Review Article

苯并恶嗪:药物化学中的一种特殊支架

卷 30, 期 4, 2023

发表于: 09 September, 2022

页: [372 - 389] 页: 18

弟呕挨: 10.2174/0929867329666220705140846

价格: $65

摘要

背景:苯并恶嗪是药物化学中最重要的特殊支架化合物之一。含有苯并恶嗪部分的化合物通常具有多种生物活性,如抗炎、抗微生物、抗结核、抗氧化和抗癌活性。苯并恶嗪支架在各个领域引人注目的生物活性特征促使药物化学家设计和发现新型苯并恶嗪衍生物,作为具有理想生物学特性的潜在治疗候选药物。 目的:综述苯并恶嗪衍生物在药物化学中的最新进展。 方法:检索PubMed、SciFinder、谷歌Scholar等网络资源和数据库中关于苯并恶嗪衍生物的最新文献。 结果:总结出许多具有广泛生物活性的苯并恶嗪衍生物,如抗微生物、抗癌、抗结核、抗氧化、抗炎等。许多化合物表现出良好的生物活性。 结论:苯并恶嗪在药物化学中具有广泛的应用前景。苯并恶嗪类衍生物因其丰富的药理特性和多种修饰位点而受到医药化学家的广泛关注。这一综述有助于药物化学家寻找具有更好生物活性和药代动力学特性的新药。

关键词: 苯并恶嗪,杂环化合物,生物活性,特殊支架,药物设计,构效关系。

[1]
Venepally, V.; Reddy Jala, R.C. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules. Eur. J. Med. Chem., 2017, 141, 113-137.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.069] [PMID: 29031060]
[2]
Agag, T.; Takeichi, T. Synthesis and characterization of benzoxazine resin-SiO2 hybrids by sol-gel process: The role of benzoxazine-functional silane coupling agent. Polymer (Guildf.), 2011, 52(13), 2757-2763.
[http://dx.doi.org/10.1016/j.polymer.2011.04.044]
[3]
Semerci, E.; Kiskan, B.; Yagci, Y. Thiol reactive polybenzoxazine precursors: A novel route to functional polymers by thiol-oxazine chemistry. Eur. Polym. J., 2015, 69, 636-641.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.02.030]
[4]
Kobzar, Y.L.; Tkachenko, I.M.; Lobko, E.V.; Shekera, O.V.; Syrovets, A.P.; Shevchenko, V.V. Low dielectric material from novel core-fluorinated polybenzoxazine. Mendeleev Commun., 2017, 27(1), 41-43.
[http://dx.doi.org/10.1016/j.mencom.2017.01.012]
[5]
Mendgen, T.; Steuer, C.; Klein, C.D. Privileged scaffolds or promiscuous binders: A comparative study on rhodanines and related heterocycles in medicinal chemistry. J. Med. Chem., 2012, 55(2), 743-753.
[http://dx.doi.org/10.1021/jm201243p] [PMID: 22077389]
[6]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[7]
Wang, S.; Li, Y.; Liu, Y.; Lu, A.; You, Q. Novel hexacyclic camptothecin derivatives. Part 1: Synthesis and cytotoxicity of camptothecins with an A-ring fused 1,3-oxazine ring. Bioorg. Med. Chem. Lett., 2008, 18(14), 4095-4097.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.103] [PMID: 18554906]
[8]
Chen, S.; Li, X.; Wan, S.; Jiang, T. Synthesis of novel benzoxazinone compounds as Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors. Synth. Commun., 2012, 42(19), 2937-2946.
[http://dx.doi.org/10.1080/00397911.2011.573169]
[9]
Ujjinamatada, R.K.; Appala, R.S.; Agasimundin, Y.S. Synthesis and antimicrobial activity of new benzofuranyl-1,3-benzoxazines and 1,3-benzoxazin-2-ones. J. Heterocycl. Chem., 2006, 43(2), 437-441.
[http://dx.doi.org/10.1002/jhet.5570430226]
[10]
Waisser, K.; Petrlíková, E.; Perina, M.; Klimesová, V.; Kunes, J.; Palát, K., Jr; Kaustová, J.; Dahse, H.M.; Möllmann, U. A note to the biological activity of benzoxazine derivatives containing the thioxo group. Eur. J. Med. Chem., 2010, 45(7), 2719-2725.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.037] [PMID: 20226572]
[11]
Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synthesis of 2,3- diaryl-3,4-dihydro-2H-1,3-benzoxazines and their fungicidal activities. J. Heterocycl. Chem., 2011, 48(33), 255-260.
[http://dx.doi.org/10.1002/jhet.533]
[12]
Nemeček, P.; Mocák, J.; Lehotay, J.; Waisser, K. Prediction of anti-tuberculosis activity of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dione derivatives. Chem. Pap., 2013, 67(3), 305-312.
[http://dx.doi.org/10.2478/s11696-012-0278-4]
[13]
Zhang, J.; Ba, Y.; Wang, S.; Yang, H.; Hou, X.; Xu, Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur. J. Med. Chem., 2019, 179, 376-388.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.068] [PMID: 31260891]
[14]
Gao, C.; Fan, Y.L.; Zhao, F.; Ren, Q.C.; Wu, X.; Chang, L.; Gao, F. Quinolone derivatives and their activities against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2018, 157, 1081-1095.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.061] [PMID: 30179746]
[15]
Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur. J. Med. Chem., 2018, 157, 1223-1248.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.095] [PMID: 30193220]
[16]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[17]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[18]
Chen, L.; Zhu, Y.J.; Fan, Z.J.; Guo, X.F.; Zhang, Z.M.; Xu, J.H.; Song, Y.Q.; Yurievich, M.Y.; Belskaya, N.P.; Bakulev, V.A. Synthesis of 1,2,3-thiadiazole and thiazole-based strobilurins as potent fungicide candidates. J. Agric. Food Chem., 2017, 65(4), 745-751.
[http://dx.doi.org/10.1021/acs.jafc.6b05128] [PMID: 28055187]
[19]
Vibhute, A.Y.; Sayyad, M.A.; Mokle, S.S.; Khansole, S.V.V. Y.B Synthesis and antibacterial evaluation of some new 1,3-benzoxazines. Pharma Chem., 2009, 1(2), 86-91.
[20]
Shakil, N.A.; Pandey, A.; Singh, M.K.; Kumar, J.; Awasthi, S.K.; Srivastava, C.; Singh, M.K.; Pandey, R.P. Synthesis and bioefficacy evaluation of new 3-substituted-3,4-dihydro-1,3-benzoxazines. J. Environ. Sci. Health B, 2010, 45(2), 108-115.
[http://dx.doi.org/10.1080/03601230903471852] [PMID: 20390939]
[21]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.K.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo- and naphtho-1,3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.058] [PMID: 20116901]
[22]
Borgaonkar, V.V.; Patil, B.R. Synthesis of new 1,3-benzoxazines from ketimines and their bioevaluation. J. Heterocycl. Chem., 2016, 53(6), 1897-1901.
[http://dx.doi.org/10.1002/jhet.2504]
[23]
Zhang, M.Z.; Zhang, R.R.; Yin, W.Z.; Yu, X.; Zhang, Y.L.; Liu, P.; Gu, Y.C.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives. Mol. Divers., 2016, 20(3), 611-618.
[http://dx.doi.org/10.1007/s11030-016-9662-2] [PMID: 26880591]
[24]
Bollu, R.; Banu, S.; Bantu, R.; Reddy, A.G.; Nagarapu, L.; Sirisha, K.; Kumar, C.G.; Gunda, S.K.; Shaik, K. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones. Bioorg. Med. Chem. Lett., 2017, 27(23), 5158-5162.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.061] [PMID: 29103973]
[25]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B.; Vaja, D.V. Synthesis and characterization of oxazine bearing pyridine scaffold as potential antimicrobial agents. Synth. Commun., 2017, 47(24), 2360-2368.
[http://dx.doi.org/10.1080/00397911.2017.1377734]
[26]
Tang, Z.; Zhu, Z.; Xia, Z.; Liu, H.; Chen, J.; Xiao, W.; Ou, X. Synthesis and fungicidal activity of novel 2,3-disubstituted-1,3-benzoxazines. Molecules, 2012, 17(7), 8174-8185.
[http://dx.doi.org/10.3390/molecules17078174] [PMID: 22772812]
[27]
Tang, Z.; Chang, S.; Yan, L.; Cui, M.; Liu, H. Synthesis and fungicidal activity of novel 3-(1,3,4-thiadiazolyl)-1,3-bezoxazines. Youji Huaxue, 2012, 32(7), 1241-1246.
[http://dx.doi.org/10.6023/cjoc201203011]
[28]
Tang, Z.L.; Wang, L.; Tan, J.Z.; Wan, Y.C.; Jiao, Y.C. Synthesis and fungicidal activity of 1-(carbamoylmethyl)-2-aryl-3,1-benzoxazines. Molecules, 2017, 22(7), 1103.
[http://dx.doi.org/10.3390/molecules22071103] [PMID: 28684698]
[29]
Huang, F.; Jiao, W.; Wan, Y. Synthesis and anti-fungal activity of new 3-aryl-1,3-benzoxazine-2-ketone derivatives. Russ. J. Gen. Chem., 2021, 91(6), 1112-1116.
[http://dx.doi.org/10.1134/S1070363221060190]
[30]
Fringuelli, R.; Pietrella, D.; Schiaffella, F.; Guarraci, A.; Perito, S.; Bistoni, F.; Vecchiarelli, A. Anti-Candida albicans properties of novel benzoxazine analogues. Bioorg. Med. Chem., 2002, 10(6), 1681-1686.
[http://dx.doi.org/10.1016/S0968-0896(02)00038-X] [PMID: 11937326]
[31]
Fang, L.; Zuo, H.; Li, Z.; He, X.; Wang, L.; Tian, X.; Zhao, B.; Miao, J.; Shin, D. Synthesis of benzo[b][1,4]oxazin-3(4H)-ones via smiles rearrangement for antimicrobial activity. Med. Chem. Res., 2011, 20(6), 670-677.
[http://dx.doi.org/10.1007/s00044-010-9360-z]
[32]
Iloni, G.; Vasam, S.; Guguloth, V.; Vadde, R. One-pot multi-component synthesis of [1,4] benzoxazineisoxazole hybrids and their antibacterial activity. IJPCBS, 2018, 8(1), 118-124.
[33]
Elseginy, S.A.; Anwar, M.M. Pharmacophore-based virtual screening and molecular dynamics simulation for identification of a novel DNA Gyrase B inhibitor with benzoxazine acetamide scaffold. ACS Omega, 2021, 7(1), 1150-1164.
[http://dx.doi.org/10.1021/acsomega.1c05732] [PMID: 35036778]
[34]
Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem., 2021, 226, 113837.
[http://dx.doi.org/10.1016/j.ejmech.2021.113837] [PMID: 34530384]
[35]
Wan, Y.; Long, J.; Gao, H.; Tang, Z. 2-Aminothiazole: A privileged scaffold for the discovery of anti-cancer agents. Eur. J. Med. Chem., 2021, 210, 112953.
[http://dx.doi.org/10.1016/j.ejmech.2020.112953] [PMID: 33148490]
[36]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[37]
Garg, V.; Kumar, A.; Chaudhary, A.; Agrawal, S.; Tomar, P.; Sreenivasan, K.K. Synthesis, biological evaluation and molecular docking studies of 1,3-benzoxazine derivatives as potential anticancer agents. Med. Chem. Res., 2013, 22(11), 5256-5266.
[http://dx.doi.org/10.1007/s00044-013-0534-3]
[38]
Botla, V.; Pilli, N.; Koude, D.; Misra, S.; Malapaka, C. Molecular engineering of tetracyclic 2,3-dihydro-1H-benzo[2,3]-benzofuro[4,5-e][1,3]oxazine derivatives: Evaluation for potential anticancer agents. Arch. Pharm. (Weinheim), 2017, 350(10), 1700169-1700179.
[http://dx.doi.org/10.1002/ardp.201700169] [PMID: 28834614]
[39]
Mbaba, M.; Dingle, L.M.K.; Cash, D.; Mare, J.A.; Laming, D.; Taylor, D.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur. J. Med. Chem., 2020, 187, 111924.
[http://dx.doi.org/10.1016/j.ejmech.2019.111924] [PMID: 31855792]
[40]
Zhang, P.; Terefenko, E.A.; Fensome, A.; Wrobel, J.; Winneker, R.; Lundeen, S.; Marschke, K.B.; Zhang, Z. 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin- 2-ones: A novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J. Med. Chem., 2002, 45(20), 4379-4382.
[http://dx.doi.org/10.1021/jm025555e] [PMID: 12238914]
[41]
Carmeliet, P. Angiogenesis in health and disease. Nat. Med., 2003, 9(6), 653-660.
[http://dx.doi.org/10.1038/nm0603-653] [PMID: 12778163]
[42]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9(6), 669-676.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[43]
La, D.S.; Belzile, J.; Bready, J.V.; Coxon, A.; DeMelfi, T.; Doerr, N.; Estrada, J.; Flynn, J.C.; Flynn, S.R.; Graceffa, R.F.; Harriman, S.P.; Larrow, J.F.; Long, A.M.; Martin, M.W.; Morrison, M.J.; Patel, V.F.; Roveto, P.M.; Wang, L.; Weiss, M.M.; Whittington, D.A.; Teffera, Y.; Zhao, Z.; Polverino, A.J.; Harmange, J.C. Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis. J. Med. Chem., 2008, 51(6), 1695-1705.
[http://dx.doi.org/10.1021/jm701129j] [PMID: 18311900]
[44]
Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[45]
Bollu, R.; Banu, S.; Kasaboina, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Jain, N. Potential anti-proliferative agents from 1,4-benzoxazinone-quinazolin-4(3H)-one templates. Bioorg. Med. Chem. Lett., 2017, 27(24), 5481-5484.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.044] [PMID: 29089233]
[46]
Sulistyowaty, M.I.; Widyowati, R.; Putra, G.S.; Budiati, T.; Matsunami, K. Synthesis, ADMET predictions, molecular docking studies, and in vitro anticancer activity of some benzoxazines against A549 human lung cancer cells. J. Basic Clin. Physiol. Pharmacol., 2021, 32(4), 385-392.
[http://dx.doi.org/10.1515/jbcpp-2020-0433] [PMID: 34214332]
[47]
Jana, A.K.; Singh, J.; Ganesher, A.; Kumar, A.; Banerjee, A.; Kumar, D.; Verma, S.K.; Sharma, A.K.; Bhatta, R.S.; Konwar, R.; Panda, G. Tyrosine-derived novel benzoxazine active in a rat syngenic mammary tumor model of breast cancer. J. Med. Chem., 2021, 64(21), 16293-16316.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01624] [PMID: 34726897]
[48]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[49]
Fan, Y.L.; Jin, X.H.; Huang, Z.P.; Yu, H.F.; Zeng, Z.G.; Gao, T.; Feng, L.S. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur. J. Med. Chem., 2018, 150, 347-365.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.016] [PMID: 29544148]
[50]
Gao, C.; Chang, L.; Xu, Z.; Yan, X.F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[51]
Shu, Y.; Deng, Z.; Wang, H.; Chen, Y.; Yuan, L.; Deng, Y.; Tu, X.; Zhao, X.; Shi, Z.; Huang, M.; Qiu, C. Integrase inhibitors versus efavirenz combination antiretroviral therapies for TB/HIV coinfection: A meta-analysis of randomized controlled trials. AIDS Res. Ther., 2021, 18(1), 25.
[http://dx.doi.org/10.1186/s12981-021-00348-w] [PMID: 33933131]
[52]
Xu, Z.; Zhang, S.; Gao, C.; Fan, J.; Zhao, F.; Lv, Z.S.; Feng, L.S. Isatin hybrids and their anti-tuberculosis activity. Chin. Chem. Lett., 2017, 28(2), 159-167.
[http://dx.doi.org/10.1016/j.cclet.2016.07.032]
[53]
Li, X.; Liu, N.; Zhang, H.; Knudson, S.E.; Slayden, R.A.; Tonge, P.J. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2010, 20(21), 6306-6309.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.076] [PMID: 20850304]
[54]
Petrlíková, E.; Waisser, K.; Doležal, R.; Holý, P.; Gregor, J.; Kuneš, J.; Kaustová, J. Antimycobacterial 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones substituted on phenyl and benzoxazine moiety in position 6. Chem. Pap., 2011, 65(3), 352-366.
[http://dx.doi.org/10.2478/s11696-011-0020-7]
[55]
Zampieri, D.; Mamolo, M.G.; Filingeri, J.; Fortuna, S.; De Logu, A.; Sanna, A.; Zanon, D. Design, synthesis and antimycobacterial activity of benzoxazinone derivatives and open-ring analogues: Preliminary data and computational analysis. Bioorg. Med. Chem. Lett., 2019, 29(17), 2468-2474.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.025] [PMID: 31350124]
[56]
Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8327-8332.
[http://dx.doi.org/10.1073/pnas.0503272102] [PMID: 15928073]
[57]
Fivian-Hughes, A.S.; Houghton, J.; Davis, E.O. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid. Microbiology, 2012, 158(Pt 2), 308-318.
[http://dx.doi.org/10.1099/mic.0.053983-0] [PMID: 22034487]
[58]
Modranka, J.; Li, J.; Parchina, A.; Vanmeert, M.; Dumbre, S.; Salman, M.; Myllykallio, H.; Becker, H.F.; Vanhoutte, R.; Margamuljana, L.; Nguyen, H.; Abu El-Asrar, R.; Rozenski, J.; Herdewijn, P.; De Jonghe, S.; Lescrinier, E. Synthesis and structure-activity relationship studies of benzo[b][1,4]oxazin-3(4H)-one analogues as inhibitors of mycobacterial thymidylate synthase X. ChemMedChem, 2019, 14(6), 645-662.
[http://dx.doi.org/10.1002/cmdc.201800739] [PMID: 30702807]
[59]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[60]
Karali, N.; Güzel, O.; Ozsoy, N.; Ozbey, S.; Salman, A. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents. Eur. J. Med. Chem., 2010, 45(3), 1068-1077.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.001] [PMID: 20045221]
[61]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015] [PMID: 16790290]
[62]
Buonocore, G.; Groenendaal, F. Anti-oxidant strategies. Semin. Fetal Neonatal Med., 2007, 12(4), 287-295.
[http://dx.doi.org/10.1016/j.siny.2007.01.020] [PMID: 17368122]
[63]
Pan, Y.; Zhu, J.; Wang, H.; Zhang, X.; Zhang, Y.; He, C.; Ji, X.; Li, H. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem., 2007, 103(3), 913-918.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.044]
[64]
Pan, Y.; He, C.; Wang, H.; Ji, X.; Wang, K.; Liu, P. Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chem., 2010, 121(2), 497-502.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.072]
[65]
Patil, V.P.; Markad, V.L.; Kodam, K.M.; Waghmode, S.B. Facile preparation of tetrahydro-5H-pyrido[1,2,3-de]-1,4-benzoxazines via reductive cyclization of 2-(8-quinolinyloxy)ethanones and their antioxidant activity. Bioorg. Med. Chem. Lett., 2013, 23(23), 6259-6263.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.088] [PMID: 24157368]
[66]
Matam, S.; Kaliyan, P.; Selvaraj, L.; Muthu, S.P.; Lohanathan, B.P.; Viswanadhan, V.P.; Makala, H.; Venkatasubramanian, U. Convenient method for the synthesis of some novel chiral methyl 2-(2-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)propanoate derivatives and biological evaluation of their antioxidant, cytotoxic, and molecular docking properties. J. Heterocycl. Chem., 2021, 58, 569-579.
[http://dx.doi.org/10.1002/jhet.4196]
[67]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[68]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[69]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[70]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[71]
Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[72]
Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910.
[http://dx.doi.org/10.1159/000452591] [PMID: 27871079]
[73]
Poetker, D.M.; Reh, D.D. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am., 2010, 43(4), 753-768.
[http://dx.doi.org/10.1016/j.otc.2010.04.003] [PMID: 20599080]
[74]
Akhter, M.; Habibullah, S.; Hasan, S.M.; Alam, M.M.; Akhter, N.; Shaquiquzzaman, M. Synthesis of some new 3,4-dihydro-2 H -1,3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med. Chem. Res., 2011, 20(8), 1147-1153.
[http://dx.doi.org/10.1007/s00044-010-9451-x]
[75]
Zhang, H.J.; Li, Y.F.; Cao, Q.; Tian, Y.S.; Quan, Z.S. Pharmacological evaluation of 9,10-dihydrochromeno[8,7-e][1,3]oxazin-2(8H)-one derivatives as potent anti-inflammatory agent. Pharmacol. Rep., 2017, 69(3), 419-425.
[http://dx.doi.org/10.1016/j.pharep.2016.12.006]
[76]
Haider, S.; Alam, M.S.; Hamid, H.; Shafi, S.; Nargotra, A.; Mahajan, P.; Nazreen, S.; Kalle, A.M.; Kharbanda, C.; Ali, Y.; Alam, A.; Panda, A.K. Synthesis of novel 1,2,3-triazole based benzoxazolinones: Their TNF-α based molecular docking with in vivo anti-inflammatory, antinociceptive activities and ulcerogenic risk evaluation. Eur. J. Med. Chem., 2013, 70, 579-588.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.032] [PMID: 24211633]
[77]
Madhavan, G.R.; Chakrabarti, R.; Reddy, K.A.; Rajesh, B.M.; Balraju, V.; Rao, P.B.; Rajagopalan, R.; Iqbal, J. Dual PPAR-alpha and -gamma activators derived from novel benzoxazinone containing thiazolidinediones having antidiabetic and hypolipidemic potential. Bioorg. Med. Chem., 2006, 14(2), 584-591.
[http://dx.doi.org/10.1016/j.bmc.2005.08.043] [PMID: 16198573]
[78]
Genuth, S.M.; Przybylski, R.J.; Rosenberg, D.M. Insulin resistance in genetically obese, hyperglycemic mice. Endocrinology, 1971, 88(5), 1230-1238.
[http://dx.doi.org/10.1210/endo-88-5-1230] [PMID: 5278387]
[79]
Khan, Z.A.; Afzal, N.; Hussain, Z.; Raza Naqvi, S.A.; Bari, A.; Shahzad, S.A.; Yar, M.; Mahmood, N.; Bukhari, S.A.; Mansha, A.; Zahoor, A.F.; Khan, A.R.; Ahmad, M. Synthesis of 2-aryl-4H-3,1-benzoxazin-4-ones: A class of ±-chymotrypsin inhibitors. Asian J. Chem., 2014, 26(15), 4561-4565.
[http://dx.doi.org/10.14233/ajchem.2014.16108]
[80]
Spinck, M.; Bischoff, M.; Lampe, P.; Meyer-Almes, F.J.; Sievers, S.; Neumann, H. Discovery of dihydro-1,4-benzoxazine carboxamides as potent and highly selective inhibitors of sirtuin-1. J. Med. Chem., 2021, 64(9), 5838-5849.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00017] [PMID: 33876629]
[81]
Ward, B.A.; Gorski, J.C.; Jones, D.R.; Hall, S.D.; Flockhart, D.A.; Desta, Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther., 2003, 306(1), 287-300.
[http://dx.doi.org/10.1124/jpet.103.049601] [PMID: 12676886]
[82]
Cox, P.M.; Bumpus, N.N. Structure-activity studies reveal the oxazinone ring is a determinant of cytochrome P450 2B6 activity toward efavirenz. ACS Med. Chem. Lett., 2014, 5(10), 1156-1161.
[http://dx.doi.org/10.1021/ml500297n] [PMID: 25309681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy