID: 11953973]
[247]
Li WQ, Dehnade F, Zafarullah M. Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J Immunol 2001; 166(5): 3491-8.
[http://dx.doi.org/10.4049/jimmunol.166.5.3491] [PMID: 11207308]
[248]
Fearon U, Mullan R, Markham T, et al. Oncostatin M induces angiogenesis and cartilage degradation in rheumatoid arthritis synovial tissue and human cartilage cocultures. Arthritis Rheum 2006; 54(10): 3152-62.
[http://dx.doi.org/10.1002/art.22161] [PMID: 17009243]
[249]
Sims NA. Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021; 146: 155655.
[http://dx.doi.org/10.1016/j.cyto.2021.155655] [PMID: 34332274]
[250]
Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: Is it all about inflammation? Nat Rev Rheumatol 2015; 11(7): 390-400.
[http://dx.doi.org/10.1038/nrrheum.2015.40] [PMID: 25825281]
[251]
Masjedi A, Hajizadeh F, Beigi Dargani F, et al. Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2021; 90: 107158.
[http://dx.doi.org/10.1016/j.intimp.2020.107158]
[252]
Simonneau M, Frouin E, Huguier V, et al. Oncostatin M is overexpressed in skin squamous-cell carcinoma and promotes tumor progression. Oncotarget 2018; 9(92): 36457-73.
[http://dx.doi.org/10.18632/oncotarget.26355] [PMID: 30559930]
[253]
Tripathi C, Tewari BN, Kanchan RK, et al. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and Eotaxin. Oncotarget 2014; 5(14): 5350-68.
[http://dx.doi.org/10.18632/oncotarget.2110] [PMID: 25051364]
[254]
Tawara K, Scott H, Emathinger J, et al. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: Synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget 2019; 10(21): 2068-85.
[http://dx.doi.org/10.18632/oncotarget.26699] [PMID: 31007849]
[255]
Liu J, Hadjokas N, Mosley B, Estrov Z, Spence MJ, Vestal RE. Oncostatin M-specific receptor expression and function in regulating cell proliferation of normal and malignant mammary epithelial cells. Cytokine 1998; 10(4): 295-302.
[http://dx.doi.org/10.1006/cyto.1997.0283] [PMID: 9617575]
[256]
Zarling JM, Shoyab M, Marquardt H, et al. Oncostatin M: A growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci USA 1986; 83(24): 9739-43.
[http://dx.doi.org/10.1073/pnas.83.24.9739] [PMID: 3540948]
[257]
David E, Tirode F, Baud’huin M, et al. Oncostatin M is a growth factor for Ewing sarcoma. Am J Pathol 2012; 181(5): 1782-95.
[http://dx.doi.org/10.1016/j.ajpath.2012.07.023] [PMID: 22982441]
[258]
David E, Guihard P, Brounais B, et al. Direct anti-cancer effect of oncostatin M on chondrosarcoma. Int J Cancer 2011; 128(8): 1822-35.
[http://dx.doi.org/10.1002/ijc.25776] [PMID: 21344373]
[259]
Bolin C, Tawara K, Sutherland C, et al. Oncostatin m promotes mammary tumor metastasis to bone and osteolytic bone degradation. Genes Cancer 2012; 3(2): 117-30.
[http://dx.doi.org/10.1177/1947601912458284] [PMID: 23050044]
[260]
Shrivastava R, Asif M, Singh V, et al. M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis. Cytokine 2019; 118(118): 130-43.
[http://dx.doi.org/10.1016/j.cyto.2018.03.032] [PMID: 29625858]
[261]
Shrivastava R, Singh V, Asif M, Negi MPS, Bhadauria S. Oncostatin M upregulates HIF-1α in breast tumor associated macrophages independent of intracellular oxygen concentration. Life Sci 2018; 194(194): 59-66.
[http://dx.doi.org/10.1016/j.lfs.2017.12.017] [PMID: 29246543]
[262]
Lauber S, Wong S, Cutz JC, et al. Novel function of Oncostatin M as a potent tumour-promoting agent in lung. Int J Cancer 2015; 136(4): 831-43.
[http://dx.doi.org/10.1002/ijc.29055] [PMID: 24976180]
[263]
Simon TA, Thompson A, Gandhi KK, Hochberg MC, Suissa S. Incidence of malignancy in adult patients with rheumatoid arthritis: A meta-analysis. Arthritis Res Ther 2015; 17(1): 212.
[http://dx.doi.org/10.1186/s13075-015-0728-9] [PMID: 26271620]
[264]
Lee H. The risk of malignancy in Korean patients with rheumatoid arthritis. Yonsei Med J 2019; 60(2): 223-9.
[http://dx.doi.org/10.3349/ymj.2019.60.2.223] [PMID: 30666845]
[265]
Eisenberg ME, Sunkureddi PR, Baethge BA, Gonzalez EB, McNearney TA. Unusual Occurrence of renal cell carcinoma (RCC) diagnosed in 2 young hispanic patients with diffuse systemic sclerosis (dSSc). J Clin Rheumatol 2007; 13(6): 363-4.
[http://dx.doi.org/10.1097/RHU.0b013e31815c39c3] [PMID: 18176153]
[266]
Dutta P, Courties G, Wei Y, et al. Myocardial infarction accelerates atherosclerosis. Nature 2012; 487(7407): 325-9.
[http://dx.doi.org/10.1038/nature11260] [PMID: 22763456]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy