Review Article

通过水解氨基羧酸酯和内酰胺制备具有药用价值的氨基酸的酶解策略

卷 29, 期 41, 2022

发表于: 05 September, 2022

页: [6218 - 6227] 页: 10

弟呕挨: 10.2174/0929867329666220718123153

价格: $65

摘要

综述了近十年来通过水解相应的氨基羧酸酯和内酰胺合成具有重要药用价值的环状和非环状α、β和γ-氨基羧酸对映体的最相关的脂肪酶催化策略。绪论部分介绍了氨基酸对映体的重要性和合成方法,并制定了实际的工作目标。在正文中按时间顺序介绍了各项策略,分为动力学、动态动力学和顺序动力学解析。本综述的最后还提供了酶转化的机理信息。对映体氨基酸的药理学重要性在正文的合成旁边给出,结论和展望部分也进行了说明。

关键词: α-氨基羧酸对映体,β-氨基羧酸对映体,γ-氨基羧酸对映体,水解,脂肪酶,KR,DKR,SKR。

[1]
Konishi, M.; Nishio, M.; Saitoh, K.; Miyaki, T.; Oki, T.; Kawaguchi, H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J. Antibiot. (Tokyo), 1989, 42(12), 1749-1755.
[http://dx.doi.org/10.7164/antibiotics.42.1749] [PMID: 2516082]
[2]
Iwamoto, T.; Tsujii, E.; Ezaki, M.; Fujie, A.; Hashimoto, S.; Okuhara, M.; Kohsaka, M.; Imanaka, H.; Kawabata, K.; Inamoto, Y.; Sakane, K. FR109615, a new antifungal antibiotic from Streptomyces setonii. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J. Antibiot. (Tokyo), 1990, 43(1), 1-7.
[http://dx.doi.org/10.7164/antibiotics.43.1] [PMID: 2307620]
[3]
Oki, T.; Hirano, M.; Tomatsu, K.; Numata, K.; Kamei, H. Cispentacin, a new antifungal antibiotic. II. In vitro and in vivo antifungal activities. J. Antibiot. (Tokyo), 1989, 42(12), 1756-1762.
[http://dx.doi.org/10.7164/antibiotics.42.1756] [PMID: 2621158]
[4]
Petraitiene, R.; Petraitis, V.; Kelaher, A.M.; Sarafandi, A.A.; Mickiene, D.; Groll, A.H.; Sein, T.; Bacher, J.; Walsh, T.J. Efficacy, plasma pharmacokinetics, and safety of icofungipen, an inhibitor of Candida isoleucyl-tRNA synthetase, in treatment of experimental disseminated candidiasis in persistently neutropenic rabbits. Antimicrob. Agents Chemother., 2005, 49(5), 2084-2092.
[http://dx.doi.org/10.1128/AAC.49.5.2084-2092.2005] [PMID: 15855534]
[5]
Steer, D.L.; Lew, R.A.; Perlmutter, P.; Smith, A.I.; Aguilar, M.I. β-amino acids: Versatile peptidomimetics. Curr. Med. Chem., 2002, 9(8), 811-822.
[http://dx.doi.org/10.2174/0929867024606759] [PMID: 11966446]
[6]
Martinek, T.A.; Fülöp, F. Peptidic foldamers: Ramping up diversity. Chem. Soc. Rev., 2012, 41(2), 687-702.
[http://dx.doi.org/10.1039/C1CS15097A] [PMID: 21769415]
[7]
Ouchakour, L.; Ábrahámi, R.A.; Forró, E.; Haukka, M.; Fülöp, F.; Kiss, L. Stereocontrolled synthesis of fluorine-containing piperidine γ-amino acid derivatives. Eur. J. Org. Chem., 2019, 2019, 2202-2211.
[http://dx.doi.org/10.1002/ejoc.201801540]
[8]
Caroen, J.; Clemmen, A.; Kámán, J.; Backaert, F.; Goeman, J.L.; Fülöp, F.; Van der Eycken, J. Solid-phase synthesis of 6,7-cycloalkane-fused 1,4-diazepane-2,5-diones via a cyclization/release strategy. Tetrahedron, 2016, 72(1), 148-160.
[http://dx.doi.org/10.1016/j.tet.2015.11.023]
[9]
Fülöp, F. The chemistry of 2-aminocycloalkanecarboxylic acids. Chem. Rev., 2001, 101(7), 2181-2204.
[http://dx.doi.org/10.1021/cr000456z] [PMID: 11710244]
[10]
Liljeblad, A.; Kanerva, L.T. Biocatalysis as a profound tool in the preparation of highly enantiopure ß-amino acids. Tetrahedron, 2006, 62(25), 5831-5854.
[http://dx.doi.org/10.1016/j.tet.2006.03.109]
[11]
Busto, E.; Gotor-Fernández, V.; Gotor, V. Hydrolases in the stereoselective synthesis of N-heterocyclic amines and amino acid derivatives. Chem. Rev., 2011, 111(7), 3998-4035.
[http://dx.doi.org/10.1021/cr100287w] [PMID: 21526748]
[12]
Forró, E.; Fülöp, F. Direct and indirect enzymatic methods for the preparation of enantiopure cyclic β-amino acids and derivatives from β-lactams. Mini Rev. Org. Chem., 2004, 1, 93-102.
[http://dx.doi.org/10.2174/1570193043488908]
[13]
Kiss, L.; Forró, E.; Fülöp, F. Synthesis of carbocyclic β-amino acids.Amino Acids, Peptides and Proteins in Organic Chemistry; Hughes, A.B., Ed.; Wiley-VCH: Weinheim, 2009, Vol. 1, pp. 367-409.
[http://dx.doi.org/10.1002/9783527631766.ch8]
[14]
Forró, E.; Fülöp, F. Recent lipase-catalyzed hydrolytic approaches to pharmacologically important β- and γ-amino acids. Curr. Med. Chem., 2012, 19(36), 6178-6187.
[PMID: 23061625]
[15]
Forró, E.; Fülöp, F. Cispentacin enzymatic highlights of its 25-year history. Mini Rev. Org. Chem., 2017, 13(3), 219-226.
[http://dx.doi.org/10.2174/1570193X13666160512141743]
[16]
Mei, H.; Remete, A.M.; Zou, Y.; Moriwaki, H.; Fustero, S.; Kiss, L.; Soloshonok, V.A.; Han, J. Fluorine-containing drugs approved by the FDA in 2019. Chin. Chem. Lett., 2020, 41(9), 2401-2413.
[http://dx.doi.org/10.1016/j.cclet.2020.03.050]
[17]
Zhang, X-X.; Gao, Y.; Hu, X-S.; Ji, C-B.; Liu, Y-L.; Yu, J-S. Recent advances in catalytic enantioselective synthesis of fluorinated α- and β-amino acids. Adv. Synth. Catal., 2020, 362(22), 4763-4793.
[http://dx.doi.org/10.1002/adsc.202000966]
[18]
Ruf, S.; Buning, C.; Schreuder, H.; Horstick, G.; Linz, W.; Olpp, T.; Pernerstorfer, J.; Hiss, K.; Kroll, K.; Kannt, A.; Kohlmann, M.; Linz, D.; Hübschle, T.; Rütten, H.; Wirth, K.; Schmidt, T.; Sadowski, T. Novel β-amino acid derivatives as inhibitors of cathepsin A. J. Med. Chem., 2012, 55(17), 7636-7649.
[http://dx.doi.org/10.1021/jm300663n] [PMID: 22861813]
[19]
Forró, E.; Tasnádi, G.; Fülöp, F. Enzymatic preparation of (S)-3-amino-3-(o-tolyl)propanoic acid, a key intermediate for the construction of Cathepsin inhibitors. J. Mol. Catal., B Enzym., 2013, 93, 8-14.
[http://dx.doi.org/10.1016/j.molcatb.2013.04.001]
[20]
Boström, J.; Grant, J.A.; Fjellström, O.; Thelin, A.; Gustafsson, D. Potent fibrinolysis inhibitor discovered by shape and electrostatic complementarity to the drug tranexamic acid. J. Med. Chem., 2013, 56(8), 3273-3280.
[http://dx.doi.org/10.1021/jm301818g] [PMID: 23521080]
[21]
Andersen, S.M.; Bollmark, M.; Berg, R.; Fredriksson, C.; Karlsson, C.; Liljeholm, C.; Sörensen, H. A scalable route to 5-substituted 3-isoxazolol fibrinolysis inhibitor AZD6564. Org. Process Res. Dev., 2014, 18(8), 952-959.
[http://dx.doi.org/10.1021/op500193s]
[22]
Hoogkamp-Korstanje, J.A.A.; Roelofs-Willemse, J. Comparative in vitro activity of moxifloxacin against Gram-positive clinical isolates. J. Antimicrob. Chemother., 2000, 45(1), 31-39.
[http://dx.doi.org/10.1093/jac/45.1.31] [PMID: 10629010]
[23]
Ramesh, P.; Harini, T.; Fadnavis, N.W. Efficient resolution of cis-(±)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate with soluble Candida antarctica lipase B (CAL B). Org. Process Res. Dev., 2015, 19(1), 296-301.
[http://dx.doi.org/10.1021/op5003424]
[24]
Rangel, H.; Carrillo-Morales, M.; Galindo, J.M.; Castillo, E.; Obregón-Zúńiga, A.; Juaristi, E.; Escalante, J. Structural features of N-benzylated-β-amino acid methyl esters essential for enantiodifferentiation by lipase B from Candida antarctica in hydrolytic reactions. Tetrahedron Asymmetry, 2015, 26(7), 325-332.
[http://dx.doi.org/10.1016/j.tetasy.2015.02.007]
[25]
Nagy, B.; Galla, Z.; Bencze, L.C.; Toșa, M.I.; Paizs, C.; Forró, E.; Fülöp, F. Covalently immobilized lipases are efficient stereoselective catalysts for the kinetic resolution of novel rac- (5-phenylfuran-2-yl)-β-alanine-ethyl ester hydrochlorides. Eur. J. Org. Chem., 2017, 2017(20), 2878-2882.
[http://dx.doi.org/10.1002/ejoc.201700174]
[26]
Pérez-Venegas, M.; Reyes-Rangel, G.; Neri, A.; Escalante, J.; Juaristi, E. Mechanochemical enzymatic resolution of N-benzylated-β3-amino esters. Beilstein J. Org. Chem., 2017, 13, 1728-1734.
[http://dx.doi.org/10.3762/bjoc.13.167] [PMID: 28904616]
[27]
Martelli, G.; Galletti, P.; Baiula, M.; Calcinari, L.; Boschi, G.; Giacomini, D. Chiral β-lactam-based Kawaguchi, H. Cispentacin, a new ntegrin ligands through lipase-catalyzed kinetic resolution and their enantioselective receptor response. Bioorg. Chem., 2019, 88, 102975.
[http://dx.doi.org/10.1016/j.bioorg.2019.102975] [PMID: 31102807]
[28]
Shahmohammadi, S.; Fülöp, F.; Forró, E. Efficient synthesis of new fluorinated β-amino acid enantiomers through lipase-atalyzed hydrolysis. Molecules, 2020, 25(24), 5990.
[http://dx.doi.org/10.3390/molecules25245990] [PMID: 33348842]
[29]
Forró, E.; Megyesi, R.; Paál, T.; Fülöp, F. Efficient dynamic kinetic resolution method for the synthesis of enantiopure 6-hydroxy- and 6-methoxy-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid. Tetrahedron Asymmetry, 2016, 27(24), 1213-1216.
[http://dx.doi.org/10.1016/j.tetasy.2016.10.011]
[30]
Yang, W.; Wang, Y.; Kick, E.K. PCT. Patent WO 2007047991, 2007.
[31]
Megyesi, R.; Mandi, A.; Kurtan, T.; Forró, E.; Fülöp, F. Dynamic kinetic resolution of ethyl 1,2,3,4-tetrahydro-β-carboline-1-carboxylate. Use of different hydrolases for stereocomplementary processes. Eur. J. Org. Chem., 2017, 4713-4718.
[http://dx.doi.org/10.1002/ejoc.201700571]
[32]
Galla, Z.; Beke, F.; Forró, E. Fülöp, Enantioselective hydrolysis of 3,4-disubstituted beta-lactams. An efficient enzymatic method for the preparation of a key Taxol side-chain intermediate. J. Mol. Catal., B Enzym., 2016, 123, 107-112.
[http://dx.doi.org/10.1016/j.molcatb.2015.11.011]
[33]
Forró, E.; Kiss, L.; Árva, J.; Fülöp, F. Efficient enzymatic routes for the synthesis of new eight-membered cyclic ß-amino acid and ß-lactam enantiomers. Molecules, 2017, 22(12), 2211.
[http://dx.doi.org/10.3390/molecules22122211] [PMID: 29236036]
[34]
Ojima, I.; Kuduk, S.D.; Chakravarty, S. Recent advances in the medicinal chemistry of taxoid anticancer agents. Adv. Med. Chem., 1999, 4, 69-124.
[35]
Cheng, M.; Quail, M.R.; Gingrich, D.E.; Ott, G.R.; Lu, L.; Wan, W.; Albom, M.S.; Angeles, T.S.; Aimone, L.D.; Cristofani, F.; Machiorlatti, R.; Abele, C.; Ator, M.A.; Dorsey, B.D.; Inghirami, G.; Ruggeri, B.A. CEP-28122, a highly potent and selective orally active inhibitor of anaplastic lymphoma kinase with antitumor activity in experimental models of human cancers. Mol. Cancer Ther., 2012, 11(3), 670-679.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0776] [PMID: 22203728]
[36]
Forró, E.; Galla, Z.; Fülöp, F. The N-hydroxymethyl group as a traceless activating group for the CAL-B-catalyzed ring cleavage of β-lactams: A type of two-step cascade reaction. Eur. J. Org. Chem., 2016, 2647-2652.
[http://dx.doi.org/10.1002/ejoc.201600234]
[37]
Galla, Z.; Forró, E.; Fülöp, F. Enhanced enzymatic synthesis of the enantiopure intermediate for the blockbuster drug intermediate abacavir through a two-step enzymatic cascade reaction. Tetrahedron Asymmetry, 2016, 27(16), 729-731.
[http://dx.doi.org/10.1016/j.tetasy.2016.06.019]
[38]
Daluge, S.M.; Good, S.S.; Faletto, M.B.; Miller, W.H.; St Clair, M.H.; Boone, L.R.; Tisdale, M.; Parry, N.R.; Reardon, J.E.; Dornsife, R.E.; Averett, D.R.; Krenitsky, T.A. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob. Agents Chemother., 1997, 41(5), 1082-1093.
[http://dx.doi.org/10.1128/AAC.41.5.1082] [PMID: 9145874]
[39]
Sharples, C.G.V.; Kaiser, S.; Soliakov, L.; Marks, M.J.; Collins, A.C.; Washburn, M.; Wright, E.; Spencer, J.A.; Gallagher, T.; Whiteaker, P.; Wonnacott, S. UB-165: A novel nicotinic agonist with subtype selectivity implicates the α4β2* subtype in the modulation of dopamine release from rat striatal synaptosomes. J. Neurosci., 2000, 20(8), 2783-2791.
[http://dx.doi.org/10.1523/JNEUROSCI.20-08-02783.2000] [PMID: 10751429]
[40]
Tsai, S-W. Enantiopreference of Candida antarctica lipase B toward carboxylic acids: Substrate models and enantioselectivity thereof. J. Mol. Catal., B Enzym., 2016, 127, 98-116.
[http://dx.doi.org/10.1016/j.molcatb.2014.07.010]
[41]
Park, S.; Forró, E.; Grewal, H.; Fülöp, F.; Kazlauskas, R.J. Molecular basis for the enantioselective ring opening of β-lactams catalyzed by Candida antarctica lipase B. Adv. Synth. Catal., 2003, 345(8), 986-995.
[http://dx.doi.org/10.1002/adsc.200303069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy