Review Article

化疗和抗癌药物在肥胖中的调整:一个叙述回顾

卷 30, 期 9, 2023

发表于: 23 September, 2022

页: [1003 - 1028] 页: 26

弟呕挨: 10.2174/0929867329666220806140204

价格: $65

摘要

背景:肥胖个体有较高的癌症发病率和癌症相关死亡率。在这组患者中观察到较差的化疗结果是多因素的,包括肥胖的生理改变及其对药代动力学的影响,剂量不足的风险可能增加,以及治疗相关的毒性。 目的:本综述旨在讨论最近的生理学数据,提供一个整体的视角和药物动力学的改变,肥胖与化疗有关。我们还回顾了成人和儿童患者剂量调整策略的争议,主要涉及实际总体重和理想体重的使用。 方法:本综述试图提供最佳证据来支持儿童、青少年和成人的抗肿瘤药物剂量策略。 结果:肥胖对心血管、肝脏和肾脏的改变可影响药物的分布、代谢和清除。抗癌药物的治疗范围很窄,剂量的变化可能导致毒性或剂量不足。肥胖患者在临床试验中代表性不足,这些临床试验的重点是确定临床实践中的化疗剂量和给药建议。在考虑相关合并症后,指南建议化疗剂量应根据实际体重计算的体表面积(BSA),而不是估计值或理想体重,特别是当治疗的目的是治愈时。 结论:在成人和儿童中,当以疗效为目标时,实际的总体重给药似乎是一种更好的给药方法,与调整剂量相比,毒性没有差异,治疗结果没有限制。

关键词: 肥胖,药代动力学,癌症化疗,抗肿瘤,剂量调整,体表面积,儿科,实际总体重,理想体重。

[1]
WHO. Obesity and overweight. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (Accessed: June 9, 2022).
[2]
Reeves, G.K.; Pirie, K.; Beral, V.; Green, J.; Spencer, E.; Bull, D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: Cohort study. BMJ, 2007, 335(7630), 1134.
[http://dx.doi.org/10.1136/bmj.39367.495995.AE] [PMID: 17986716]
[3]
Brill, M.J.; Diepstraten, J.; van Rongen, A.; van Kralingen, S.; van den Anker, J.N.; Knibbe, C.A. Impact of obesity on drug metabolism and elimination in adults and children. Clin. Pharmacokinet., 2012, 51(5), 277-304.
[http://dx.doi.org/10.2165/11599410-000000000-00000] [PMID: 22448619]
[4]
Smit, C.; De Hoogd, S.; Brüggemann, R.J.M.; Knibbe, C.A.J. Obesity and drug pharmacology: A review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin. Drug Metab. Toxicol., 2018, 14(3), 275-285.
[http://dx.doi.org/10.1080/17425255.2018.1440287] [PMID: 29431542]
[5]
Sparreboom, A.; Wolff, A.C.; Mathijssen, R.H.; Chatelut, E.; Rowinsky, E.K.; Verweij, J.; Baker, S.D. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J. Clin. Oncol., 2007, 25(30), 4707-4713.
[http://dx.doi.org/10.1200/JCO.2007.11.2938] [PMID: 17947717]
[6]
Harskamp-van Ginkel, M.W.; Hill, K.D.; Becker, K.C.; Testoni, D.; Cohen-Wolkowiez, M.; Gonzalez, D.; Barrett, J.S.; Benjamin, D.K., Jr; Siegel, D.A.; Banks, P.; Watt, K.M. Drug dosing and pharmacokinetics in children with obesity: A systematic review. JAMA Pediatr., 2015, 169(7), 678-685.
[http://dx.doi.org/10.1001/jamapediatrics.2015.132] [PMID: 25961828]
[7]
Morgan, D.J.; Bray, K.M. Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin. Pharmacokinet., 1994, 26(4), 292-307.
[http://dx.doi.org/10.2165/00003088-199426040-00005] [PMID: 8013162]
[8]
Griggs, J.J.; Bohlke, K.; Balaban, E.P.; Dignam, J.J.; Hall, E.T.; Harvey, R.D.; Hecht, D.P.; Klute, K.A.; Morrison, V.A.; Pini, T.M.; Rosner, G.L.; Runowicz, C.D.; Shayne, M.; Sparreboom, A.; Turner, S.; Zarwan, C.; Lyman, G.H. Appropriate systemic therapy dosing for obese adult patients with cancer: ASCO guideline update. J. Clin. Oncol., 2021, 39(18), 2037-2048.
[http://dx.doi.org/10.1200/JCO.21.00471] [PMID: 33939491]
[9]
Butturini, A.M.; Dorey, F.J.; Lange, B.J.; Henry, D.W.; Gaynon, P.S.; Fu, C.; Franklin, J.; Siegel, S.E.; Seibel, N.L.; Rogers, P.C.; Sather, H.; Trigg, M.; Bleyer, W.A.; Carroll, W.L. Obesity and outcome in pediatric acute lymphoblastic leukemia. J. Clin. Oncol., 2007, 25(15), 2063-2069.
[http://dx.doi.org/10.1200/JCO.2006.07.7792] [PMID: 17513811]
[10]
Gelelete, C.B.; Pereira, S.H.; Azevedo, A.M.; Thiago, L.S.; Mundim, M.; Land, M.G.; Costa, E.S. Overweight as a prognostic factor in children with acute lymphoblastic leukemia. Obesity (Silver Spring), 2011, 19(9), 1908-1911.
[http://dx.doi.org/10.1038/oby.2011.195] [PMID: 21720424]
[11]
Orgel, E.; Sposto, R.; Malvar, J.; Seibel, N.L.; Ladas, E.; Gaynon, P.S.; Freyer, D.R. Impact on survival and toxicity by duration of weight extremes during treatment for pediatric acute lymphoblastic leukemia: A report from the Children’s Oncology Group. J. Clin. Oncol., 2014, 32(13), 1331-1337.
[http://dx.doi.org/10.1200/JCO.2013.52.6962] [PMID: 24687836]
[12]
Conway, B.; Rene, A. Obesity as a disease: No lightweight matter. Obes. Rev., 2004, 5(3), 145-151.
[http://dx.doi.org/10.1111/j.1467-789X.2004.00144.x] [PMID: 15245383]
[13]
Redinger, R.N. The pathophysiology of obesity and its clinical manifestations. Gastroenterol. Hepatol. (N.Y.), 2007, 3(11), 856-863.
[PMID: 21960798]
[14]
Lavie, C.J.; McAuley, P.A.; Church, T.S.; Milani, R.V.; Blair, S.N. Obesity and cardiovascular diseases: Implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. Coll. Cardiol., 2014, 63(14), 1345-1354.
[http://dx.doi.org/10.1016/j.jacc.2014.01.022] [PMID: 24530666]
[15]
Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the risk of heart failure. N. Engl. J. Med., 2002, 347(5), 305-313.
[http://dx.doi.org/10.1056/NEJMoa020245] [PMID: 12151467]
[16]
Casati, A.; Putzu, M. Anesthesia in the obese patient: Pharmacokinetic considerations. J. Clin. Anesth., 2005, 17(2), 134-145.
[http://dx.doi.org/10.1016/j.jclinane.2004.01.009] [PMID: 15809132]
[17]
Seravalle, G.; Grassi, G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press. Cardiovasc. Prev., 2016, 23(3), 175-179.
[http://dx.doi.org/10.1007/s40292-016-0137-4] [PMID: 26942609]
[18]
Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol., 2009, 53(21), 1925-1932.
[http://dx.doi.org/10.1016/j.jacc.2008.12.068] [PMID: 19460605]
[19]
Lavie, C.J.; Alpert, M.A.; Arena, R.; Mehra, M.R.; Milani, R.V.; Ventura, H.O. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail., 2013, 1(2), 93-102.
[http://dx.doi.org/10.1016/j.jchf.2013.01.006] [PMID: 24621833]
[20]
Ong, J.P.; Elariny, H.; Collantes, R.; Younoszai, A.; Chandhoke, V.; Reines, H.D.; Goodman, Z.; Younossi, Z.M. Predictors of nonalcoholic steatohepatitis and advanced fibrosis in morbidly obese patients. Obes. Surg., 2005, 15(3), 310-315.
[http://dx.doi.org/10.1381/0960892053576820] [PMID: 15826462]
[21]
Farrell, G.C.; Teoh, N.C.; McCuskey, R.S. Hepatic microcirculation in fatty liver disease. Anat. Rec. (Hoboken), 2008, 291(6), 684-692.
[http://dx.doi.org/10.1002/ar.20715] [PMID: 18484615]
[22]
Iseki, K.; Ikemiya, Y.; Kinjo, K.; Inoue, T.; Iseki, C.; Takishita, S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int., 2004, 65(5), 1870-1876.
[http://dx.doi.org/10.1111/j.1523-1755.2004.00582.x] [PMID: 15086929]
[23]
Hsu, C.Y.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med., 2006, 144(1), 21-28.
[http://dx.doi.org/10.7326/0003-4819-144-1-200601030-00006] [PMID: 16389251]
[24]
Ejerblad, E.; Fored, C.M.; Lindblad, P.; Fryzek, J.; McLaughlin, J.K.; Nyrén, O. Obesity and risk for chronic renal failure. J. Am. Soc. Nephrol., 2006, 17(6), 1695-1702.
[http://dx.doi.org/10.1681/ASN.2005060638] [PMID: 16641153]
[25]
Speckman, R.A.; McClellan, W.M.; Volkova, N.V.; Jurkovitz, C.T.; Satko, S.G.; Schoolwerth, A.C.; Freedman, B.I. Obesity is associated with family history of ESRD in incident dialysis patients. Am. J. Kidney Dis., 2006, 48(1), 50-58.
[http://dx.doi.org/10.1053/j.ajkd.2006.03.086] [PMID: 16797386]
[26]
Wahba, I.M.; Mak, R.H. Obesity and obesity-initiated metabolic syndrome: Mechanistic links to chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2007, 2(3), 550-562.
[http://dx.doi.org/10.2215/CJN.04071206] [PMID: 17699463]
[27]
Ramkumar, N.; Cheung, A.K.; Pappas, L.M.; Roberts, W.L.; Beddhu, S. Association of obesity with inflammation in chronic kidney disease: A cross-sectional study. J. Ren. Nutr., 2004, 14(4), 201-207.
[http://dx.doi.org/10.1016/S1051-2276(04)00133-5] [PMID: 15483779]
[28]
Wu, Y.; Liu, Z.; Xiang, Z.; Zeng, C.; Chen, Z.; Ma, X.; Li, L. Obesity-related glomerulopathy: Insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology, 2006, 147(1), 44-50.
[http://dx.doi.org/10.1210/en.2005-0641] [PMID: 16210374]
[29]
Chagnac, A.; Weinstein, T.; Korzets, A.; Ramadan, E.; Hirsch, J.; Gafter, U. Glomerular hemodynamics in severe obesity. Am. J. Physiol. Renal Physiol., 2000, 278(5), F817-F822.
[http://dx.doi.org/10.1152/ajprenal.2000.278.5.F817] [PMID: 10807594]
[30]
Bowman, S.L.; Hudson, S.A.; Simpson, G.; Munro, J.F.; Clements, J.A. A comparison of the pharmacokinetics of propranolol in obese and normal volunteers. Br. J. Clin. Pharmacol., 1986, 21(5), 529-532.
[http://dx.doi.org/10.1111/j.1365-2125.1986.tb02837.x] [PMID: 3718810]
[31]
Blouin, R.A.; Warren, G.W. Pharmacokinetic considerations in obesity. J. Pharm. Sci., 1999, 88(1), 1-7.
[http://dx.doi.org/10.1021/js980173a] [PMID: 9874695]
[32]
Cheymol, G. Clinical pharmacokinetics of drugs in obesity. An update. Clin. Pharmacokinet., 1993, 25(2), 103-114.
[http://dx.doi.org/10.2165/00003088-199325020-00003] [PMID: 8403734]
[33]
Cheymol, G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin. Pharmacokinet., 2000, 39(3), 215-231.
[http://dx.doi.org/10.2165/00003088-200039030-00004] [PMID: 11020136]
[34]
Shah, D.K.; Missmer, S.A.; Correia, K.F.; Ginsburg, E.S. Pharmacokinetics of human chorionic gonadotropin injection in obese and normal-weight women. J. Clin. Endocrinol. Metab., 2014, 99(4), 1314-1321.
[http://dx.doi.org/10.1210/jc.2013-4086] [PMID: 24476082]
[35]
Gagnon-Auger, M.; du Souich, P.; Baillargeon, J.P.; Martin, E.; Brassard, P.; Ménard, J.; Ardilouze, J.L. Dose-dependent delay of the hypoglycemic effect of short-acting insulin analogs in obese subjects with type 2 diabetes: A pharmacokinetic and pharmacodynamic study. Diabetes Care, 2010, 33(12), 2502-2507.
[http://dx.doi.org/10.2337/dc10-1126] [PMID: 20841613]
[36]
Wesolowski, C.A.; Wesolowski, M.J.; Babyn, P.S.; Wanasundara, S.N. Time varying apparent volume of distribution and drug half-lives following intravenous bolus injections. PLoS One, 2016, 11(7), e0158798.
[http://dx.doi.org/10.1371/journal.pone.0158798] [PMID: 27403663]
[37]
Abernethy, D.R.; Greenblatt, D.J.; Divoll, M.; Shader, R.I. Prolonged accumulation of diazepam in obesity. J. Clin. Pharmacol., 1983, 23(8-9), 369-376.
[http://dx.doi.org/10.1002/j.1552-4604.1983.tb02750.x] [PMID: 6415130]
[38]
Brill, M.J.; Houwink, A.P.; Schmidt, S.; Van Dongen, E.P.; Hazebroek, E.J.; van Ramshorst, B.; Deneer, V.H.; Mouton, J.W.; Knibbe, C.A. Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis. J. Antimicrob. Chemother., 2014, 69(3), 715-723.
[http://dx.doi.org/10.1093/jac/dkt444] [PMID: 24214905]
[39]
Alexander, J.K.; Dennis, E.W.; Smith, W.G.; Amad, K.H.; Duncan, W.C.; Austin, R.C. Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc. Res. Cent. Bull., 1963, 1, 39-44.
[PMID: 14011956]
[40]
Horowitz, N.S.; Wright, A.A. Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol. Oncol., 2015, 138(1), 201-206.
[http://dx.doi.org/10.1016/j.ygyno.2015.04.002] [PMID: 25870918]
[41]
Kovesdy, C.P.; Furth, S.; Zoccali, C.; World Kidney Day Steering, C. Obesity and kidney disease: Hidden consequences of the epidemic. Indian J. Nephrol., 2017, 27(2), 85-92.
[http://dx.doi.org/10.4103/ijn.IJN_61_17] [PMID: 28356657]
[42]
van Rongen, A.; Välitalo, P.A.J.; Peeters, M.Y.M.; Boerma, D.; Huisman, F.W.; van Ramshorst, B.; van Dongen, E.P.A.; van den Anker, J.N.; Knibbe, C.A.J. Morbidly obese patients exhibit increased CYP2E1-mediated oxidation of acetaminophen. Clin. Pharmacokinet., 2016, 55(7), 833-847.
[http://dx.doi.org/10.1007/s40262-015-0357-0] [PMID: 26818482]
[43]
de Hoogd, S.; Välitalo, P.A.J.; Dahan, A.; van Kralingen, S.; Coughtrie, M.M.W.; van Dongen, E.P.A.; van Ramshorst, B.; Knibbe, C.A.J. Influence of morbid obesity on the pharmacokinetics of morphine, morphine-3-glucuronide, and morphine-6-glucuronide. Clin. Pharmacokinet., 2017, 56(12), 1577-1587.
[http://dx.doi.org/10.1007/s40262-017-0544-2] [PMID: 28510797]
[44]
Ferslew, B.C.; Johnston, C.K.; Tsakalozou, E.; Bridges, A.S.; Paine, M.F.; Jia, W.; Stewart, P.W.; Barritt, A.S., IV; Brouwer, K.L. Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin. Pharmacol. Ther., 2015, 97(4), 419-427.
[http://dx.doi.org/10.1002/cpt.66] [PMID: 25669174]
[45]
Zarezadeh, M.; Saedisomeolia, A.; Shekarabi, M.; Khorshidi, M.; Emami, M.R.; Müller, D.J. The effect of obesity, macronutrients, fasting and nutritional status on drug-metabolizing cytochrome P450s: A systematic review of current evidence on human studies. Eur. J. Nutr., 2021, 60(6), 2905-2921.
[http://dx.doi.org/10.1007/s00394-020-02421-y] [PMID: 33141242]
[46]
Chiney, M.S.; Schwarzenberg, S.J.; Johnson, L.A. Altered xanthine oxidase and N-acetyltransferase activity in obese children. Br. J. Clin. Pharmacol., 2011, 72(1), 109-115.
[http://dx.doi.org/10.1111/j.1365-2125.2011.03959.x] [PMID: 21382071]
[47]
Balis, F.M. Pharmacokinetic drug interactions of commonly used anticancer drugs. Clin. Pharmacokinet., 1986, 11(3), 223-235.
[http://dx.doi.org/10.2165/00003088-198611030-00004] [PMID: 2426030]
[48]
Nguyen, L.; Leger, F.; Lennon, S.; Puozzo, C. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: A population pharmacokinetic study. Cancer Chemother. Pharmacol., 2006, 57(2), 191-198.
[http://dx.doi.org/10.1007/s00280-005-0029-0] [PMID: 16133536]
[49]
Gibbs, J.P.; Gooley, T.; Corneau, B.; Murray, G.; Stewart, P.; Appelbaum, F.R.; Slattery, J.T. The impact of obesity and disease on busulfan oral clearance in adults. Blood, 1999, 93(12), 4436-4440.
[http://dx.doi.org/10.1182/blood.V93.12.4436] [PMID: 10361142]
[50]
Browning, B.; Thormann, K.; Donaldson, A.; Halverson, T.; Shinkle, M.; Kletzel, M. Busulfan dosing in children with BMIs ≥ 85% undergoing HSCT: A new optimal strategy. Biol. Blood Marrow Transplant., 2011, 17(9), 1383-1388.
[http://dx.doi.org/10.1016/j.bbmt.2011.01.013] [PMID: 21288495]
[51]
Ali, I.; Slizgi, J.R.; Kaullen, J.D.; Ivanovic, M.; Niemi, M.; Stewart, P.W.; Barritt, A.S., IV; Brouwer, K.L.R. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate. Clin. Pharmacol. Ther., 2017. [Epub ahead of print].
[PMID: 29271075]
[52]
Thompson, P.A.; Rosner, G.L.; Matthay, K.K.; Moore, T.B.; Bomgaars, L.R.; Ellis, K.J.; Renbarger, J.; Berg, S.L. Impact of body composition on pharmacokinetics of doxorubicin in children: A glaser pediatric research network study. Cancer Chemother. Pharmacol., 2009, 64(2), 243-251.
[http://dx.doi.org/10.1007/s00280-008-0854-z] [PMID: 19020877]
[53]
Powis, G.; Reece, P.; Ahmann, D.L.; Ingle, J.N. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemother. Pharmacol., 1987, 20(3), 219-222.
[http://dx.doi.org/10.1007/BF00570489] [PMID: 3315280]
[54]
Ritzmo, C.; Söderhäll, S.; Karlén, J.; Nygren, H.; Eksborg, S. Pharmacokinetics of doxorubicin and etoposide in a morbidly obese pediatric patient. Pediatr. Hematol. Oncol., 2007, 24(6), 437-445.
[http://dx.doi.org/10.1080/08880010701451343] [PMID: 17710661]
[55]
Stocker, G.; Hacker, U.T.; Fiteni, F.; John Mahachie, J.; Roth, A.D.; Van Cutsem, E.; Peeters, M.; Lordick, F.; Mauer, M. Clinical consequences of chemotherapy dose reduction in obese patients with stage III colon cancer: A retrospective analysis from the PETACC 3 study. Eur. J. Cancer, 2018, 99, 49-57.
[http://dx.doi.org/10.1016/j.ejca.2018.05.004] [PMID: 29906734]
[56]
Chiou, W.L. The physiological significance of total body clearance in pharmacokinetic studies. J. Clin. Hosp. Pharm., 1982, 7(1), 25-30.
[http://dx.doi.org/10.1111/j.1365-2710.1982.tb00904.x] [PMID: 7096575]
[57]
Janson, B.; Thursky, K. Dosing of antibiotics in obesity. Curr. Opin. Infect. Dis., 2012, 25(6), 634-649.
[http://dx.doi.org/10.1097/QCO.0b013e328359a4c1] [PMID: 23041773]
[58]
Ribstein, J.; du Cailar, G.; Mimran, A. Combined renal effects of overweight and hypertension. Hypertension, 1995, 26(4), 610-615.
[http://dx.doi.org/10.1161/01.HYP.26.4.610] [PMID: 7558220]
[59]
NIH. NKEDP CKD and Drug Dosing: Information for Providers. Available from: https://www.niddk.nih.gov/health-information/professionals/advanced-search/ckd- drug-dosing-providers (Accessed: April 26, 2021).
[60]
Wuerzner, G.; Bochud, M.; Giusti, V.; Burnier, M. Measurement of glomerular filtration rate in obese patients: Pitfalls and potential consequences on drug therapy. Obes. Facts, 2011, 4(3), 238-243.
[http://dx.doi.org/10.1159/000329547] [PMID: 21701241]
[61]
Meng, L.; Mui, E.; Holubar, M.K.; Deresinski, S.C. Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy, 2017, 37(11), 1415-1431.
[http://dx.doi.org/10.1002/phar.2023] [PMID: 28869666]
[62]
Adane, E.D.; Herald, M.; Koura, F. Pharmacokinetics of vancomycin in extremely obese patients with suspected or confirmed Staphylococcus aureus infections. Pharmacotherapy, 2015, 35(2), 127-139.
[http://dx.doi.org/10.1002/phar.1531] [PMID: 25644478]
[63]
Pan, Y.; He, X.; Yao, X.; Yang, X.; Wang, F.; Ding, X.; Wang, W. The effect of body mass index and creatinine clearance on serum trough concentration of vancomycin in adult patients. BMC Infect. Dis., 2020, 20(1), 341.
[http://dx.doi.org/10.1186/s12879-020-05067-7] [PMID: 32404057]
[64]
Alobaid, A.S.; Wallis, S.C.; Jarrett, P.; Starr, T.; Stuart, J.; Lassig-Smith, M.; Mejia, J.L.; Roberts, M.S.; Roger, C.; Udy, A.A.; Lipman, J.; Roberts, J.A. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob. Agents Chemother., 2017, 61(3), e01276-16.
[http://dx.doi.org/10.1128/AAC.01276-16] [PMID: 28052849]
[65]
Hites, M.; Taccone, F.S.; Wolff, F.; Maillart, E.; Beumier, M.; Surin, R.; Cotton, F.; Jacobs, F. Broad-spectrum β-lactams in obese non-critically ill patients. Nutr. Diabetes, 2014, 4(6), e119.
[http://dx.doi.org/10.1038/nutd.2014.15] [PMID: 24956136]
[66]
Hites, M.; Taccone, F.S.; Wolff, F.; Cotton, F.; Beumier, M.; De Backer, D.; Roisin, S.; Lorent, S.; Surin, R.; Seyler, L.; Vincent, J.L.; Jacobs, F. Case-control study of drug monitoring of β-lactams in obese critically ill patients. Antimicrob. Agents Chemother., 2013, 57(2), 708-715.
[http://dx.doi.org/10.1128/AAC.01083-12] [PMID: 23147743]
[67]
Prado, C.M.; Lima, I.S.; Baracos, V.E.; Bies, R.R.; McCargar, L.J.; Reiman, T.; Mackey, J.R.; Kuzma, M.; Damaraju, V.L.; Sawyer, M.B. An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother. Pharmacol., 2011, 67(1), 93-101.
[http://dx.doi.org/10.1007/s00280-010-1288-y] [PMID: 20204364]
[68]
Lundqvist, E.A.; Fujiwara, K.; Seoud, M. Principles of chemotherapy. Int. J. Gynaecol. Obstet., 2015, 131(Suppl. 2), S146-S149.
[http://dx.doi.org/10.1016/j.ijgo.2015.06.011] [PMID: 26433671]
[69]
Livshits, Z.; Rao, R.B.; Smith, S.W. An approach to chemotherapy-associated toxicity. Emerg. Med. Clin. North Am., 2014, 32(1), 167-203.
[http://dx.doi.org/10.1016/j.emc.2013.09.002] [PMID: 24275174]
[70]
Dickens, E.; Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery, 2018, 36(3), 134-138.
[http://dx.doi.org/10.1016/j.mpsur.2017.12.002]
[71]
Goodman, L.S.; Gilman, A. Goodman & Gilman’s the pharmacological basis of therapeutics; McGraw-Hill: New York, 2006.
[72]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[73]
Fisusi, F.A.; Akala, E.O. Drug combinations in breast cancer therapy. Pharm. Nanotechnol., 2019, 7(1), 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[74]
Li, S.; Jiang, M.; Wang, L.; Yu, S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed. Pharmacother., 2020, 129, 110389.
[http://dx.doi.org/10.1016/j.biopha.2020.110389] [PMID: 32540642]
[75]
Bagchi, S.; Yuan, R.; Engleman, E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol., 2021, 16(1), 223-249.
[http://dx.doi.org/10.1146/annurev-pathol-042020-042741] [PMID: 33197221]
[76]
Marin-Acevedo, J.A.; Kimbrough, E.O.; Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol., 2021, 14(1), 45.
[http://dx.doi.org/10.1186/s13045-021-01056-8] [PMID: 33741032]
[77]
Frasca, D.; Diaz, A.; Romero, M.; Thaller, S.; Blomberg, B.B. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue. PLoS One, 2018, 13(5), e0197472.
[http://dx.doi.org/10.1371/journal.pone.0197472] [PMID: 29768501]
[78]
Dyck, L.; Prendeville, H.; Raverdeau, M.; Wilk, M.M.; Loftus, R.M.; Douglas, A.; McCormack, J.; Moran, B.; Wilkinson, M.; Mills, E.L.; Doughty, M.; Fabre, A.; Heneghan, H.; LeRoux, C.; Hogan, A.; Chouchani, E.T.; O’Shea, D.; Brennan, D.; Lynch, L. Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. J. Exp. Med., 2022, 219(3), e20210042.
[http://dx.doi.org/10.1084/jem.20210042] [PMID: 35103755]
[79]
An, Y.; Wu, Z.; Wang, N.; Yang, Z.; Li, Y.; Xu, B.; Sun, M. Association between body mass index and survival outcomes for cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. J. Transl. Med., 2020, 18(1), 235.
[http://dx.doi.org/10.1186/s12967-020-02404-x] [PMID: 32532255]
[80]
Xu, H.; Cao, D.; He, A.; Ge, W. The prognostic role of obesity is independent of sex in cancer patients treated with immune checkpoint inhibitors: A pooled analysis of 4090 cancer patients. Int. Immunopharmacol., 2019, 74(1), 105745.
[http://dx.doi.org/10.1016/j.intimp.2019.105745] [PMID: 31302449]
[81]
Wang, Z.; Aguilar, E.G.; Luna, J.I.; Dunai, C.; Khuat, L.T.; Le, C.T.; Mirsoian, A.; Minnar, C.M.; Stoffel, K.M.; Sturgill, I.R.; Grossenbacher, S.K.; Withers, S.S.; Rebhun, R.B.; Hartigan-O’Connor, D.J.; Méndez-Lagares, G.; Tarantal, A.F.; Isseroff, R.R.; Griffith, T.S.; Schalper, K.A.; Merleev, A.; Saha, A.; Maverakis, E.; Kelly, K.; Aljumaily, R.; Ibrahimi, S.; Mukherjee, S.; Machiorlatti, M.; Vesely, S.K.; Longo, D.L.; Blazar, B.R.; Canter, R.J.; Murphy, W.J.; Monjazeb, A.M. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med., 2019, 25(1), 141-151.
[http://dx.doi.org/10.1038/s41591-018-0221-5] [PMID: 30420753]
[82]
Ryman, J.T.; Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(9), 576-588.
[http://dx.doi.org/10.1002/psp4.12224] [PMID: 28653357]
[83]
FDA. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005. Available from: https://www.fda.gov/downloads/drugs/guidances/ucm078932.pdf (Accessed: March 6, 2022).
[84]
FDA. Highlights of prescribing information. KEYTRUDA® (pembrolizumab) injection, for intravenous use Initial U.S. Approval: 2014. 2014. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125514s102lbl.pdf (Accessed: March 6, 2022).
[85]
Wang, D.D.; Zhang, S.; Zhao, H.; Men, A.Y.; Parivar, K. Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J. Clin. Pharmacol., 2009, 49(9), 1012-1024.
[http://dx.doi.org/10.1177/0091270009337512] [PMID: 19620385]
[86]
Zhang, S.; Shi, R.; Li, C.; Parivar, K.; Wang, D.D. Fixed dosing versus body size-based dosing of therapeutic peptides and proteins in adults. J. Clin. Pharmacol., 2012, 52(1), 18-28.
[http://dx.doi.org/10.1177/0091270010388648] [PMID: 21233304]
[87]
Ahamadi, M.; Freshwater, T.; Prohn, M.; Li, C.H.; de Alwis, D.P.; de Greef, R.; Elassaiss-Schaap, J.; Kondic, A.; Stone, J.A. Model-based characterization of the pharmacokinetics of pembrolizumab: A humanized anti-PD-1 monoclonal antibody in advanced solid tumors. CPT Pharmacometrics Syst. Pharmacol., 2017, 6(1), 49-57.
[http://dx.doi.org/10.1002/psp4.12139] [PMID: 27863186]
[88]
Hendrikx, J.J.M.A.; Haanen, J.B.A.G.; Voest, E.E.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. Fixed dosing of monoclonal antibodies in oncology. Oncologist, 2017, 22(10), 1212-1221.
[http://dx.doi.org/10.1634/theoncologist.2017-0167] [PMID: 28754722]
[89]
Pinkel, D. The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res., 1958, 18(7), 853-856.
[PMID: 13573353]
[90]
Sawyer, M.; Ratain, M.J. Body surface area as a determinant of pharmacokinetics and drug dosing. Invest. New Drugs, 2001, 19(2), 171-177.
[http://dx.doi.org/10.1023/A:1010639201787] [PMID: 11392451]
[91]
Field, K.M.; Kosmider, S.; Jefford, M.; Michael, M.; Jennens, R.; Green, M.; Gibbs, P. Chemotherapy dosing strategies in the obese, elderly, and thin patient: Results of a nationwide survey. J. Oncol. Pract., 2008, 4(3), 108-113.
[http://dx.doi.org/10.1200/JOP.0832001] [PMID: 20856612]
[92]
Carroll, J.P.; Protani, M.M.; Nguyen, L.; Cheng, M.E.; Fay, M.; Saleem, M.; Pillay, P.S.; Walpole, E.; Martin, J.H. Toxicity and tolerability of adjuvant breast cancer chemotherapy in obese women. Med. Oncol., 2014, 31(4), 881.
[http://dx.doi.org/10.1007/s12032-014-0881-z] [PMID: 24549982]
[93]
Chambers, P.; Daniels, S.H.; Thompson, L.C.; Stephens, R.J. Chemotherapy dose reductions in obese patients with colorectal cancer. Ann. Oncol., 2012, 23(3), 748-753.
[http://dx.doi.org/10.1093/annonc/mdr277] [PMID: 21652579]
[94]
Chan, H.; Jackson, S.; McLay, J.; Knox, A.; Lee, J.; Wang, S.; Issa, S. Obese non-Hodgkin lymphoma patients tolerate full uncapped doses of chemotherapy with no increase in toxicity, and a similar survival to that seen in nonobese patients. Leuk. Lymphoma, 2016, 57(11), 2584-2592.
[http://dx.doi.org/10.3109/10428194.2016.1151508] [PMID: 26943235]
[95]
Furlanetto, J.; Eiermann, W.; Marmé, F.; Reimer, T.; Reinisch, M.; Schmatloch, S.; Stickeler, E.; Thomssen, C.; Untch, M.; Denkert, C.; von Minckwitz, G.; Lederer, B.; Nekljudova, V.; Weber, K.; Loibl, S.; Möbus, V. Higher rate of severe toxicities in obese patients receiving dose- dense (dd) chemotherapy according to unadjusted body surface area: Results of the prospectively randomized GAIN study. Ann. Oncol., 2016, 27(11), 2053-2059.
[http://dx.doi.org/10.1093/annonc/mdw315] [PMID: 27502721]
[96]
Ganti, A.; Liu, W.; Luo, S.; Sanfilippo, K.M.; Roop, R.; Lynch, R.; Riedell, P.; O’Brian, K.; Colditz, G.A.; Carson, K.R. Impact of body mass index on incidence of febrile neutropenia and treatment-related mortality in United States veterans with diffuse large B-cell lymphoma receiving rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone. Br. J. Haematol., 2014, 167(5), 699-702.
[http://dx.doi.org/10.1111/bjh.13026] [PMID: 25040880]
[97]
Hansen, J.; Stephan, J.M.; Freesmeier, M.; Bender, D.; Button, A.; Goodheart, M.J. The effect of weight-based chemotherapy dosing in a cohort of gynecologic oncology patients. Gynecol. Oncol., 2015, 138(1), 154-158.
[http://dx.doi.org/10.1016/j.ygyno.2015.04.040] [PMID: 25958318]
[98]
Kamimura, K.; Matsumoto, Y.; Zhou, Q.; Moriyama, M.; Saijo, Y. Myelosuppression by chemotherapy in obese patients with gynecological cancers. Cancer Chemother. Pharmacol., 2016, 78(3), 633-641.
[http://dx.doi.org/10.1007/s00280-016-3119-2] [PMID: 27485538]
[99]
Lote, H.; Sharp, A.; Redana, S.; Papadimitraki, E.; Capelan, M.; Ring, A. Febrile neutropenia rates according to body mass index and dose capping in women receiving chemotherapy for early breast cancer. Clin. Oncol. (R. Coll. Radiol.), 2016, 28(9), 597-603.
[http://dx.doi.org/10.1016/j.clon.2016.02.003] [PMID: 26936608]
[100]
Morrison, V.A.; McCall, L.; Muss, H.B.; Jatoi, A.; Cohen, H.J.; Cirrincione, C.T.; Ligibel, J.A.; Lafky, J.M.; Hurria, A. The impact of actual body weight-based chemotherapy dosing and body size on adverse events and outcome in older patients with breast cancer: Results from Cancer and Leukemia Group B (CALGB) trial 49907 (Alliance A151436). J. Geriatr. Oncol., 2018, 9(3), 228-234.
[http://dx.doi.org/10.1016/j.jgo.2017.11.007] [PMID: 29233548]
[101]
Robins, H.I.; Eickhoff, J.; Gilbert, M.R.; Armstrong, T.S.; Shi, W.; De Groot, J.F.; Schultz, C.J.; Hunter, G.K.; Valeinis, E.; Roach, M., III; Youssef, E.F.; Souhami, L.; Howard, S.P.; Lieberman, F.S.; Herman, J.G.; Zhang, P.; Mehta, M.P. The association between BMI and BSA-temozolomide-induced myelosuppression toxicities: A correlative analysis of NRG oncology RTOG 0525. Neurooncol. Pract., 2019, 6(6), 473-478.
[http://dx.doi.org/10.1093/nop/npz006] [PMID: 31832217]
[102]
Hourdequin, K.C.; Schpero, W.L.; McKenna, D.R.; Piazik, B.L.; Larson, R.J. Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: A systematic review and meta-analysis. Ann. Oncol., 2013, 24(12), 2952-2962.
[http://dx.doi.org/10.1093/annonc/mdt294] [PMID: 23965736]
[103]
Lyman, G.H.; Dale, D.C.; Crawford, J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: A nationwide study of community practices. J. Clin. Oncol., 2003, 21(24), 4524-4531.
[http://dx.doi.org/10.1200/JCO.2003.05.002] [PMID: 14673039]
[104]
Griggs, J.J.; Sabel, M.S. Obesity and cancer treatment: Weighing the evidence. J. Clin. Oncol., 2008, 26(25), 4060-4062.
[http://dx.doi.org/10.1200/JCO.2008.17.4250] [PMID: 18757320]
[105]
Griggs, J.J.; Sorbero, M.E.; Lyman, G.H. Undertreatment of obese women receiving breast cancer chemotherapy. Arch. Intern. Med., 2005, 165(11), 1267-1273.
[http://dx.doi.org/10.1001/archinte.165.11.1267] [PMID: 15956006]
[106]
Lyman, G.H. Impact of chemotherapy dose intensity on cancer patient outcomes. J. Natl. Compr. Canc. Netw., 2009, 7(1), 99-108.
[http://dx.doi.org/10.6004/jnccn.2009.0009] [PMID: 19176210]
[107]
Lyman, G.H.; Dale, D.C.; Friedberg, J.; Crawford, J.; Fisher, R.I. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: A nationwide study. J. Clin. Oncol., 2004, 22(21), 4302-4311.
[http://dx.doi.org/10.1200/JCO.2004.03.213] [PMID: 15381684]
[108]
Wu, W.; Liu, X.; Chaftari, P.; Cruz Carreras, M.T.; Gonzalez, C.; Viets-Upchurch, J.; Merriman, K.; Tu, S.M.; Dalal, S.; Yeung, S.C. Association of body composition with outcome of docetaxel chemotherapy in metastatic prostate cancer: A retrospective review. PLoS One, 2015, 10(3), e0122047.
[http://dx.doi.org/10.1371/journal.pone.0122047] [PMID: 25822612]
[109]
Gurney, H. Dose calculation of anticancer drugs: A review of the current practice and introduction of an alternative. J. Clin. Oncol., 1996, 14(9), 2590-2611.
[http://dx.doi.org/10.1200/JCO.1996.14.9.2590] [PMID: 8823340]
[110]
Sparreboom, A.; Verweij, J. Advances in cancer therapeutics. Clin. Pharmacol. Ther., 2009, 85(2), 113-117.
[http://dx.doi.org/10.1038/clpt.2008.259] [PMID: 19151631]
[111]
Felici, A.; Verweij, J.; Sparreboom, A. Dosing strategies for anticancer drugs: The good, the bad and body-surface area. Eur. J. Cancer, 2002, 38(13), 1677-1684.
[http://dx.doi.org/10.1016/S0959-8049(02)00151-X] [PMID: 12175683]
[112]
Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition, 1989, 5(5), 303-311.
[PMID: 2520314]
[113]
Yu, C.Y.; Lo, Y.H.; Chiou, W.K. The 3D scanner for measuring body surface area: A simplified calculation in the Chinese adult. Appl. Ergon., 2003, 34(3), 273-278.
[http://dx.doi.org/10.1016/S0003-6870(03)00007-3] [PMID: 12737928]
[114]
Bouleftour, W.; Mery, B.; Chanal, E.; Rowinski, E.; Viard, A.; Forges, F.; Fournel, P.; Rivoirard, R. Obesity and chemotherapy administration: Between empiric and mathematic method review. Acta Oncol., 2019, 58(6), 880-887.
[http://dx.doi.org/10.1080/0284186X.2019.1585942] [PMID: 30907190]
[115]
Redlarski, G.; Palkowski, A.; Krawczuk, M. Body surface area formulae: An alarming ambiguity. Sci. Rep., 2016, 6(1), 27966.
[http://dx.doi.org/10.1038/srep27966] [PMID: 27323883]
[116]
Calvert, A.H.; Newell, D.R.; Gumbrell, L.A.; O’Reilly, S.; Burnell, M.; Boxall, F.E.; Siddik, Z.H.; Judson, I.R.; Gore, M.E.; Wiltshaw, E. Carboplatin dosage: Prospective evaluation of a simple formula based on renal function. J. Clin. Oncol., 1989, 7(11), 1748-1756.
[http://dx.doi.org/10.1200/JCO.1989.7.11.1748] [PMID: 2681557]
[117]
Duffull, S.B.; Robinson, B.A. Clinical pharmacokinetics and dose optimisation of carboplatin. Clin. Pharmacokinet., 1997, 33(3), 161-183.
[http://dx.doi.org/10.2165/00003088-199733030-00002] [PMID: 9314610]
[118]
Latz, J.E.; Chaudhary, A.; Ghosh, A.; Johnson, R.D. Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother. Pharmacol., 2006, 57(4), 401-411.
[http://dx.doi.org/10.1007/s00280-005-0036-1] [PMID: 16322991]
[119]
Chatelut, E.; Puisset, F. The scientific basis of body surface area-based dosing. Clin. Pharmacol. Ther., 2014, 95(4), 359-361.
[http://dx.doi.org/10.1038/clpt.2014.7] [PMID: 24646485]
[120]
Ekhart, C.; Rodenhuis, S.; Schellens, J.H.; Beijnen, J.H.; Huitema, A.D. Carboplatin dosing in overweight and obese patients with normal renal function, does weight matter? Cancer Chemother. Pharmacol., 2009, 64(1), 115-122.
[http://dx.doi.org/10.1007/s00280-008-0856-x] [PMID: 18989671]
[121]
De Jonge, M.E.; Mathôt, R.A.; Van Dam, S.M.; Beijnen, J.H.; Rodenhuis, S. Extremely high exposures in an obese patient receiving high-dose cyclophosphamide, thiotepa and carboplatin. Cancer Chemother. Pharmacol., 2002, 50(3), 251-255.
[http://dx.doi.org/10.1007/s00280-002-0494-7] [PMID: 12203108]
[122]
Haak, H.R.; Hermans, J.; van de Velde, C.J.; Lentjes, E.G.; Goslings, B.M.; Fleuren, G.J.; Krans, H.M. Optimal treatment of adrenocortical carcinoma with mitotane: Results in a consecutive series of 96 patients. Br. J. Cancer, 1994, 69(5), 947-951.
[http://dx.doi.org/10.1038/bjc.1994.183] [PMID: 8180029]
[123]
van Slooten, H.; Moolenaar, A.J.; van Seters, A.P.; Smeenk, D. The treatment of adrenocortical carcinoma with o,p′-DDD: Prognostic implications of serum level monitoring. Eur. J. Cancer Clin. Oncol., 1984, 20(1), 47-53.
[http://dx.doi.org/10.1016/0277-5379(84)90033-6] [PMID: 6537915]
[124]
Bouleftour, W.; Viard, A.; Mery, B.; Chaux, R.; Magne, N.; Simoens, X.; Rivoirard, R.; Forges, F. Body surface area capping may not improve cytotoxic drugs tolerance. Sci. Rep., 2021, 11(1), 2431.
[http://dx.doi.org/10.1038/s41598-021-81792-6] [PMID: 33510207]
[125]
Griggs, J.J.; Mangu, P.B.; Temin, S.; Lyman, G.H. Appropriate chemotherapy dosing for obese adult patients with cancer: American society of clinical oncology clinical practice guideline. J. Oncol. Pract., 2012, 8(4), e59-e61.
[http://dx.doi.org/10.1200/JOP.2012.000623] [PMID: 29452546]
[126]
Griggs, J.J.; Culakova, E.; Sorbero, M.E.; van Ryn, M.; Poniewierski, M.S.; Wolff, D.A.; Crawford, J.; Dale, D.C.; Lyman, G.H. Effect of patient socioeconomic status and body mass index on the quality of breast cancer adjuvant chemotherapy. J. Clin. Oncol., 2007, 25(3), 277-284.
[http://dx.doi.org/10.1200/JCO.2006.08.3063] [PMID: 17159190]
[127]
Fancher, K.M.; Sacco, A.J.; Gwin, R.C.; Gormley, L.K.; Mitchell, C.B. Comparison of two different formulas for body surface area in adults at extremes of height and weight. J. Oncol. Pharm. Pract., 2016, 22(5), 690-695.
[http://dx.doi.org/10.1177/1078155215599669] [PMID: 26385906]
[128]
de Man, F.M.; Veerman, G.D.M.; Oomen-de Hoop, E.; Deenen, M.J.; Meulendijks, D.; Mandigers, C.M.P.W.; Soesan, M.; Schellens, J.H.M.; van Meerten, E.; van Gelder, T.; Mathijssen, R.H.J. Comparison of toxicity and effectiveness between fixed-dose and body surface area-based dose capecitabine. Ther. Adv. Med. Oncol., 2019, 11, 1758835919838964.
[http://dx.doi.org/10.1177/1758835919838964] [PMID: 31019570]
[129]
Eaton, K. D.; Lyman, P. H. Dosing of anticancer agents in adults. UpToDate, 2021. Available from: https://www.uptodate.com/contents/dosing-of-anticancer-agents-in-adults
[130]
Hijiya, N.; Panetta, J.C.; Zhou, Y.; Kyzer, E.P.; Howard, S.C.; Jeha, S.; Razzouk, B.I.; Ribeiro, R.C.; Rubnitz, J.E.; Hudson, M.M.; Sandlund, J.T.; Pui, C.H.; Relling, M.V. Body mass index does not influence pharmacokinetics or outcome of treatment in children with acute lymphoblastic leukemia. Blood, 2006, 108(13), 3997-4002.
[http://dx.doi.org/10.1182/blood-2006-05-024414] [PMID: 16917005]
[131]
Kendrick, J.G.; Carr, R.R.; Ensom, M.H. Pharmacokinetics and drug dosing in obese children. J. Pediatr. Pharmacol. Ther., 2010, 15(2), 94-109.
[http://dx.doi.org/10.5863/1551-6776-15.2.94] [PMID: 22477800]
[132]
Ceja, M.E.; Christensen, A.M. Dosing considerations in pediatric oncology. US Pharm., 2013, 38, 8-11.
[133]
Behan, J.W.; Yun, J.P.; Proektor, M.P.; Ehsanipour, E.A.; Arutyunyan, A.; Moses, A.S.; Avramis, V.I.; Louie, S.G.; Butturini, A.; Heisterkamp, N.; Mittelman, S.D. Adipocytes impair leukemia treatment in mice. Cancer Res., 2009, 69(19), 7867-7874.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0800] [PMID: 19773440]
[134]
Lange, B.J.; Gerbing, R.B.; Feusner, J.; Skolnik, J.; Sacks, N.; Smith, F.O.; Alonzo, T.A. Mortality in overweight and underweight children with acute myeloid leukemia. JAMA, 2005, 293(2), 203-211.
[http://dx.doi.org/10.1001/jama.293.2.203] [PMID: 15644547]
[135]
Dobbs, N.A.; Twelves, C.J.; Gillies, H.; James, C.A.; Harper, P.G.; Rubens, R.D. Gender affects doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother. Pharmacol., 1995, 36(6), 473-476.
[http://dx.doi.org/10.1007/BF00685796] [PMID: 7554038]
[136]
Pfreundschuh, M.; Müller, C.; Zeynalova, S.; Kuhnt, E.; Wiesen, M.H.; Held, G.; Rixecker, T.; Poeschel, V.; Zwick, C.; Reiser, M.; Schmitz, N.; Murawski, N. Suboptimal dosing of rituximab in male and female patients with DLBCL. Blood, 2014, 123(5), 640-646.
[http://dx.doi.org/10.1182/blood-2013-07-517037] [PMID: 24297867]
[137]
Gérard, S.; Bréchemier, D.; Lefort, A.; Lozano, S.; Abellan Van Kan, G.; Filleron, T.; Mourey, L.; Bernard-Marty, C.; Rougé-Bugat, M.E.; Soler, V.; Vellas, B.; Cesari, M.; Rolland, Y.; Balardy, L. Body composition and anti-neoplastic treatment in adult and older subjects - a systematic review. J. Nutr. Health Aging, 2016, 20(8), 878-888.
[http://dx.doi.org/10.1007/s12603-015-0653-2] [PMID: 27709238]
[138]
Zuccaro, P.; Guandalini, S.; Pacifici, R.; Pichini, S.; Di Martino, L.; Guiducci, M.; Giuliano, M.; Di Tullio, M.T.; Pettoello Mantovani, M. Fat body mass and pharmacokinetics of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Ther. Drug Monit., 1991, 13(1), 37-41.
[http://dx.doi.org/10.1097/00007691-199101000-00004] [PMID: 2057989]
[139]
Seo, J.W.; Fu, K.; Correa, S.; Eisenstein, M.; Appel, E.A.; Soh, H.T. Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals. Sci. Adv., 2022, 8(1), eabk2901.
[http://dx.doi.org/10.1126/sciadv.abk2901] [PMID: 34995112]
[140]
MacDonald, J.J.; Moore, J.; Davey, V.; Pickering, S.; Dunne, T. The weight debate. J. Intensive Care Soc., 2015, 16(3), 234-238.
[http://dx.doi.org/10.1177/1751143714565059] [PMID: 28979416]
[141]
Peterson, C.M.; Thomas, D.M.; Blackburn, G.L.; Heymsfield, S.B. Universal equation for estimating ideal body weight and body weight at any BMI. Am. J. Clin. Nutr., 2016, 103(5), 1197-1203.
[http://dx.doi.org/10.3945/ajcn.115.121178] [PMID: 27030535]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy