Review Article

靶向TRK激酶的小分子抑制剂研究进展

卷 30, 期 10, 2023

发表于: 27 October, 2022

页: [1175 - 1192] 页: 18

弟呕挨: 10.2174/0929867329666220801145639

价格: $65

摘要

背景:Trk基因融合是癌症发展的重要驱动因素,包括分泌性乳腺癌和婴儿先天性肉瘤。自第一代小分子TRK抑制剂(Larotrectinib和Entrectinib)上市以来,小分子TRK抑制剂特别是突破耐药问题的二代抑制剂的研究发展迅速。因此,本文着重介绍突破耐药性的第一代药物和第二代药物的研究进展。 方法:利用数据库检索相关的前沿文献,根据内容筛选筛选。对合适的文章进行分析归类,最后根据题目写出文章。 结果:描述了Trk蛋白融合现象及其与肿瘤的关系,随后解释了Trk激酶的组成和信号通路。代表性的Trk抑制剂和新型Trk抑制剂的开发根据是否克服耐药问题进行分类。 结论:本文通过对突破耐药问题的代表性新型Trk抑制剂的介绍和总结,为新型抑制剂的开发提供理论参考。

关键词: Trk基因融合,Trk抑制剂,耐药性,克服耐药性,肿瘤,Trk激酶

[1]
Snider, W.D. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell, 1994, 77(5), 627-638.
[http://dx.doi.org/10.1016/0092-8674(94)90048-5] [PMID: 8205613]
[2]
Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.G.; Tosi, F.; Siena, S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol., 2019, 8, 5-15.
[3]
Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol., 2019, 30(8), 23-30.
[http://dx.doi.org/10.1093/annonc/mdz282]
[4]
Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell, 2002, 109(3), 275-282.
[http://dx.doi.org/10.1016/S0092-8674(02)00741-9] [PMID: 12015977]
[5]
Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci., 2003, 4(4), 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[6]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[7]
Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov., 2015, 5(1), 25-34.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0765] [PMID: 25527197]
[8]
Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open, 2016, 1(2), e000023.
[http://dx.doi.org/10.1136/esmoopen-2015-000023] [PMID: 27843590]
[9]
Reuther, G.W.; Lambert, Q.T.; Caligiuri, M.A.; Der, C.J. Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol. Cell. Biol., 2000, 20(23), 8655-8666.
[http://dx.doi.org/10.1128/MCB.20.23.8655-8666.2000] [PMID: 11073967]
[10]
Okamura, R.; Boichard, A.; Kato, S.; Sicklick, J.K.; Bazhenova, L.; Kurzrock, R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: Implications for NTRK-targeted therapeutics. JCO Precis Oncol., 2018, 2018, PO.18.00183.
[11]
Greco, A.; Fusetti, L.; Miranda, C.; Villa, R.; Zanotti, S.; Pagliardini, S.; Pierotti, M.A. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene, 1998, 16(6), 809-816.
[http://dx.doi.org/10.1038/sj.onc.1201596] [PMID: 9488046]
[12]
Greco, A.; Mariani, C.; Miranda, C.; Lupas, A.; Pagliardini, S.; Pomati, M.; Pierotti, M.A. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol. Cell. Biol., 1995, 15(11), 6118-6127.
[http://dx.doi.org/10.1128/MCB.15.11.6118] [PMID: 7565764]
[13]
Mitra, G.; Martin-Zanca, D.; Barbacid, M. Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc. Natl. Acad. Sci. USA, 1987, 84(19), 6707-6711.
[http://dx.doi.org/10.1073/pnas.84.19.6707] [PMID: 3477801]
[14]
Bailey, J.J.; Schirrmacher, R.; Farrell, K.; Bernard-Gauthier, V. Tropomyosin receptor kinase inhibitors: An updated patent review for 2010-2016 - Part II. Expert Opin. Ther. Pat., 2017, 27(7), 831-849.
[http://dx.doi.org/10.1080/13543776.2017.1297797] [PMID: 28270021]
[15]
Miao, Q.; Ma, K.; Chen, D.; Wu, X.; Jiang, S. Targeting tropomyosin receptor kinase for cancer therapy. Eur. J. Med. Chem., 2019, 175, 129-148.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.053] [PMID: 31077998]
[16]
Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00064] [PMID: 27003761]
[17]
Russo, M.; Misale, S.; Wei, G.; Siravegna, G.; Crisafulli, G.; Lazzari, L.; Corti, G.; Rospo, G.; Novara, L.; Mussolin, B.; Bartolini, A.; Cam, N.; Patel, R.; Yan, S.; Shoemaker, R.; Wild, R.; Di Nicolantonio, F.; Bianchi, A.S.; Li, G.; Siena, S.; Bardelli, A. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov., 2016, 6(1), 36-44.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0940] [PMID: 26546295]
[18]
Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; Larsen, P.D.; Bouhana, K.S.; Winski, S.L.; Hamor, R.; Wu, W.I.; Parker, A.; Morales, T.H.; Sullivan, F.X.; DeWolf, W.E.; Wollenberg, L.A.; Gordon, P.R.; Douglas-Lindsay, D.N.; Scaltriti, M.; Benayed, R.; Raj, S.; Hanusch, B.; Schram, A.M.; Jonsson, P.; Berger, M.F.; Hechtman, J.F.; Taylor, B.S.; Andrews, S.; Rothenberg, S.M.; Hyman, D.M. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov., 2017, 7(9), 963-972.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0507] [PMID: 28578312]
[19]
Cocco, E.; Schram, A.M.; Kulick, A.; Misale, S.; Won, H.H.; Yaeger, R.; Razavi, P.; Ptashkin, R.; Hechtman, J.F.; Toska, E.; Cownie, J.; Somwar, R.; Shifman, S.; Mattar, M.; Selçuklu, S.D.; Samoila, A.; Guzman, S.; Tuch, B.B.; Ebata, K.; de Stanchina, E.; Nagy, R.J.; Lanman, R.B.; Houck-Loomis, B.; Patel, J.A.; Berger, M.F.; Ladanyi, M.; Hyman, D.M.; Drilon, A.; Scaltriti, M. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med., 2019, 25(9), 1422-1427.
[http://dx.doi.org/10.1038/s41591-019-0542-z] [PMID: 31406350]
[20]
Faulkner, S.; Griffin, N.; Rowe, C.W.; Jobling, P.; Lombard, J.M.; Oliveira, S.M.; Walker, M.M.; Hondermarck, H. Nerve growth factor and its receptor tyrosine kinase TrkA are overexpressed in cervical squamous cell carcinoma. FASEB Bioadv., 2020, 2(7), 398-408.
[http://dx.doi.org/10.1096/fba.2020-00016] [PMID: 32676580]
[21]
Papadopoulos, K.P.; Borazanci, E.; Shaw, A.T.; Katayama, R.; Shimizu, Y.; Zhu, V.W.; Sun, T.Y.; Wakelee, H.A.; Madison, R.; Schrock, A.B.; Senaldi, G.; Nakao, N.; Hanzawa, H.; Tachibana, M.; Isoyama, T.; Nakamaru, K.; Deng, C.; Li, M.; Fan, F.; Zhao, Q.; Gao, Y.; Seto, T.; Jänne, P.A.; Ou, S.I.U.S.; Phase, I.U.S.; Phase, I. First-in-human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2020, 26(18), 4785-4794.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1630] [PMID: 32591465]
[22]
Skaper, S.D. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol. Disord. Drug Targets, 2008, 7(1), 46-62.
[http://dx.doi.org/10.2174/187152708783885174] [PMID: 18289031]
[23]
Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol., 2018, 15(12), 731-747.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[24]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894]
[25]
Deinhardt, K.; Chao, M.V. Trk receptors. Handb. Exp. Pharmacol., 2014, 220, 103-119.
[http://dx.doi.org/10.1007/978-3-642-45106-5_5] [PMID: 24668471]
[26]
Li, M.; Dai, F.R.; Du, X.P.; Yang, Q.D.; Zhang, X.; Chen, Y. Infusion of BDNF into the nucleus accumbens of aged rats improves cognition and structural synaptic plasticity through PI3K-ILK-Akt signaling. Behav. Brain Res., 2012, 231(1), 146-153.
[http://dx.doi.org/10.1016/j.bbr.2012.03.010] [PMID: 22446058]
[27]
Guiton, M.; Gunn-Moore, F.J.; Glass, D.J.; Geis, D.R.; Yancopoulos, G.D.; Tavaré, J.M. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling. J. Biol. Chem., 1995, 270(35), 20384-20390.
[http://dx.doi.org/10.1074/jbc.270.35.20384] [PMID: 7657612]
[28]
Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D.M.; Hechtman, J.; Wei, G.; Cam, N.R.; Christiansen, J.; Luo, D.; Maneval, E.C.; Bauer, T.; Patel, M.; Liu, S.V.; Ou, S.H.; Farago, A.; Shaw, A.; Shoemaker, R.F.; Lim, J.; Hornby, Z.; Multani, P.; Ladanyi, M.; Berger, M.; Katabi, N.; Ghossein, R.; Ho, A.L. What hides behind the MASC: Clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol., 2016, 27(5), 920-926.
[http://dx.doi.org/10.1093/annonc/mdw042] [PMID: 26884591]
[29]
Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; Avanzi, N.; Amboldi, N.; Saccardo, M.B.; Casero, D.; Orsini, P.; Bandiera, T.; Mologni, L.; Anderson, D.; Wei, G.; Harris, J.; Vernier, J.M.; Li, G.; Felder, E.; Donati, D.; Isacchi, A.; Pesenti, E.; Magnaghi, P.; Galvani, A. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther., 2016, 15(4), 628-639.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0758] [PMID: 26939704]
[30]
Iyer, R.; Wehrmann, L.; Golden, R.L.; Naraparaju, K.; Croucher, J.L.; MacFarland, S.P.; Guan, P.; Kolla, V.; Wei, G.; Cam, N.; Li, G.; Hornby, Z.; Brodeur, G.M. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett., 2016, 372(2), 179-186.
[http://dx.doi.org/10.1016/j.canlet.2016.01.018] [PMID: 26797418]
[31]
Drilon, A.; Siena, S.; Ou, S.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1237] [PMID: 28183697]
[32]
Liu, D.; Offin, M.; Harnicar, S.; Li, B.T.; Drilon, A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther. Clin. Risk Manag., 2018, 14, 1247-1252.
[http://dx.doi.org/10.2147/TCRM.S147381] [PMID: 30050303]
[33]
Schram, A.M.; Chang, M.T.; Jonsson, P.; Drilon, A. Fusions in solid tumours: Diagnostic strategies, targeted therapy, and acquired resistance. Nat. Rev. Clin. Oncol., 2017, 14(12), 735-748.
[http://dx.doi.org/10.1038/nrclinonc.2017.127] [PMID: 28857077]
[34]
Doebele, R.C.; Davis, L.E.; Vaishnavi, A.; Le, A.T.; Estrada-Bernal, A.; Keysar, S.; Jimeno, A.; Varella-Garcia, M.; Aisner, D.L.; Li, Y.; Stephens, P.J.; Morosini, D.; Tuch, B.B.; Fernandes, M.; Nanda, N.; Low, J.A. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov., 2015, 5(10), 1049-1057.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0443] [PMID: 26216294]
[35]
Federman, N.; McDermott, R. Larotrectinib, a highly selective tropomyosin receptor kinase (TRK) inhibitor for the treatment of TRK fusion cancer. Expert Rev. Clin. Pharmacol., 2019, 12(10), 931-939.
[http://dx.doi.org/10.1080/17512433.2019.1661775] [PMID: 31469968]
[36]
Choi, H.S.; Rucker, P.V.; Wang, Z.; Fan, Y.; Albaugh, P.; Chopiuk, G.; Gessier, F.; Sun, F.; Adrian, F.; Liu, G.; Hood, T.; Li, N.; Jia, Y.; Che, J.; McCormack, S.; Li, A.; Li, J.; Steffy, A.; Culazzo, A.; Tompkins, C.; Phung, V.; Kreusch, A.; Lu, M.; Hu, B.; Chaudhary, A.; Prashad, M.; Tuntland, T.; Liu, B.; Harris, J.; Seidel, H.M.; Loren, J.; Molteni, V. (R)-2-phenylpyrrolidine substituted imidazopyridazines: A new class of potent and selective Pan-TRK inhibitors. ACS Med. Chem. Lett., 2015, 6(5), 562-567.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00050] [PMID: 26005534]
[37]
Choi, H.S.; Rucker, P.V.; Wang, Z.; Fan, Y.; Albaugh, P.; Chopiuk, G.; Gessier, F.; Sun, F.; Adrian, F.; Liu, G.; Hood, T.; Li, N.; Jia, Y.; Che, J.; McCormack, S.; Li, A.; Li, J.; Steffy, A.; Culazzo, A.; Tompkins, C.; Phung, V.; Kreusch, A.; Lu, M.; Hu, B.; Chaudhary, A.; Prashad, M.; Tuntland, T.; Liu, B.; Harris, J.; Seidel, H.M.; Loren, J.; Molteni, V. Structure coordinates have been deposited into the PDB: 4YMJ; 4YNE; 4YPS. ACS Med. Chem. Lett., 2015, 6, 562-567.
[38]
Shirahashi, H.; Toriihara, E.; Suenaga, Y.; Yoshida, H.; Akaogi, K.; Endou, Y.; Wakabayashi, M.; Takashima, M. The discovery of novel 3-aryl-indazole derivatives as peripherally restricted pan-TRK inhibitors for the treatment of pain. Bioorg. Med. Chem. Lett., 2019, 29(16), 2320-2326.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.018] [PMID: 31235262]
[39]
Zhang, Y.; Liu, Y.; Zhou, Y.; Zhang, Q.; Han, T.; Tang, C.; Fan, W. Pyrazolo[1,5-a]pyrimidine based TRK inhibitors: Design, Synthesis, biological activity evaluation. Bioorg. Med. Chem. Lett., 2021, 31, 127712.
[PMID: 33246108]
[40]
Lewis, R.T.; Bode, C.M.; Choquette, D.M.; Potashman, M.; Romero, K.; Stellwagen, J.C.; Teffera, Y.; Moore, E.; Whittington, D.A.; Chen, H.; Epstein, L.F.; Emkey, R.; Andrews, P.S.; Yu, V.L.; Saffran, D.C.; Xu, M.; Drew, A.; Merkel, P.; Szilvassy, S.; Brake, R.L. The discovery and optimization of a novel class of potent, selective, and orally bioavailable anaplastic lymphoma kinase (ALK) inhibitors with potential utility for the treatment of cancer. J. Med. Chem., 2012, 55(14), 6523-6540.
[http://dx.doi.org/10.1021/jm3005866] [PMID: 22734674]
[41]
Weiss, G.; Sachdev, J.; Infante, J.; Mita, M.; Natale, R.; Arkenau, H.T. Phase (Ph) 1/2 study of TSR-011, a potent inhibitor of ALK and TRK, including crizotinib-resistant ALK mutations. J. Clin. Oncol., 2014, 32, e19005.
[42]
Fancelli, D.; Moll, J.; Varasi, M.; Bravo, R.; Artico, R.; Berta, D.; Bindi, S.; Cameron, A.; Candiani, I.; Cappella, P.; Carpinelli, P.; Croci, W.; Forte, B.; Giorgini, M.L.; Klapwijk, J.; Marsiglio, A.; Pesenti, E.; Rocchetti, M.; Roletto, F.; Severino, D.; Soncini, C.; Storici, P.; Tonani, R.; Zugnoni, P.; Vianello, P. 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J. Med. Chem., 2006, 49(24), 7247-7251.
[http://dx.doi.org/10.1021/jm060897w] [PMID: 17125279]
[43]
Thress, K.; MacIntyre, T.; Wang, H.; Liu, Z.Y.; Hoffmann, E.; Wang, T.; Whitston, D.; Brown, J.L.; Webster, K.; Omer, C. Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the TRK kinase pathway. Eur. J. Cancer, Suppl., 2008, 6(12), 180.
[http://dx.doi.org/10.1016/S1359-6349(08)72508-4]
[44]
Albanese, C.; Alzani, R.; Amboldi, N.; Degrassi, A.; Festuccia, C.; Fiorentini, F.; Gravina, G.; Mercurio, C.; Pastori, W.; Brasca, M.; Pesenti, E.; Galvani, A.; Ciomei, M. Anti-tumour efficacy on glioma models of PHA-848125, a multi-kinase inhibitor able to cross the blood-brain barrier. Br. J. Pharmacol., 2013, 169(1), 156-166.
[http://dx.doi.org/10.1111/bph.12112] [PMID: 23347136]
[45]
Albanese, C.; Alzani, R.; Amboldi, N.; Avanzi, N.; Ballinari, D.; Brasca, M.G.; Festuccia, C.; Fiorentini, F.; Locatelli, G.; Pastori, W.; Patton, V.; Roletto, F.; Colotta, F.; Galvani, A.; Isacchi, A.; Moll, J.; Pesenti, E.; Mercurio, C.; Ciomei, M. Dual targeting of CDK and tropomyosin receptor kinase families by the oral inhibitor PHA-848125, an agent with broad-spectrum antitumor efficacy. Mol. Cancer Ther., 2010, 9(8), 2243-2254.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0190] [PMID: 20682657]
[46]
Brasca, M.G.; Amboldi, N.; Ballinari, D.; Cameron, A.; Casale, E.; Cervi, G.; Colombo, M.; Colotta, F.; Croci, V.; D’Alessio, R.; Fiorentini, F.; Isacchi, A.; Mercurio, C.; Moretti, W.; Panzeri, A.; Pastori, W.; Pevarello, P.; Quartieri, F.; Roletto, F.; Traquandi, G.; Vianello, P.; Vulpetti, A.; Ciomei, M. Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor. J. Med. Chem., 2009, 52(16), 5152-5163.
[http://dx.doi.org/10.1021/jm9006559] [PMID: 19603809]
[47]
Lippa, B.; Morris, J.; Corbett, M.; Kwan, T.A.; Noe, M.C.; Snow, S.L.; Gant, T.G.; Mangiaracina, M.; Coffey, H.A.; Foster, B.; Knauth, E.A.; Wessel, M.D. Discovery of novel isothiazole inhibitors of the TRK A kinase: Structure-activity relationship, computer modeling, optimization, and identification of highly potent antagonists. Bioorg. Med. Chem. Lett., 2006, 16(13), 3444-3448.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.003] [PMID: 16632359]
[48]
Albaugh, P.; Fan, Y.; Mi, Y.; Sun, F.; Adrian, F.; Li, N.; Jia, Y.; Sarkisova, Y.; Kreusch, A.; Hood, T.; Lu, M.; Liu, G.; Huang, S.; Liu, Z.; Loren, J.; Tuntland, T.; Karanewsky, D.S.; Seidel, H.M.; Molteni, V. Discovery of GNF-5837, a selective TRK inhibitor with efficacy in rodent cancer tumor models. ACS Med. Chem. Lett., 2012, 3(2), 140-145.
[http://dx.doi.org/10.1021/ml200261d]
[49]
El-Damasy, A.K.; Cho, N.C.; Nam, G.; Pae, A.N.; Keum, G. Discovery of a nanomolar multikinase inhibitor (KST016366): A new benzothiazole derivative with remarkable broad-spectrum antiproliferative activity. ChemMedChem, 2016, 11(15), 1587-1595.
[http://dx.doi.org/10.1002/cmdc.201600224] [PMID: 27405013]
[50]
Patwardhan, P.P.; Ivy, K.S.; Musi, E.; de Stanchina, E.; Schwartz, G.K. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget, 2016, 7(4), 4093-4109.
[http://dx.doi.org/10.18632/oncotarget.6547] [PMID: 26675259]
[51]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[52]
Hong, S.; Kim, J.; Seo, J.H.; Jung, K.H.; Hong, S.S.; Hong, S. Design, synthesis, and evaluation of 3,5-disubstituted 7-azaindoles as Trk inhibitors with anticancer and antiangiogenic activities. J. Med. Chem., 2012, 55(11), 5337-5349.
[http://dx.doi.org/10.1021/jm3002982] [PMID: 22575050]
[53]
Lieberman, H.; Yang, D.L.; Philbrook, M.; Santos, M.; Ho, C. Pharmaceutical formulations of tropomyosin related kinase (TRK) inhibitors. WO2016100677A2, 2016.
[54]
Skerratt, S.E.; Andrews, M.; Bagal, S.K.; Bilsland, J.; Brown, D.; Bungay, P.J.; Cole, S.; Gibson, K.R.; Jones, R.; Morao, I.; Nedderman, A.; Omoto, K.; Robinson, C.; Ryckmans, T.; Skinner, K.; Stupple, P.; Waldron, G. The Discovery of a potent, selective, and peripherally restricted Pan-Trk inhibitor (PF-06273340) for the treatment of pain. J. Med. Chem., 2016, 59(22), 10084-10099.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00850] [PMID: 27766865]
[55]
Awad, M.M.; Katayama, R.; McTigue, M.; Liu, W.; Deng, Y.L.; Brooun, A.; Friboulet, L.; Huang, D.; Falk, M.D.; Timofeevski, S.; Wilner, K.D.; Lockerman, E.L.; Khan, T.M.; Mahmood, S.; Gainor, J.F.; Digumarthy, S.R.; Stone, J.R.; Mino-Kenudson, M.; Christensen, J.G.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med., 2013, 368(25), 2395-2401.
[http://dx.doi.org/10.1056/NEJMoa1215530] [PMID: 23724914]
[56]
Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-Santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first and second generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov., 2016, 6(10), 1118-1133.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0596] [PMID: 27432227]
[57]
Drilon, A.; Ou, S.I.; Cho, B.C.; Kim, D.W.; Lee, J.; Lin, J.J.; Zhu, V.W.; Ahn, M.J.; Camidge, D.R.; Nguyen, J.; Zhai, D.; Deng, W.; Huang, Z.; Rogers, E.; Liu, J.; Whitten, J.; Lim, J.K.; Stopatschinskaja, S.; Hyman, D.M.; Doebele, R.C.; Cui, J.J.; Shaw, A.T. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov., 2018, 8(10), 1227-1236.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0484] [PMID: 30093503]
[58]
Liu, Z.; Yu, P.; Dong, L.; Wang, W.; Duan, S.; Wang, B.; Gong, X.; Ye, L.; Wang, H.; Tian, J. Discovery of the next-generation Pan-TRK kinase inhibitors for the treatment of cancer. J. Med. Chem., 2021, 64(14), 10286-10296.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00712] [PMID: 34253025]
[59]
Sun, M.; Cai, S.; Li, P.; Zhang, F.; Zhang, H.; Zhou, J. Design, synthesis and biological activity of bicyclic carboxamide derivatives as TRK inhibitors. Bioorg. Med. Chem., 2020, 28(23), 115811.
[http://dx.doi.org/10.1016/j.bmc.2020.115811] [PMID: 33069129]
[60]
Zhuo, L.S.; Wang, M.S.; Wu, F.X.; Xu, H.C.; Gong, Y.; Yu, Z.C.; Tian, Y.G.; Pang, C.; Hao, G.F.; Huang, W.; Yang, G.F. Discovery of next-generation tropomyosin receptor kinase inhibitors for combating multiple resistance associated with protein mutation. J. Med. Chem., 2021, 64(20), 15503-15514.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01539] [PMID: 34668694]
[61]
Duan, Y.; Wang, J.; Zhu, S.; Tu, Z.C.; Zhang, Z.; Chan, S.; Ding, K. Design, synthesis, and structure-activity relationships (SAR) of 3-vinylindazole derivatives as new selective tropomyosin receptor kinases (TRK) inhibitors. Eur. J. Med. Chem., 2020, 203, 112552.
[http://dx.doi.org/10.1016/j.ejmech.2020.112552] [PMID: 32702585]
[62]
Morphy, R. Selectively nonselective kinase inhibition: Striking the right balance. J. Med. Chem., 2010, 53(4), 1413-1437.
[http://dx.doi.org/10.1021/jm901132v] [PMID: 20166671]
[63]
Liu, X.; Wang, B.; Chen, C.; Jiang, Z.; Hu, C.; Wu, H.; Zhang, Y.; Liu, X.; Wang, W.; Wang, J.; Hu, Z.; Wang, A.; Huang, T.; Liu, Q.; Wang, W.; Wang, L.; Wang, W.; Ren, T.; Li, L.; Xia, R.; Ge, J.; Liu, Q.; Liu, J. Discovery of (E)-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl) phenyl)-3-((3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl) thio) propanamide (CHMFL-ABL-121) as a highly potent ABL kinase inhibitor capable of overcoming a variety of ABL mutants including T315I for chronic myeloid leukemia. Eur. J. Med. Chem., 2018, 160, 61-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.007] [PMID: 30317026]
[64]
Wang, B.; Zhang, W.; Liu, X.; Zou, F.; Wang, J.; Liu, Q.; Wang, A.; Hu, Z.; Chen, Y.; Qi, S.; Jiang, Z.; Chen, C.; Hu, C.; Wang, L.; Wang, W.; Liu, Q.; Liu, J. Discovery of (E)-N-(4-methyl-5-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl) thiazol-2-yl)-2-(4-methylpiperazin-1-yl)acetamide (IHMT-TRK-284) as a novel orally available type II TRK kinase inhibitor capable of overcoming multiple resistant mutants. Eur. J. Med. Chem., 2020, 207, 112744.
[http://dx.doi.org/10.1016/j.ejmech.2020.112744] [PMID: 32949955]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy