Review Article

白藜芦醇对胃肠道肿瘤分子通路和MicroRNAs的影响

卷 30, 期 7, 2023

发表于: 16 September, 2022

页: [820 - 840] 页: 21

弟呕挨: 10.2174/0929867329666220729153654

价格: $65

摘要

胃肠道癌症是世界范围内最常见的肿瘤类型之一。胃肠道癌症的发病率正在迅速上升。尽管在胃肠道癌症的管理方面取得了所有的进展,但这些疾病的治疗选择仍然有限,并且没有有效的治疗方法。因此,寻找新的治疗策略对于降低此类癌症患者的死亡率似乎是必要的。天然产物的应用在某些肿瘤性疾病的治疗中起着突出的作用。白藜芦醇是一种植物化学物质,存在于各种水果和植物中,如红葡萄和茶。最近,白藜芦醇在一些肿瘤疾病的管理中对microRNAs的影响已被研究。本文旨在阐明与白藜芦醇相关的分子途径,并评估白藜芦醇在预防和治疗胃肠道癌症环境中对不同microRNAs的影响。

关键词: 白藜芦醇,胃肠道,癌症,microRNA,植物化学,肿瘤。

[1]
Murphy, N.; Jenab, M.; Gunter, M.J. Adiposity and gastrointestinal cancers: Epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(11), 659-670.
[http://dx.doi.org/10.1038/s41575-018-0038-1] [PMID: 29970888]
[2]
Seitz, H.K.; Cho, C.H. Contribution of alcohol and tobacco use in gastrointestinal cancer development. Cancer Epidemiology; Springer, 2009, pp. 217-241.
[3]
Aituov, B.; Duisembekova, A.; Bulenova, A.; Alibek, K. Pathogen-driven gastrointestinal cancers: Time for a change in treatment paradigm? Infect. Agent. Cancer, 2012, 7(1), 18.
[http://dx.doi.org/10.1186/1750-9378-7-18] [PMID: 22873119]
[4]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M. Global cancer observatory. In: Cancer today; WHO: Lyon, France, 2018.
[5]
Ye, C.; Hu, Y.; Wang, J. MicroRNA-377 targets zinc finger E-box-binding homeobox 2 to inhibit cell proliferation and invasion of cervical cancer. Oncol. Res., 2019, 27(2), 183-192.
[http://dx.doi.org/10.3727/096504018X15201124340860] [PMID: 29523224]
[6]
García-Becerra, R.; Santos, N.; Díaz, L.; Camacho, J. Mechanisms of resistance to endocrine therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance. Int. J. Mol. Sci., 2012, 14(1), 108-145.
[http://dx.doi.org/10.3390/ijms14010108] [PMID: 23344024]
[7]
Lei, S.L.; Zhao, H.; Yao, H.L.; Chen, Y.; Lei, Z.D.; Liu, K.J.; Yang, Q. Regulatory roles of microRNA-708 and microRNA-31 in proliferation, apoptosis and invasion of colorectal cancer cells. Oncol. Lett., 2014, 8(4), 1768-1774.
[http://dx.doi.org/10.3892/ol.2014.2328] [PMID: 25202407]
[8]
Lima, C.R.; Geraldo, M.V.; Fuziwara, C.S.; Kimura, E.T.; Santos, M.F. MiRNA-146b-5p upregulates migration and invasion of different papillary thyroid carcinoma cells. BMC Cancer, 2016, 16(1), 108.
[http://dx.doi.org/10.1186/s12885-016-2146-z] [PMID: 26883911]
[9]
Zheng, Q.; Chen, C.; Guan, H.; Kang, W.; Yu, C. Prognostic role of microRNAs in human gastrointestinal cancer: A systematic review and meta-analysis. Oncotarget, 2017, 8(28), 46611-46623.
[http://dx.doi.org/10.18632/oncotarget.16679] [PMID: 28402940]
[10]
Buckley, A.M.; Lynam-Lennon, N.; O’Neill, H.; O’Sullivan, J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(5), 298-313.
[http://dx.doi.org/10.1038/s41575-019-0247-2] [PMID: 32005946]
[11]
Waltenberger, B.; Mocan, A.; Šmejkal, K.; Heiss, E.; Atanasov, A. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules, 2016, 21(6), 807.
[http://dx.doi.org/10.3390/molecules21060807] [PMID: 27338339]
[12]
Bose, S.; Malik, J.; Mandal, S.C. Application of Phytochemicals in Pharmaceuticals. Advances in Pharmaceutical Biotechnology; Springer, 2020, pp. 55-68.
[13]
Charles, D.J. Natural antioxidants. Antioxidant properties of spices, herbs and other sources; Springer, 2012, pp. 39-64.
[http://dx.doi.org/10.1007/978-1-4614-4310-0_3]
[14]
Jasiński, M.; Jasińska, L.; Ogrodowczyk, M. Resveratrol in prostate diseases-a short review. Cent. Eur. J. Urol., 2013, 66(2), 144-149.
[PMID: 24579014]
[15]
Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem. Toxicol., 2013, 61, 215-226.
[http://dx.doi.org/10.1016/j.fct.2013.07.021] [PMID: 23872128]
[16]
Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1145-1154.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013]
[17]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[18]
Csiszar, A. Anti-inflammatory effects of resveratrol: Possible role in prevention of age-related cardiovascular disease. Ann. N. Y. Acad. Sci., 2011, 1215(1), 117-122.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05848.x] [PMID: 21261649]
[19]
Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol., 2013, 15(9), 741-746.
[http://dx.doi.org/10.1007/s12094-012-0999-4] [PMID: 23359184]
[20]
Karimi Dermani, F.; Saidijam, M.; Amini, R.; Mahdavinezhad, A.; Heydari, K.; Najafi, R. Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing miR-200c expression in HCT-116 colorectal cancer cells. J. Cell. Biochem., 2017, 118(6), 1547-1555.
[http://dx.doi.org/10.1002/jcb.25816] [PMID: 27918105]
[21]
Mo, W.; Xu, X.; Xu, L.; Wang, F.; Ke, A.; Wang, X.; Guo, C. Resveratrol inhibits proliferation and induces apoptosis through the hedgehog signaling pathway in pancreatic cancer cell. Pancreatology, 2011, 11(6), 601-609.
[http://dx.doi.org/10.1159/000333542] [PMID: 22301921]
[22]
Sales, J.M.; Resurreccion, A.V.A. Resveratrol in peanuts. Crit. Rev. Food Sci. Nutr., 2014, 54(6), 734-770.
[http://dx.doi.org/10.1080/10408398.2011.606928] [PMID: 24345046]
[23]
Chang, C.H.; Lee, C.Y.; Lu, C.C.; Tsai, F.J.; Hsu, Y.M.; Tsao, J.W.; Juan, Y.N.; Chiu, H.Y.; Yang, J.S.; Wang, C.C. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int. J. Oncol., 2017, 50(3), 873-882.
[http://dx.doi.org/10.3892/ijo.2017.3866] [PMID: 28197628]
[24]
Lin, F.Y.; Hsieh, Y.H.; Yang, S.F.; Chen, C.T.; Tang, C.H.; Chou, M.Y.; Chuang, Y.T.; Lin, C.W.; Chen, M.K. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells. J. Oral Pathol. Med., 2015, 44(9), 699-706.
