[1]
Chen X, Le Y, He WY, et al. Abnormal insulin-like growth factor 1 signaling regulates neuropathic pain by mediating the mechanistic target of rapamycin-related autophagy and neuroinflammation in mice. ACS Chem Neurosci 2021; 12(15): 2917-28.
[2]
Chiareli RA, Carvalho GA, Marques BL, et al. The role of astrocytes in the neurorepair process. Front Cell Dev Biol 2021; 9: 665795.
[3]
Engin AB, Engin A. Alzheimer’s disease and protein kinases. Adv Exp Med Biol 2021; 1275: 285-321.
[4]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic pathways and alzheimer’s disease: Probing therapeutic potential. Neurochem Res 2021; 46(12): 3103-22.
[5]
Xu T, Liu J, Li XR, Yu Y, Luo X, Zheng X, et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 2021; 58(8): n3848-62.
[6]
González-Fernández C, González P, González-Pérez F, Rodríguez F. Characterization of ex vivo and in vitro wnt transcriptome induced by spinal cord injury in rat microglial cells. Brain Sci 2022; 12(6): 708.
[7]
Maiese K. Inflammatory glial cells of the nervous system: Assistants or assassins? Curr Neurovasc Res 2005; 2(3): 187-8.
[8]
Maiese K, Li F, Chong ZZ. Erythropoietin in the brain: Can the promise to protect be fulfilled? Trends Pharmacol Sci 2004; 25(11): 577-83.
[9]
Jarero-Basulto J, Rivera-Cervantes M, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of alzheimer’s disease. Pharmaceuticals (Basel Switzerland) 2020; 13(424): 1-22.
[10]
Kaur D, Behl T, Sehgal A, et al. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease. Metab Brain Dis 2022; 37(1): 1-16.
[11]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[12]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[13]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[14]
Zhao HY, Li HY, Jin J, et al. L-carnitine treatment attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. Korean J Intern Med 2021; 36 (Suppl. 1): S180-95.
[15]
Anderson HA, Englert R, Gursel I, Shacter E. Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalized phosphatidylserine. Cell Death Differ 2002; 9(6): 616-25.
[16]
Dehghanian F, Soltani Z, Khaksari M. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury? J Mol Neurosci 2020.
[17]
Hu G, Wang T, Ma C. EPO activates PI3K-IKKα-CDK1 signaling pathway to promote the proliferation of Glial Cells under hypoxia environment. Genet Mol Biol 2022; 45(1): e20210249.
[18]
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant Huntingtin Impairs Pancreatic β-cells by Recruiting IRS-2 and Disturbing the PI3K/AKT/FoxO1 Signaling Pathway in Huntington’s Disease. J Mol Neurosci 2021; 71(12): 2646-58.
[19]
Li R, Wang B, Wu C, Li D, Wu Y, Ye L, et al. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12(1): 107.
[20]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci 2020; 25(11): 1925-73.
[21]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[22]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[23]
Tian Y, Xiao YH, Geng T, et al. Clusterin suppresses spermatogenic cell apoptosis to alleviate diabetes-induced testicular damage by inhibiting autophagy via the PI3K/AKT/mTOR axis. Biol Cell 2021; 113(1): 14-27.
[24]
Zhao Z, Liu H, Guo D. Aliskiren attenuates cardiac dysfunction by modulation of the mTOR and apoptosis pathways. Braz J Med Biol Res 2020; 53(2): e8793.
[25]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) Autophagy. 2021; 17: pp. (1)1-382.
[26]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[27]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[28]
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and apoptosis in acute CNS injuries: from mechanism to treatment. Antioxid Redox Signal 2022.
[29]
Qin C, Lu Y, Bai L, Wang K. The molecular regulation of autophagy in antimicrobial immunity. J Mol Cell Biol 2022; 14(4): mjac015.
[30]
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and Bacillus Calmette-Guérin Vaccination Mitigate 3-Nitropropionic Acid-Induced Huntington-like Disease in Rats by Modulating the PI3K/Akt/mTOR/P70S6K Pathway and Enhancing the Autophagy. ACS Chem Neurosci 2022; 13(6): 721-32.
[31]
Hou J, Chong ZZ, Shang YC, Maiese K. Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 2010; 7(2): 95-112.
[32]
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22(9): 1317-29.
[33]
Taveira GB, Mello EO, Souza SB, Monteiro RM, Ramos AC, Carvalho AO, et al. Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of capases and extracelullar H(+) flux. Biosci Rep 2018; 38(2): BSR20180119.
[34]
Almasieh M, Catrinescu MM, Binan L, Costantino S, Levin LA. Axonal degeneration in retinal ganglion cells is associated with a membrane polarity-sensitive redox process. J Neurosci 2017; 37(14): 3824-39.
[35]
Viola G, Bortolozzi R, Hamel E, Moro S, Brun P, Castagliuolo I, et al. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem Pharmacol 2012; 83(1): 16-26.
[36]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 2002; 106(23): 2973-9.
[37]
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[38]
Watroba M, Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front Physiol 2021; 12: 724506.
[39]
Yousafzai NA, Jin H, Ullah M, Wang X. Recent advances of SIRT1 and implications in chemotherapeutics resistance in cancer. Am J Cancer Res 2021; 11(11): 5233-48.
[40]
Maiese K. A Common link in neurovascular regenerative pathways: Protein kinase B (Akt). Curr Neurovasc Res 2022; 19(1): 1-4.
[41]
Maiese K. Biomarkers for parkinson’s disease and neurodegenerative disorders: A role for non-coding RNAs. Curr Neurovasc Res 2022.
[42]
Pang Y, Qin M, Hu P, et al. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46(5): 1707-20.
[43]
Govindappa PK, Elfar JC. Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. Cell Death Dis 2022; 13(3): 245.
[44]
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer’s disease. Eur J Neurosci 2022; 56(9): 5428-41.
[45]
Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing peroxisome proliferator-activated receptor-gamma in 3-nitropropionic acid-induced striatal neurotoxicity in rats. Mol Neurobiol 2022; 59(7): 4368-83.
[46]
Sabzali M, Eidi A, Khaksari M, Khastar H. Anti-inflammatory, antioxidant, and antiapoptotic action of metformin attenuates ethanol neurotoxicity in the animal model of fetal alcohol spectrum disorders. Neurotox Res 2022; 40(2): 605-13.
[47]
Ye M, Zhao Y, Wang Y, Xie R, Tong Y, Sauer JD, et al. NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nat Nanotechnol 2022; 17(8): 880-90.
[48]
He W, Yuan Gao Y, Jing Zhou, Shi Y, Xia D, Shen H-M. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18(12): 4690-703.
[49]
Holling T, Bhavani GS, von Elsner L, et al. A homozygous hypomorphic BNIP1 variant causes an increase in autophagosomes and reduced autophagic flux and results in a spondylo-epiphyseal dysplasia. Hum Mutat 2022; 43(5): 625-42.
[50]
Maiese K. Novel Stem Cell Strategies with mTOR Molecules to medicine with mTOR: translating critical pathways into novel therapeutic strategies. Academic Press, Elsevier 2016; pp. 3-22.
[51]
Maiese K. Addressing alzheimer’s disease and cognitive loss through autophagy. Curr Neurovasc Res 2020; 17(4): 339-41.
[52]
Maiese K. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[53]
Maiese K. Neurodegeneration, memory loss, and dementia: The impact of biological clocks and circadian rhythm. Front Biosci (Landmark edition) 2021; 26(9): 614-27.
[54]
Maiese K. Novel treatment strategies for neurodegenerative disease with sirtuins. In: Sirtuin biology in medicine: Targeting new avenues of care in development, aging, and disease. 2021. Academic Press, Elsevier ISBN 9780128224670
[55]
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin resistance and diabetes mellitus in alzheimer’s disease. Cells 2021; 10(5): 1236.
[56]
Maity S, Saha A. Therapeutic potential of exploiting autophagy cascade against coronavirus infection. Front Microbiol 2021; 12: 675419.
[57]
Pereira G, Leão A, Erustes AG, Morais IBM, Vrechi TAM, Zamarioli LDS, et al. Pharmacological modulators of autophagy as a potential strategy for the treatment of COVID-19. Int J Mol Sci 2021; 22(8): 4067.
[58]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16(1): 44.
[59]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[60]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[61]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[62]
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012; 4(3): 187-201.
[63]
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt signaling pathways: A role in pain processing. Neuromolecular Med 2022; 24(3): 233-49.
[64]
Chen Y, Huang C, Zhu SY, Zou HC, Xu CY, Chen YX. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/β-catenin through regulating miR-126/Klotho/SIRT1 axis. Mol Cell Biochem 2021; 476(10): 3551-61.
[65]
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25(14): 6479-95.
[66]
Vallée A, Vallée JN, Lecarpentier Y. Parkinson’s disease: Potential actions of lithium by targeting the WNT/β-Catenin Pathway. Oxid Stress Inflamm Glutamat Path Cells 2021; 10(2): 230.
[67]
Maiese K. The mechanistic target of rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[68]
Maiese K. Circadian clock genes: Targeting innate immunity for antiviral strategies against COVID-19. Curr Neurovasc Res 2020; 17(5): 531-3.
[69]
Mohamed MA, Elkhateeb WA, Daba GM. Rapamycin golden jubilee and still the miraculous drug: A potent immunosuppressant, antitumor, rejuvenative agent, and potential contributor in COVID-19 treatment. Bioresour Bioprocess 2022; 9(1): 65.
[70]
Pinchera B, Scotto R, Buonomo AR, Zappulo E, Stagnaro F, Gallicchio A, et al. Diabetes and COVID-19: The potential role of mTOR. Diabetes Res Clin Pract 2022; 186: 109813.
[71]
Theoharides TC. Could SARS-CoV-2 spike protein be responsible for long-COVID syndrome? Mol Neurobiol 2022; 59(3): 1850-61.
[72]
You H, Zhao Q, Dong M. The key genes underlying pathophysiology correlation between the acute myocardial infarction and COVID-19. Int J Gen Med 2022; 15: 2479-90.
[73]
Li Q, Zhang T, Wang Y, Yang S, Luo J, Fang F, et al. Qing-Wen-Jie-Re mixture ameliorates poly (I: C)-induced viral pneumonia through regulating the inflammatory response and serum metabolism. Front Pharmacol 2022; 13: 891851.
[74]
Bello-Perez M, Sola I, Novoa B, Klionsky DJ, Falco A. Canonical and noncanonical autophagy as potential targets for COVID-19. Cells 2020; 9(7): 1619.
[75]
Cavalli E, Bramanti A, Ciurleo R, Tchorbanov AI, Giordano A, Fagone P, et al. Entangling COVID-19 associated thrombosis into a secondary antiphospholipid antibody syndrome: Diagnostic and therapeutic perspectives (Review). Int J Mol Med 2020; 46(3): 903-12.
[76]
Maiese K, Fox O. Proteins in the Nervous System. Anal Cell Pathol (Amst) 2015; 2015: 569392.
[77]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[78]
Maiese K. Novel insights for multiple sclerosis and demyelinating disorders with apoptosis, autophagy, FoxO, and mTOR. Curr Neurovasc Res 2021; 18(2): 1-4.
[79]
Farahani M, Niknam Z, Mohammadi Amirabad L, Amiri-Dashatan N, Koushki M, Nemati M, et al. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2021; 145: 112420.
[80]
Geng K, Ma X, Jiang Z, Huang W, Gao C, Pu Y, et al. Innate immunity in diabetic wound healing: Focus on the mastermind hidden in chronic inflammatory. Front Pharmacol 2021; 12: 653940.
[81]
Wu L, Xiong X, Wu X, Ye Y, Jian Z, Zhi Z, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 2020; 13: 28.