[http://dx.doi.org/10.1111/jop.12288] [PMID: 25401496]
[25]
Dalirsani, Z.; Pakfetrat, A.; Delavarian, Z.; Hashemy, S.I.; Vazifeh Mostaan, L.; Abdollahnejad, M.; Fani Pakdel, A.; Banihashemi, E.; Ghazi, A. Comparison of matrix metalloproteinases 2 and 9 levels in saliva and serum of patients with head and neck squamous cell carcinoma and healthy subjects. Int. J. Cancer Manag., 2019.
[http://dx.doi.org/10.5812/ijcm.90249]
[26]
Yu, X.D.; Yang, J.; Zhang, W.L.; Liu, D.X. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest. Tumour Biol., 2016, 37(3), 2871-2877.
[http://dx.doi.org/10.1007/s13277-015-3793-4] [PMID: 26409447]
[27]
Zhou, H.B.; Yan, Y.; Sun, Y-N.; Zhu, J-R. Resveratrol induces apoptosis in human esophageal carcinoma cells. World J. Gastroenterol., 2003, 9(3), 408-411.
[http://dx.doi.org/10.3748/wjg.v9.i3.408] [PMID: 12632486]
[28]
Woodall, C.E.; Li, Y.; Liu, Q.H.; Wo, J.; Martin, R.C.G. Chemoprevention of metaplasia initiation and carcinogenic progression to esophageal adenocarcinoma by resveratrol supplementation. Anticancer Drugs, 2009, 20(6), 437-443.
[http://dx.doi.org/10.1097/CAD.0b013e32832afb95] [PMID: 19398904]
[29]
Li, Z.G.; Hong, T.; Shimada, Y.; Komoto, I.; Kawabe, A.; Ding, Y.; Kaganoi, J.; Hashimoto, Y.; Imamura, M. Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol. Carcinogenesis, 2002, 23(9), 1531-1536.
[http://dx.doi.org/10.1093/carcin/23.9.1531] [PMID: 12189197]
[30]
Pacheco-Pinedo, E.C.; Durham, A.C.; Stewart, K.M.; Goss, A.M.; Lu, M.M.; DeMayo, F.J.; Morrisey, E.E. Wnt/β-catenin signaling accelerates mouse lung tumorigenesis by imposing an embryonic distal progenitor phenotype on lung epithelium. J. Clin. Invest., 2011, 121(5), 1935-1945.
[http://dx.doi.org/10.1172/JCI44871] [PMID: 21490395]
[31]
Dai, H.; Deng, H.B.; Wang, Y.H.; Guo, J.J. Resveratrol inhibits the growth of gastric cancer via the Wnt/β-catenin pathway. Oncol. Lett., 2018, 16(2), 1579-1583.
[http://dx.doi.org/10.3892/ol.2018.8772] [PMID: 30008840]
[32]
Thayer, S.P.; di Magliano, M.P.; Heiser, P.W.; Nielsen, C.M.; Roberts, D.J.; Lauwers, G.Y.; Qi, Y.P.; Gysin, S.; Castillo, C.F.; Yajnik, V.; Antoniu, B.; McMahon, M.; Warshaw, A.L.; Hebrok, M. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425(6960), 851-856.
[http://dx.doi.org/10.1038/nature02009] [PMID: 14520413]
[33]
Gao, Q.; Yuan, Y.; Gan, H.Z.; Peng, Q. Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncol. Lett., 2015, 9(5), 2381-2387.
[http://dx.doi.org/10.3892/ol.2015.2988] [PMID: 26137075]
[34]
MacDonald, J.S.; Schein, P.S.; Woolley, P.V.; Smythe, T.; Ueno, W.; Hoth, D.; Smith, F.; Boiron, M.; Gisselbrecht, C.; Brunet, R.; Lagarde, C. 5-Fluorouracil, doxorubicin, and mitomycin (FAM) combination chemotherapy for advanced gastric cancer. Ann. Intern. Med., 1980, 93(4), 533-536.
[http://dx.doi.org/10.7326/0003-4819-93-4-533] [PMID: 7436184]
[35]
Morikawa, Y.; Kezuka, C.; Endo, S.; Ikari, A.; Soda, M.; Yamamura, K.; Toyooka, N.; El-Kabbani, O.; Hara, A.; Matsunaga, T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo–keto reductase 1B10. Chem. Biol. Interact., 2015, 230, 30-39.
[http://dx.doi.org/10.1016/j.cbi.2015.02.005] [PMID: 25686905]
[36]
Xu, J.; Liu, D.; Niu, H.; Zhu, G.; Xu, Y.; Ye, D.; Li, J.; Zhang, Q. Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 19.
[http://dx.doi.org/10.1186/s13046-016-0487-8] [PMID: 28126034]
[37]
Miki, H.; Uehara, N.; Kimura, A.; Sasaki, T.; Yuri, T.; Yoshizawa, K.; Tsubura, A. Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int. J. Oncol., 2012, 40(4), 1020-1028.
[http://dx.doi.org/10.3892/ijo.2012.1325] [PMID: 22218562]
[38]
Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 227-232.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05660.x] [PMID: 22211760]
[39]
Jing, X.; Cheng, W.; Wang, S.; Li, P.; He, L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol. Rep., 2016, 35(1), 472-478.
[http://dx.doi.org/10.3892/or.2015.4384] [PMID: 26530632]
[40]
Razavi, M.; Jamilian, M.; Karamali, M.; Bahmani, F.; Aghadavod, E.; Asemi, Z. The effects of vitamin D-K-calcium co-supplementation on endocrine, inflammation, and oxidative stress biomarkers in vitamin D-deficient women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Horm. Metab. Res., 2016, 48(7), 446-451.
[http://dx.doi.org/10.1055/s-0042-104060] [PMID: 27050252]
[41]
Yan, Y.; Zhou, C.; Li, J.; Chen, K.; Wang, G.; Wei, G.; Chen, M.; Li, X. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol. Cell. Biochem., 2017, 434(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-017-3031-z] [PMID: 28455791]
[42]
Choi, H.Y.; Chong, S.A.; Nam, M.J. Resveratrol induces apoptosis in human SK-HEP-1 hepatic cancer cells. Cancer Genom. Proteom., 2009, 6(5), 263-268.
[PMID: 19996131]
[43]
Delmas, D.; Jannin, B.; Cherkaoui Malki, M.; Latruffe, N. Inhibitory effect of resveratrol on the proliferation of human and rat hepatic derived cell lines. Oncol. Rep., 2000, 7(4), 847-852.
[http://dx.doi.org/10.3892/or.7.4.847] [PMID: 10854556]
[44]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[http://dx.doi.org/10.1038/nrc3205] [PMID: 22270953]
[45]
Marano, L.; Chiari, R.; Fabozzi, A.; De Vita, F.; Boccardi, V.; Roviello, G.; Petrioli, R.; Marrelli, D.; Roviello, F.; Patriti, A. c-Met targeting in advanced gastric cancer: An open challenge. Cancer Lett., 2015, 365(1), 30-36.
[http://dx.doi.org/10.1016/j.canlet.2015.05.028] [PMID: 26049023]
[46]
Burggraaf, J.; Kamerling, I.M.C.; Gordon, P.B.; Schrier, L.; de Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A.; Yazdanfar, S.; Langers, A.M.J.; Swaerd-Nordmo, M.; Torheim, G.; Warren, M.V.; Morreau, H.; Voorneveld, P.W.; Buckle, T.; van Leeuwen, F.W.B.; Ødegårdstuen, L.I.; Dalsgaard, G.T.; Healey, A.; Hardwick, J.C.H. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med., 2015, 21(8), 955-961.
[http://dx.doi.org/10.1038/nm.3641] [PMID: 26168295]
[47]
You, H.; Ding, W.; Dang, H.; Jiang, Y.; Rountree, C.B. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology, 2011, 54(3), 879-889.
[http://dx.doi.org/10.1002/hep.24450] [PMID: 21618573]
[48]
Gao, F.; Deng, G.; Liu, W.; Zhou, K.; Li, M. Resveratrol suppresses human hepatocellular carcinoma via targeting HGF-c-Met signaling pathway. Oncol. Rep., 2017, 37(2), 1203-1211.
[http://dx.doi.org/10.3892/or.2017.5347] [PMID: 28075467]
[49]
Zhang, B.; Yin, X.; Sui, S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3 kinase/protein kinase B pathway. Oncol. Rep., 2018, 40(5), 2758-2765.
[http://dx.doi.org/10.3892/or.2018.6648] [PMID: 30132535]
[50]
Vega-Rubín-de-Celis, S. The role of beclin 1-dependent autophagy in cancer. Biology (Basel), 2019, 9(1), 4.
[http://dx.doi.org/10.3390/biology9010004] [PMID: 31877888]
[51]
Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.P.; Gescher, A.J. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases--safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila.), 2011, 4(9), 1419-1425.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0148] [PMID: 21680702]
[52]
Wu, X.Z. Origin of cancer stem cells: The role of self-renewal and differentiation. Ann. Surg. Oncol., 2008, 15(2), 407-414.
[http://dx.doi.org/10.1245/s10434-007-9695-y] [PMID: 18043974]
[53]
Gangemi, R.; Paleari, L.; Orengo, A.; Cesario, A.; Chessa, L.; Ferrini, S.; Russo, P. Cancer stem cells: A new paradigm for understanding tumor growth and progression and drug resistance. Curr. Med. Chem., 2009, 16(14), 1688-1703.
[http://dx.doi.org/10.2174/092986709788186147] [PMID: 19442140]
[54]
Hoca, M.; Becer, E.; Kabadayı, H.; Yücecan, S.; Vatansever, H.S. The effect of resveratrol and quercetin on epithelial-mesenchymal transition in pancreatic cancer stem cell. Nutr. Cancer, 2020, 72(7), 1231-1242.
[http://dx.doi.org/10.1080/01635581.2019.1670853] [PMID: 31595775]
[55]
Shah, A.N.; Summy, J.M.; Zhang, J.; Park, S.I.; Parikh, N.U.; Gallick, G.E. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann. Surg. Oncol., 2007, 14(12), 3629-3637.
[http://dx.doi.org/10.1245/s10434-007-9583-5] [PMID: 17909916]
[56]
Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; Campos, D.; Lim, R.; Ding, K.; Clark, G.; Voskoglou-Nomikos, T.; Ptasynski, M.; Parulekar, W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol., 2007, 25(15), 1960-1966.
[http://dx.doi.org/10.1200/JCO.2006.07.9525] [PMID: 17452677]
[57]
Zhou, C.; Qian, W.; Ma, J.; Cheng, L.; Jiang, Z.; Yan, B.; Li, J.; Duan, W.; Sun, L.; Cao, J.; Wang, F.; Wu, E.; Wu, Z.; Ma, Q.; Li, X. Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting SREBP1. Cell Prolif., 2019, 52(1), e12514.
[http://dx.doi.org/10.1111/cpr.12514] [PMID: 30341797]
[58]
Xiao, Y.; Qin, T.; Sun, L.; Qian, W.; Li, J.; Duan, W.; Lei, J.; Wang, Z.; Ma, J.; Li, X.; Ma, Q.; Xu, Q. Resveratrol ameliorates the malignant progression of pancreatic cancer by inhibiting hypoxia-induced pancreatic stellate cell activation. Cell Transplant., 2020, 29, 963689720929987.
[http://dx.doi.org/10.1177/0963689720929987] [PMID: 32463297]
[59]
Duan, J.; Yue, W.; e, J.Y.; Malhotra, J.; Lu, S.; Gu, J.; Xu, F.; Tan, X-L. In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFκB signaling in pancreatic cancer cells. Sci. Rep., 2016, 6(1), 31672.
[http://dx.doi.org/10.1038/srep31672]
[60]
Zhu, M.; Zhang, Q.; Wang, X.; Kang, L.; Yang, Y.; Liu, Y.; Yang, L.; Li, J.; Yang, L.; Liu, J.; Li, Y.; Zu, L.; Shen, Y.; Qi, Z. Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway. Oncotarget, 2016, 7(51), 84190-84200.
[http://dx.doi.org/10.18632/oncotarget.12391] [PMID: 27705937]
[61]
Holcombe, R.F.; Nguyen, A.; Martinez; Stamos, M.J.; Moyer, M.P.; Planutis, K.; Hope; Holcombe, R.F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res., 2009, 1, 25-37.
[http://dx.doi.org/10.2147/CMAR.S4544] [PMID: 21188121]
[62]
Cha, H.J.; Lee, H.H.; Chae, S.W.; Cho, W.J.; Kim, Y.M.; Choi, H-J.; Choi, D.H.; Jung, S.W.; Min, Y.J.; Lee, B.J.; Park, S.E.; Park, J.W. Tristetraprolin downregulates the expression of both VEGF and COX-2 in human colon cancer. Hepatogastroenterology, 2011, 58(107-108), 790-795.
[PMID: 21830391]
[63]
Young, L.E.; Sanduja, S.; Bemis-Standoli, K.; Pena, E.A.; Price, R.L.; Dixon, D.A. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology, 2009, 136(5), 1669-1679.
[http://dx.doi.org/10.1053/j.gastro.2009.01.010] [PMID: 19208339]
[64]
Lee, S.R.; Jin, H.; Kim, W.T.; Kim, W.J.; Kim, S.Z.; Leem, S.H.; Kim, S.M. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int. J. Oncol., 2018, 53(3), 1269-1278.
[http://dx.doi.org/10.3892/ijo.2018.4453] [PMID: 29956753]
[65]
Xiong, H.; Zhao, W.; Wang, J.; Seifer, B.J.; Ye, C.; Chen, Y.; Jia, Y.; Chen, C.; Shen, J.; Wang, L.; Sui, X.; Zhou, J. Oncogenic mechanisms of Lin28 in breast cancer: New functions and therapeutic opportunities. Oncotarget, 2017, 8(15), 25721-25735.
[http://dx.doi.org/10.18632/oncotarget.14891] [PMID: 28147339]
[66]
Chung, M.Y.; Mah, E.; Masterjohn, C.; Noh, S.K.; Park, H.J.; Clark, R.M.; Park, Y.K.; Lee, J.Y.; Bruno, R.S. Green tea lowers hepatic COX-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis. J. Med. Food, 2015, 18(6), 648-655.
[http://dx.doi.org/10.1089/jmf.2014.0048] [PMID: 25453513]
[67]
Liu, H.E.; Chang, A.S.Y.; Teng, C.M.; Chen, C.C.; Tsai, A.C.; Yang, C.R. Potent anti-inflammatory effects of denbinobin mediated by dual inhibition of expression of inducible no synthase and cyclooxygenase 2. Shock, 2011, 35(2), 191-197.
[http://dx.doi.org/10.1097/SHK.0b013e3181f0e9a8] [PMID: 20661183]
[68]
Gong, W.H.; Zhao, N.; Zhang, Z.M.; Zhang, Y.X.; Yan, L.; Li, J.B. The inhibitory effect of resveratrol on COX-2 expression in human colorectal cancer: A promising therapeutic strategy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(5), 1136-1143.
[PMID: 28338176]
[69]
Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.B.; Shakibaei, M. Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it. Exp. Biol. Med. (Maywood), 2019, 244(1), 1-12.
[http://dx.doi.org/10.1177/1535370218824538] [PMID: 30661394]
[70]
Du, Z.; Zhou, F.; Jia, Z.; Zheng, B.; Han, S.; Cheng, J.; Zhu, G.; Huang, P. The hedgehog/Gli-1 signaling pathways is involved in the inhibitory effect of resveratrol on human colorectal cancer HCT116 cells. Iran. J. Basic Med. Sci., 2016, 19(11), 1171-1176.
[PMID: 27917272]
[71]
Yang, Z.; Zhang, C.; Qi, W.; Cui, Y.; Xuan, Y. GLI1 promotes cancer stemness through intracellular signaling pathway PI3K/Akt/NFκB in colorectal adenocarcinoma. Exp. Cell Res., 2018, 373(1-2), 145-154.
[http://dx.doi.org/10.1016/j.yexcr.2018.10.006] [PMID: 30321514]
[72]
Zhang, X.; Bruice, T.C. Mechanism of product specificity of AdoMet methylation catalyzed by lysine methyltransferases: Transcriptional factor p53 methylation by histone lysine methyltransferase SET7/9. Biochemistry, 2008, 47(9), 2743-2748.
[http://dx.doi.org/10.1021/bi702370p] [PMID: 18260647]
[73]
Liu, Z.; Wu, X.; Lv, J.; Sun, H.; Zhou, F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol. Lett., 2019, 17(4), 3783-3789.
[http://dx.doi.org/10.3892/ol.2019.10034] [PMID: 30881498]
[74]
Buhrmann, C.; Yazdi, M.; Popper, B.; Shayan, P.; Goel, A.; Aggarwal, B.; Shakibaei, M. Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients, 2018, 10(7), 888.
[http://dx.doi.org/10.3390/nu10070888] [PMID: 30002278]
[75]
Ji, Q.; Liu, X.; Han, Z.; Zhou, L.; Sui, H.; Yan, L.; Jiang, H.; Ren, J.; Cai, J.; Li, Q. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer, 2015, 15(1), 97.
[http://dx.doi.org/10.1186/s12885-015-1119-y] [PMID: 25884904]
[76]
Chung, S.S.; Dutta, P.; Austin, D.; Wang, P.; Awad, A.; Vadgama, J.V. Combination of resveratrol and 5-flurouracil enhanced anti-telomerase activity and apoptosis by inhibiting STAT3 and Akt signaling pathways in human colorectal cancer cells. Oncotarget, 2018, 9(68), 32943-32957.
[http://dx.doi.org/10.18632/oncotarget.25993] [PMID: 30250641]
[77]
Tavakolizadeh, J.; Roshanaei, K.; Salmaninejad, A.; Yari, R.; Nahand, J.S.; Sarkarizi, H.K.; Mousavi, S.M.; Salarinia, R.; Rahmati, M.; Mousavi, S.F.; Mokhtari, R.; Mirzaei, H. MicroRNAs and exosomes in depression: Potential diagnostic biomarkers. J. Cell. Biochem., 2018, 119(5), 3783-3797.
[http://dx.doi.org/10.1002/jcb.26599] [PMID: 29236313]
[78]
Dysregulated microRNAs in neurodegenerative disorders. In: Seminars in Cell & Developmental Biology; Lau, P.; De Strooper, B., Eds.; Elsevier, 2010.
[79]
Nishiguchi, T; Imanishi, T; Akasaka, T. MicroRNAs and cardiovascular diseases. BioMed. Res. Int., 2015, 2015, 682857.
[http://dx.doi.org/10.1155/2015/682857]
[80]
Landrier, J-F.; Derghal, A.; Karkeni, E.; Mounien, L. MicroRNAs in endocrine disorders. EJIFCC, 2019, 30(2), 146-164.
[81]
Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Med., 2009, 60(1), 167-179.
[http://dx.doi.org/10.1146/annurev.med.59.053006.104707] [PMID: 19630570]
[82]
Liu, C-J.; Kao, S-Y.; Tu, H-F.; Tsai, M-M.; Chang, K-W.; Lin, S-C. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis., 2010, 16(4), 360-364.
[http://dx.doi.org/10.1111/j.1601-0825.2009.01646.x] [PMID: 20233326]
[83]
Uesugi, A.; Kozaki, K.; Tsuruta, T.; Furuta, M.; Morita, K.; Imoto, I.; Omura, K.; Inazawa, J. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res., 2011, 71(17), 5765-5778.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0368] [PMID: 21795477]
[84]
Lu, Y.C.; Chen, Y.J.; Wang, H.M.; Tsai, C.Y.; Chen, W.H.; Huang, Y.C.; Fan, K.H.; Tsai, C.N.; Huang, S.F.; Kang, C.J.; Chang, J.T.C.; Cheng, A.J. Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev. Res. (Phila.), 2012, 5(4), 665-674.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0358] [PMID: 22318752]
[85]
Yang, Y.; Goldstein, B.G.; Chao, H.H.; Katz, J. KLF4 and KLF5 regulate proliferation, Apoptosis and invasion in esophageal cancer cells. Cancer Biol. Ther., 2005, 4(11), 1216-1221.
[http://dx.doi.org/10.4161/cbt.4.11.2090] [PMID: 16357509]
[86]
Tian, Y.; Luo, A.; Cai, Y.; Su, Q.; Ding, F.; Chen, H.; Liu, Z. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J. Biol. Chem., 2010, 285(11), 7986-7994.
[http://dx.doi.org/10.1074/jbc.M109.062877] [PMID: 20075075]
[87]
Lee, K.H.; Goan, Y.G.; Hsiao, M.; Lee, C.H.; Jian, S.H.; Lin, J.T.; Chen, Y.L.; Lu, P.J. MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp. Cell Res., 2009, 315(15), 2529-2538.
[http://dx.doi.org/10.1016/j.yexcr.2009.06.001] [PMID: 19501585]
[88]
Bamodu, O.A.; Chang, H.L.; Ong, J.R.; Lee, W.H.; Yeh, C.T.; Tsai, J.T. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma. Cells, 2020, 9(3), 746.
[http://dx.doi.org/10.3390/cells9030746] [PMID: 32197467]
[89]
Qin, W.; Tian, Y.; Zhang, J.; Liu, W.; Zhou, Q.; Hu, S.; Yang, F.; Lu, L.; Lu, H.; Cui, S.; Wen, L.; Wei, S. The double inhibition of PDK1 and STAT3-Y705 prevents liver metastasis in colorectal cancer. Sci. Rep., 2019, 9(1), 12973.
[http://dx.doi.org/10.1038/s41598-019-49480-8] [PMID: 31506552]
[90]
Yang, Z.; Wu, Z.; Liu, T.; Han, L.; Wang, C.; Yang, B.; Zheng, F. Upregulation of PDK1 associates with poor prognosis in esophageal squamous cell carcinoma with facilitating tumorigenicity in vitro. Med. Oncol., 2014, 31(12), 337.
[http://dx.doi.org/10.1007/s12032-014-0337-5] [PMID: 25416048]
[91]
Li, X.; Lin, R.; Li, J. Epigenetic silencing of microRNA-375 regulates PDK1 expression in esophageal cancer. Dig. Dis. Sci., 2011, 56(10), 2849-2856.
[http://dx.doi.org/10.1007/s10620-011-1711-1] [PMID: 21533613]
[92]
Duvvuri, U.; Shiwarski, D.J.; Xiao, D.; Bertrand, C.; Huang, X.; Edinger, R.S.; Rock, J.R.; Harfe, B.D.; Henson, B.J.; Kunzelmann, K.; Schreiber, R.; Seethala, R.S.; Egloff, A.M.; Chen, X.; Lui, V.W.; Grandis, J.R.; Gollin, S.M. TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res., 2012, 72(13), 3270-3281.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0475-T] [PMID: 22564524]
[93]
Cao, Q.; Liu, F.; Ji, K.; Liu, N.; He, Y.; Zhang, W.; Wang, L. MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J. Exp. Clin. Cancer Res., 2017, 36(1), 29.
[http://dx.doi.org/10.1186/s13046-017-0499-z] [PMID: 28193228]
[94]
Wang, J.; Wen, T.; Li, Z.; Che, X.; Gong, L.; Yang, X.; Zhang, J.; Tang, H.; He, L.; Qu, X.; Liu, Y. MicroRNA-1224 inhibits tumor metastasis in intestinal-type gastric cancer by directly targeting FAK. Front. Oncol., 2019, 9, 222.
[http://dx.doi.org/10.3389/fonc.2019.00222] [PMID: 31019895]
[95]
Song, M.K.; Park, Y.K.; Ryu, J.C. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK. Toxicol. Appl. Pharmacol., 2013, 273(1), 130-139.
[http://dx.doi.org/10.1016/j.taap.2013.08.016] [PMID: 23993976]
[96]
Jiang, J.; Zhang, Y.; Yu, C.; Li, Z.; Pan, Y.; Sun, C. MicroRNA-492 expression promotes the progression of hepatic cancer by targeting PTEN. Cancer Cell Int., 2014, 14(1), 95.
[http://dx.doi.org/10.1186/s12935-014-0095-7] [PMID: 25253996]
[97]
Gu, J.; Liu, X.; Li, J.; He, Y. MicroRNA-144 inhibits cell proliferation, migration and invasion in human hepatocellular carcinoma by targeting CCNB1. Cancer Cell Int., 2019, 19(1), 15.
[http://dx.doi.org/10.1186/s12935-019-0729-x] [PMID: 30651720]
[98]
Shi, C.; Yang, Y.; Yu, J.; Meng, F.; Zhang, T.; Gao, Y. The long noncoding RNA LINC00473, a target of microRNA 34a, promotes tumorigenesis by inhibiting ILF2 degradation in cervical cancer. Am. J. Cancer Res., 2017, 7(11), 2157-2168.
[PMID: 29218240]
[99]
Yin, Z-H; Jiang, X-W; Shi, W-B; Gui, Q-L; Yu, D-F Expression and clinical significance of ILF2 in gastric cancer. Disease Markers, 2017, 2017, 4387081.
[http://dx.doi.org/10.1155/2017/4387081]
[100]
Zhao, M.; Liu, Y.; Chang, J.; Qi, J.; Liu, R.; Hou, Y.; Wang, Y.; Zhang, X.; Qiao, L.; Ren, L. ILF2 cooperates with E2F1 to maintain mitochondrial homeostasis and promote small cell lung cancer progression. Cancer Biol. Med., 2019, 16(4), 771-783.
[PMID: 31908894]
[101]
Bi, Y.; Shen, W.; Min, M.; Liu, Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int. J. Mol. Med., 2017, 39(4), 900-906.
[http://dx.doi.org/10.3892/ijmm.2017.2894] [PMID: 28259961]
[102]
Yang, H.; Liu, G.; Liu, Y.; Zhao, H.; Yang, Z.; Zhao, C.; Zhang, X.; Ye, H. Over-expression of microRNA-940 promotes cell proliferation by targeting GSK3β and sFRP1 in human pancreatic carcinoma. Biomed. Pharmacother., 2016, 83, 593-601.
[http://dx.doi.org/10.1016/j.biopha.2016.06.057] [PMID: 27459115]
[103]
Wang, C.; Feng, Z.; Jiang, K.; Zuo, X. Upregulation of microRNA-935 promotes the malignant behaviors of pancreatic carcinoma PANC-1 cells via targeting inositol polyphosphate 4-phosphatase type I gene (INPP4A). Oncol. Res., 2017, 25(4), 559-569.
[http://dx.doi.org/10.3727/096504016X14759554689565] [PMID: 27733216]
[104]
Wang, W.; Ning, J.Z.; Tang, Z.G.; He, Y.; Yao, L.C.; Ye, L.; Wu, L. MicroRNA-23a acts as an oncogene in pancreatic carcinoma by targeting TFPI-2. Exp. Ther. Med., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/etm.2020.9181] [PMID: 32952643]
[105]
Islam, F.; Gopalan, V.; Vider, J.; Lu, C.; Lam, A.K.Y. MiR-142-5p act as an oncogenic microRNA in colorectal cancer: Clinicopathological and functional insights. Exp. Mol. Pathol., 2018, 104(1), 98-107.
[http://dx.doi.org/10.1016/j.yexmp.2018.01.006] [PMID: 29337244]
[106]
Zhang, Y.; Guo, L.; Li, Y.; Feng, G.H.; Teng, F.; Li, W.; Zhou, Q. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol. Cancer, 2018, 17(1), 1-11.
[http://dx.doi.org/10.1186/s12943-017-0753-1] [PMID: 29304823]
[107]
Mokutani, Y.; Uemura, M.; Munakata, K.; Okuzaki, D.; Haraguchi, N.; Takahashi, H.; Nishimura, J.; Hata, T.; Murata, K.; Takemasa, I.; Mizushima, T.; Doki, Y.; Mori, M.; Yamamoto, H. Down-regulation of microRNA-132 is associated with poor prognosis of colorectal cancer. Ann. Surg. Oncol., 2016, 23(S5), 599-608.
[http://dx.doi.org/10.1245/s10434-016-5133-3] [PMID: 26868958]
[108]
Fu, J.; Shrivastava, A.; Shrivastava, S.; Srivastava, R.; Shankar, S. Triacetyl resveratrol upregulates miRNA-200 and suppresses the Shh pathway in pancreatic cancer: A potential therapeutic agent. Int. J. Oncol., 2019, 54(4), 1306-1316.
[http://dx.doi.org/10.3892/ijo.2019.4700] [PMID: 30720134]
[109]
Soleymani Fard, S.; Sotoudeh, M.; Saliminejad, K.; Yazdanbod, M.; Mahmoodzadeh, H.; Kouchaki, S.; Yaghmaie, M.; Mousavi, S.A.; Malekzadeh, R.; Alimoghaddam, K.; Ghaffari, S.H. Investigation of the correlation between androgen receptor and ZEB1 and its value in progression of gastric cancer. Avicenna J. Med. Biotechnol., 2020, 12(1), 52-60.
[PMID: 32153739]
[110]
Yadav, R.K.; Chae, S.W.; Kim, H.R.; Chae, H.J. Endoplasmic reticulum stress and cancer. J. Cancer Prev., 2014, 19(2), 75-88.
[http://dx.doi.org/10.15430/JCP.2014.19.2.75] [PMID: 25337575]
[111]
Wu, H.; Wang, Y.; Wu, C.; Yang, P.; Li, H.; Li, Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J. Agric. Food Chem., 2016, 64(49), 9356-9367.
[http://dx.doi.org/10.1021/acs.jafc.6b04549] [PMID: 27960279]
[112]
Altamemi, I.; Murphy, E.A.; Catroppo, J.F.; Zumbrun, E.E.; Zhang, J.; McClellan, J.L.; Singh, U.P.; Nagarkatti, P.S.; Nagarkatti, M. Role of microRNAs in resveratrol-mediated mitigation of colitis-associated tumorigenesis in Apc(Min/+) mice. J. Pharmacol. Exp. Ther., 2014, 350(1), 99-109.
[http://dx.doi.org/10.1124/jpet.114.213306] [PMID: 24817032]
[113]
Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[114]
Yang, S.; Li, W.; Sun, H.; Wu, B.; Ji, F.; Sun, T.; Chang, H.; Shen, P.; Wang, Y.; Zhou, D. Resveratrol elicits anti- colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 2015, 15(1), 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[115]
Song, F; Zhang, Y; Pan, Z; Zhang, Q; Lu, X; Huang, P Resveratrol inhibits the migration, invasion and epithelial-mesenchymal transition in liver cancer cells through up- miR-186-5p expression. J. Zhejiang Univ. Med. Sci., 2021, 50, 582-90.
[116]
Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; Pintus, G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci., 2020, 21(6), 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[117]
Calabrese, E.J.; Mattson, M.P.; Calabrese, V. Resveratrol commonly displays hormesis: Occurrence and biomedical significance. Hum. Exp. Toxicol., 2010, 29(12), 980-1015.
[http://dx.doi.org/10.1177/0960327110383625] [PMID: 21115559]
[118]
Rocha, K.K.; Souza, G.A.; Ebaid, G.X.; Seiva, F.R.; Cataneo, A.C.; Novelli, E.L. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem. Toxicol., 2009, 47, 1362-1367.
[http://dx.doi.org/10.1016/j.fct.2009.03.010]
[119]
Posadino, A.M.; Giordo, R.; Cossu, A.; Nasrallah, G.K.; Shaito, A.; Abou-Saleh, H.; Eid, A.H.; Pintus, G. Flavin oxidase-induced ROS generation modulates pkc biphasic effect of resveratrol on endothelial cell survival. Biomolecules, 2019, 9(6), 209.
[http://dx.doi.org/10.3390/biom9060209] [PMID: 31151226]
[120]
Patel, K.R.; Brown, V.A.; Jones, D.J.L.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; Brenner, D.E.; Steward, W.P.; Gescher, A.J.; Brown, K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res., 2010, 70(19), 7392-7399.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[121]
Lin, C.C.; Chin, Y.T.; Shih, Y.J.; Chen, Y.R.; Chung, Y.Y.; Lin, C.Y.; Hsiung, C.N.; Whang-Peng, J.; Lee, S.Y.; Lin, H.Y.; Davis, P.J.; Wang, K. Resveratrol antagonizes thyroid hormone-induced expression of checkpoint and proliferative genes in oral cancer cells. J. Dent. Sci., 2019, 14(3), 255-262.
[http://dx.doi.org/10.1016/j.jds.2019.01.013] [PMID: 31528253]
[122]
Kim, S.H.; Kim, H.J.; Lee, M.H.; Yu, S.K.; Kim, C.S.; Kook, J.K.; Chun, H.S.; Park, E.; Lee, S-Y.; Kim, S.G.; Kim, H.R.; Kim, D.K. Resveratrol induces apoptosis of KB human oral cancer cells. J. Korean Soc. Appl. Biol. Chem., 2011, 54(6), 966-971.
[http://dx.doi.org/10.1007/BF03253187]
[123]
Ho, Y.; Wu, C.Y.; Chin, Y.T.; Li, Z.L.; Pan, Y.; Huang, T.Y.; Su, P.Y.; Lee, S.Y.; Crawford, D.R.; Su, K.W.; Chiu, H.C.; Shih, Y.J.; Changou, C.A.; Yang, Y.C.S.H.; Whang-Peng, J.; Chen, Y.R.; Lin, H.Y.; Mousa, S.A.; Davis, P.J.; Wang, K. NDAT suppresses pro-inflammatory gene expression to enhance resveratrol-induced anti-proliferation in oral cancer cells. Food Chem. Toxicol., 2020, 136, 111092.
[http://dx.doi.org/10.1016/j.fct.2019.111092] [PMID: 31883986]
[124]
Kim, J.Y.; Cho, K.H.; Lee, H.Y. Effect of resveratrol on oral cancer cell invasion induced by lysophosphatidic acid. J. Dental Hygiene Sci., 2018, 18(3), 188-193.
[http://dx.doi.org/10.17135/jdhs.2018.18.3.188]
[125]
Chang, H-J.; Chou, C-T.; Chang, H-T.; Liang, W-Z.; Hung, T-Y.; Li, Y-D.; Fang, Y-C.; Kuo, C-C.; Kuo, D-H.; Shieh, P.; Jan, C-R. Mechanisms of resveratrol-induced changes in cytosolic free calcium ion concentrations and cell viability in OC2 human oral cancer cells. Hum. Exp. Toxicol., 2015, 34(3), 289-299.
[http://dx.doi.org/10.1177/0960327114537536] [PMID: 24925362]
[126]
Kim, J.Y.; Cho, K.H.; Jeong, B.Y.; Park, C.G.; Lee, H.Y. Zeb1 for RCP-induced oral cancer cell invasion and its suppression by resveratrol. Exp. Mol. Med., 2020, 52(7), 1152-1163.
[http://dx.doi.org/10.1038/s12276-020-0474-1] [PMID: 32728068]
[127]
Bang, T.H.; Park, B.S.; Kang, H.M.; Kim, J.H.; Kim, I.R. Polydatin, a glycoside of resveratrol, induces apoptosis and inhibits metastasis oral squamous cell carcinoma cells in vitro. Pharmaceuticals (Basel), 2021, 14(9), 902.
[http://dx.doi.org/10.3390/ph14090902] [PMID: 34577602]
[128]
Xiao, Y.; Duan, Y.; Wang, Y.; Yin, X. Resveratrol suppresses malignant progression of oral squamous cell carcinoma cells by inducing the ZNF750/RAC1 signaling pathway. Bioengineered, 2021, 12(1), 2863-2873.
[http://dx.doi.org/10.1080/21655979.2021.1940616] [PMID: 34176441]
[129]
Shang, Y.; Jiang, Y.L.; Ye, L.J.; Chen, L.N.; Ke, Y. Resveratrol acts via melanoma-associated antigen A12 (MAGEA12)/protein kinase B (Akt) signaling to inhibit the proliferation of oral squamous cell carcinoma cells. Bioengineered, 2021, 12(1), 2253-2262.
[http://dx.doi.org/10.1080/21655979.2021.1934242] [PMID: 34085601]
[130]
Chang, W.S.; Tsai, C.W.; Yang, J.S.; Hsu, Y.M.; Shih, L.C.; Chiu, H.Y.; Bau, D.T.; Tsai, F.J. Resveratrol inhibited the metastatic behaviors of cisplatin-resistant human oral cancer cells via phosphorylation of ERK/p-38 and suppression of MMP-2/9. J. Food Biochem., 2021, 45(6), e13666.
[http://dx.doi.org/10.1111/jfbc.13666] [PMID: 34008860]
[131]
Chen, L.; Xia, J.S.; Wu, J.H.; Chen, Y.G.; Qiu, C.J. Resveratrol inhibits oral squamous cell carcinoma cells proliferation while promoting apoptosis through inhibition of CBX7 protein. Environ. Toxicol., 2020, 35(11), 1234-1240.
[http://dx.doi.org/10.1002/tox.22988] [PMID: 32621571]
[132]
Jin, Z.; Feng, W.; Ji, Y.; Jin, L. Resveratrol mediates cell cycle arrest and cell death in human esophageal squamous cell carcinoma by directly targeting the EGFR signaling pathway. Oncol. Lett., 2017, 13(1), 347-355.
[http://dx.doi.org/10.3892/ol.2016.5391] [PMID: 28123566]
[133]
Tang, Q.; Li, G.; Wei, X.; Zhang, J.; Chiu, J.F.; Hasenmayer, D.; Zhang, D.; Zhang, H. Resveratrol-induced apoptosis is enhanced by inhibition of autophagy in esophageal squamous cell carcinoma. Cancer Lett., 2013, 336(2), 325-337.
[http://dx.doi.org/10.1016/j.canlet.2013.03.023] [PMID: 23541682]
[134]
Joe, A.K.; Liu, H.; Suzui, M.; Vural, M.E.; Xiao, D.; Weinstein, I.B. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin. Cancer Res., 2002, 8(3), 893-903.
[PMID: 11895924]
[135]
Li, Y.; Sun, X.; Wang, C. Detection of apoptosis of esophageal cancer cells induced by resveratrol and its related genes expression by flow cytometry. Lab. Med., 2009, 24(3), 196-200.
[136]
Fan, G.H.; Wang, Z.M.; Yang, X.; Xu, L.P.; Qin, Q.; Zhang, C.; Ma, J.X.; Cheng, H.Y.; Sun, X.C. Resveratrol inhibits oesophageal adenocarcinoma cell proliferation via AMP-activated protein kinase signaling. Asian Pac. J. Cancer Prev., 2014, 15(2), 677-682.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.677] [PMID: 24568477]
[137]
Dhir, H.; Choudhury, M.; Patil, K.; Cheung, C.; Bodlak, A.; Pardo, D.; Adams, A.; Travaglino, S.; Rojas, J.A.; Pai, S.B. Interception of signaling circuits of esophageal adenocarcinoma cells by resveratrol reveals molecular and immunomodulatory signatures. Cancers (Basel), 2021, 13(22), 5811.
[http://dx.doi.org/10.3390/cancers13225811] [PMID: 34830970]
[138]
Holian, O.; Wahid, S.; Atten, M.J.; Attar, B.M. Inhibition of gastric cancer cell proliferation by resveratrol: Role of nitric oxide. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(5), G809-G816.
[http://dx.doi.org/10.1152/ajpgi.00193.2001] [PMID: 11960777]
[139]
Signorelli, P.; Munoz-Olaya, J.M.; Gagliostro, V.; Casas, J.; Ghidoni, R.; Fabriàs, G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett., 2009, 282(2), 238-243.
[http://dx.doi.org/10.1016/j.canlet.2009.03.020] [PMID: 19394759]
[140]
Yang, Z.; Xie, Q.; Chen, Z.; Ni, H.; Xia, L.; Zhao, Q.; Chen, Z.; Chen, P. Resveratrol suppresses the invasion and migration of human gastric cancer cells via inhibition of MALAT1-mediated epithelial-to-mesenchymal transition. Exp. Ther. Med., 2019, 17(3), 1569-1578.
[PMID: 30783423]
[141]
Wu, X.; Xu, Y.; Zhu, B.; Liu, Q.; Yao, Q.; Zhao, G. Resveratrol induces apoptosis in SGC-7901 gastric cancer cells. Oncol. Lett., 2018, 16(3), 2949-2956.
[http://dx.doi.org/10.3892/ol.2018.9045] [PMID: 30127883]
[142]
Ren, M.; Zhou, X.; Gu, M.; Jiao, W.; Yu, M.; Wang, Y.; Liu, S.; Yang, J.; Ji, F. Resveratrol synergizes with cisplatin in antineoplastic effects against AGS gastric cancer cells by inducing endoplasmic reticulum stress-mediated apoptosis and G2/M phase arrest. Oncol. Rep., 2020, 44(4), 1605-1615.
[http://dx.doi.org/10.3892/or.2020.7708] [PMID: 32945472]
[143]
Yang, T.; Zhang, J.; Zhou, J.; Zhu, M.; Wang, L.; Yan, L. Resveratrol inhibits Interleukin-6 induced invasion of human gastric cancer cells. Biomed. Pharmacother., 2018, 99, 766-773.
[http://dx.doi.org/10.1016/j.biopha.2018.01.153] [PMID: 29710474]
[144]
Kim, S.; Kim, W.; Kim, D.H.; Jang, J.H.; Kim, S.J.; Park, S.A.; Hahn, H.; Han, B.W.; Na, H.K.; Chun, K.S.; Choi, B.Y.; Surh, Y.J. Resveratrol suppresses gastric cancer cell proliferation and survival through inhibition of PIM-1 kinase activity. Arch. Biochem. Biophys., 2020, 689, 108413.
[http://dx.doi.org/10.1016/j.abb.2020.108413] [PMID: 32473133]
[145]
Lu, W.; Ni, Z.; Jiang, S.; Tong, M.; Zhang, J.; Zhao, J.; Feng, C.; Jia, Q.; Wang, J.; Yao, T.; Ning, H.; Shi, Y. Resveratrol inhibits bile acid-induced gastric intestinal metaplasia via the PI3K / AKT / P-FOXO4 signalling pathway. Phytother. Res., 2021, 35(3), 1495-1507.
[http://dx.doi.org/10.1002/ptr.6915] [PMID: 33103284]
[146]
Yang, Y.; Huang, X.; Chen, S.; Ma, G.; Zhu, M.; Yan, F.; Yu, J. Resveratrol induced apoptosis in human gastric carcinoma SGC-7901 cells via activation of mitochondrial pathway. Asia Pac. J. Clin. Oncol., 2018, 14(5), e317-e324.
[http://dx.doi.org/10.1111/ajco.12841] [PMID: 29316254]
[147]
Mieszala, K.; Rudewicz, M.; Gomulkiewicz, A.; Ratajczak-Wielgomas, K.; Grzegrzolka, J.; Dziegiel, P.; Borska, S. Expression of genes and proteins of multidrug resistance in gastric cancer cells treated with resveratrol. Oncol. Lett., 2018, 15(4), 5825-5832.
[http://dx.doi.org/10.3892/ol.2018.8022] [PMID: 29552213]
[148]
Xu, H.; Yu, W.B.; Gao, Y.; Zhang, M.J.; Malhotra, A.; Yu, W.H. Modulatory potential of curcumin and resveratrol on p53 post-translational modifications during gastric cancer. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(2), 93-101.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018025547] [PMID: 30055545]
[149]
Yin, L.; Zhang, R.; Hu, Y.; Li, W.; Wang, M.; Liang, Z.; Sun, Z.; Ji, R.; Xu, W.; Qian, H. Gastric-cancer-derived mesenchymal stem cells: A promising target for resveratrol in the suppression of gastric cancer metastasis. Hum. Cell, 2020, 33(3), 652-662.
[http://dx.doi.org/10.1007/s13577-020-00339-5] [PMID: 32350750]
[150]
Okamoto, H.; Matsukawa, T.; Doi, S.; Tsunoda, T.; Sawata, Y.; Naemura, M.; Ohnuki, K.; Shirasawa, S.; Kotake, Y. A novel resveratrol derivative selectively inhibits the proliferation of colorectal cancer cells with KRAS mutation. Mol. Cell. Biochem., 2018, 442(1-2), 39-45.
[http://dx.doi.org/10.1007/s11010-017-3191-x] [PMID: 28936721]
[151]
Wang, Z.; Zhang, L.; Ni, Z.; Sun, J.; Gao, H.; Cheng, Z.; Xu, J.; Yin, P. Resveratrol induces AMPK-dependent MDR1 inhibition in colorectal cancer HCT116/L-OHP cells by preventing activation of NF-κB signaling and suppressing cAMP-responsive element transcriptional activity. Tumour Biol., 2015, 36(12), 9499-9510.
[http://dx.doi.org/10.1007/s13277-015-3636-3] [PMID: 26124005]
[152]
Khaleel, S.A.; Al-Abd, A.M.; Ali, A.A.; Abdel-Naim, A.B. Didox and resveratrol sensitize colorectal cancer cells to doxorubicin via activating apoptosis and ameliorating P-glycoprotein activity. Sci. Rep., 2016, 6(1), 36855.
[http://dx.doi.org/10.1038/srep36855] [PMID: 27841296]
[153]
Cesmeli, S.; Goker Bagca, B.; Caglar, H.O.; Ozates, N.P.; Gunduz, C.; Biray Avci, C. Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs. Med. Oncol., 2022, 39(1), 12.
[http://dx.doi.org/10.1007/s12032-021-01611-w] [PMID: 34779924]
[154]
Wang, C.; Wang, N.; Li, N.; Yu, Q.; Wang, F. Combined effects of resveratrol and vitamin E from peanut seeds and sprouts on colorectal cancer cells. Front. Pharmacol., 2021, 12, 760919.
[http://dx.doi.org/10.3389/fphar.2021.760919] [PMID: 34803703]
[155]
Wang, Y.; Wang, W.; Wu, X.; Li, C.; Huang, Y.; Zhou, H.; Cui, Y. Resveratrol sensitizes colorectal cancer cells to cetuximab by connexin 43 upregulation-induced Akt inhibition. Front. Oncol., 2020, 10, 383.
[http://dx.doi.org/10.3389/fonc.2020.00383] [PMID: 32318334]
[156]
Cao, L.; Chen, X.; Xiao, X.; Ma, Q.; Li, W. Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. Int. J. Oncol., 2016, 49(2), 735-743.
[http://dx.doi.org/10.3892/ijo.2016.3559] [PMID: 27278736]
[157]
Jiang, Z.; Chen, X.; Chen, K.; Sun, L.; Gao, L.; Zhou, C.; Lei, M.; Duan, W.; Wang, Z.; Ma, Q.; Ma, J. YAP inhibition by resveratrol via activation of AMPK enhances the sensitivity of pancreatic cancer cells to gemcitabine. Nutrients, 2016, 8(10), 546.
[http://dx.doi.org/10.3390/nu8100546] [PMID: 27669292]
[158]
Qin, T.; Cheng, L.; Xiao, Y.; Qian, W.; Li, J.; Wu, Z.; Wang, Z.; Xu, Q.; Duan, W.; Wong, L.; Wu, E.; Ma, Q.; Ma, J. NAF-1 inhibition by resveratrol suppresses cancer stem cell-like properties and the invasion of pancreatic cancer. Front. Oncol., 2020, 10, 1038.
[http://dx.doi.org/10.3389/fonc.2020.01038] [PMID: 32766132]
[159]
Srivani, G.; Behera, S.K.; Dariya, B.; Aliya, S.; Alam, A.; Nagaraju, G.P. Resveratrol binds and inhibits transcription factor HIF-1α in pancreatic cancer. Exp. Cell Res., 2020, 394(1), 112126.
[http://dx.doi.org/10.1016/j.yexcr.2020.112126] [PMID: 32485183]
[160]
Qian, W.; Xiao, Q.; Wang, L.; Qin, T.; Xiao, Y.; Li, J.; Yue, Y.; Zhou, C.; Duan, W.; Ma, Q.; Ma, J. Resveratrol slows the tumourigenesis of pancreatic cancer by inhibiting NFκB activation. Biomed. Pharmacother., 2020, 127, 110116.
[http://dx.doi.org/10.1016/j.biopha.2020.110116] [PMID: 32428833]
[161]
Ratajczak, K.; Glatzel-Plucińska, N.; Ratajczak-Wielgomas, K.; Nowińska, K.; Borska, S. Effect of resveratrol treatment on human pancreatic cancer cells through alterations of Bcl-2 family members. Molecules, 2021, 26(21), 6560.
[http://dx.doi.org/10.3390/molecules26216560] [PMID: 34770968]
[162]
Inbaraj, B.S.; Hua, L.H.; Chen, B.H. Comparative study on inhibition of pancreatic cancer cells by resveratrol gold nanoparticles and a resveratrol nanoemulsion prepared from grape skin. Pharmaceutics, 2021, 13(11), 1871.
[http://dx.doi.org/10.3390/pharmaceutics13111871] [PMID: 34834286]
[163]
Dai, H.; Li, M.; Yang, W.; Sun, X.; Wang, P.; Wang, X.; Su, J.; Wang, X.; Hu, X.; Zhao, M. Resveratrol inhibits the malignant progression of hepatocellular carcinoma via MARCH1-induced regulation of PTEN/AKT signaling. Aging (Albany NY), 2020, 12(12), 11717-11731.
[http://dx.doi.org/10.18632/aging.103338] [PMID: 32530437]
[164]
Gao, M.; Deng, C.; Dang, F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr. Res., 2021, 65, 65.
[http://dx.doi.org/10.29219/fnr.v65.3602] [PMID: 34776832]
[165]
Ismail, N.; Abdel-Mottaleb, Y.; Eissa Ahmed, A.A.; El-Maraghy, N.N. Novel combination of thymoquinone and resveratrol enhances anticancer effect on hepatocellular carcinoma cell line. Future J. Pharmaceut. Sci., 2018, 4(1), 41-46.
[http://dx.doi.org/10.1016/j.fjps.2017.08.001]
[166]
Rawat, D.; Shrivastava, S.; Naik, R.A.; Chhonker, S.K.; Koiri, R.K. SIRT1-mediated amelioration of oxidative stress in kidney of alcohol-aflatoxin-B1-induced hepatocellular carcinoma by resveratrol is catalase dependent and GPx independent. J. Biochem. Mol. Toxicol., 2020, 34(11), e22576.
[http://dx.doi.org/10.1002/jbt.22576] [PMID: 32640115]
[167]
Rawat, D.; Chhonker, S.K.; Naik, R.A.; Koiri, R.K. Modulation of antioxidant enzymes, SIRT1 and NF-κB by resveratrol and nicotinamide in alcohol-aflatoxin B1-induced hepatocellular carcinoma. J. Biochem. Mol. Toxicol., 2021, 35(1), e22625.
[http://dx.doi.org/10.1002/jbt.22625] [PMID: 32894639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy