Review Article

配体CX3CL1及其受体CX3CR1在癌症中的结构和功能

卷 29, 期 41, 2022

发表于: 26 August, 2022

页: [6228 - 6246] 页: 19

弟呕挨: 10.2174/0929867329666220629140540

价格: $65

摘要

C-X3-C 基序趋化因子配体 (CX3CL)1(也称为吋曲辛)及其受体 CX3CR1(也称为 G 蛋白偶联受体 13)在许多不同细胞的膜上表达,例如上皮细胞、树突状细胞、平滑肌细胞和神经元。CX3CR1 主要在单核细胞、巨噬细胞、树突状细胞、T 细胞和自然杀伤细胞上表达。CX3CL1与CX3CR1的结合诱导与该受体相关的异源三聚体G蛋白的激活。此外,它还触发MAPK和AKT的信号通路,它们在肿瘤生物学中起着至关重要的作用。从机制上讲,CX3CL1-CX3CR1轴通过将抗肿瘤免疫细胞(如NK细胞和T细胞)募集到肿瘤微环境中来控制肿瘤生长,从而具有抗肿瘤作用。另一方面,累积的证据表明,CX3CL1-CX3CR1轴也激活了促肿瘤反应。本综述将重点介绍CX3CL1和CX3CR1的独特结构生物学特征,它们在肿瘤炎症反应中的相互作用以及抗肿瘤作用,从而突出可能的潜在治疗靶点。

关键词: CX3CL1, CX3CR1, 血管生成, 趋化因子, 重塑, 肿瘤

[1]
Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011), 931-945.
[http://dx.doi.org/10.1038/nature03001] [PMID: 15496913]
[2]
Pan, Y.; Lloyd, C.; Zhou, H.; Dolich, S.; Deeds, J.; Gonzalo, J.A.; Vath, J.; Gosselin, M.; Ma, J.; Dussault, B.; Woolf, E.; Alperin, G.; Culpepper, J.; Gutierrez-Ramos, J.C.; Gearing, D. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 1997, 387(6633), 611-617.
[http://dx.doi.org/10.1038/42491] [PMID: 9177350]
[3]
Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385(6617), 640-644.
[http://dx.doi.org/10.1038/385640a0] [PMID: 9024663]
[4]
Zlotnik, A.; Yoshie, O. The chemokine superfamily revisited. Immunity, 2012, 36(5), 705-716.
[http://dx.doi.org/10.1016/j.immuni.2012.05.008] [PMID: 22633458]
[5]
Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Chemokines: Multiple levels of leukocyte migration control. Trends Immunol., 2004, 25(2), 75-84.
[http://dx.doi.org/10.1016/j.it.2003.12.005] [PMID: 15102366]
[6]
Strieter, R.M.; Polverini, P.J.; Kunkel, S.L.; Arenberg, D.A.; Burdick, M.D.; Kasper, J.; Dzuiba, J.; Van Damme, J.; Walz, A.; Marriott, D.; Chan, S-Y.; Roczniak, S.; Shanafelt, A.B. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 1995, 270(45), 27348-27357.
[http://dx.doi.org/10.1074/jbc.270.45.27348] [PMID: 7592998]
[7]
Heidemann, J.; Ogawa, H.; Dwinell, M.B.; Rafiee, P.; Maaser, C.; Gockel, H.R.; Otterson, M.F.; Ota, D.M.; Lügering, N.; Domschke, W.; Binion, D.G. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J. Biol. Chem., 2003, 278(10), 8508-8515.
[http://dx.doi.org/10.1074/jbc.M208231200] [PMID: 12496258]
[8]
Kumaravel, S.; Singh, S.; Roy, S.; Venkatasamy, L.; White, T.K.; Sinha, S.; Glaser, S.S.; Safe, S.H.; Chakraborty, S. CXCL11-CXCR3 axis mediates tumor lymphatic cross talk and inflammation-induced tumor, promoting pathways in head and neck cancers. Am. J. Pathol., 2020, 190(4), 900-915.
[http://dx.doi.org/10.1016/j.ajpath.2019.12.004] [PMID: 32035061]
[9]
Romagnani, P.; Annunziato, F.; Lasagni, L.; Lazzeri, E.; Beltrame, C.; Francalanci, M.; Uguccioni, M.; Galli, G.; Cosmi, L.; Maurenzig, L.; Baggiolini, M.; Maggi, E.; Romagnani, S.; Serio, M. Cell cycle–dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J. Clin. Invest., 2001, 107(1), 53-63.
[http://dx.doi.org/10.1172/JCI9775] [PMID: 11134180]
[10]
Yang, J.; Richmond, A. The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan. Mol. Ther., 2004, 9(6), 846-855.
[http://dx.doi.org/10.1016/j.ymthe.2004.01.010] [PMID: 15194051]
[11]
Van Raemdonck, K.; Gouwy, M.; Lepers, S.A.; Van Damme, J.; Struyf, S. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: Involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis, 2014, 17(3), 631-640.
[http://dx.doi.org/10.1007/s10456-014-9417-6] [PMID: 24469069]
[12]
Rollins, B.J. Chemokines. Blood, 1997, 90(3), 909-928.
[http://dx.doi.org/10.1182/blood.V90.3.909] [PMID: 9242519]
[13]
Fernandez, E.J.; Lolis, E. Structure, function, and inhibition of chemokines. Annu. Rev. Pharmacol. Toxicol., 2002, 42(1), 469-499.
[http://dx.doi.org/10.1146/annurev.pharmtox.42.091901.115838] [PMID: 11807180]
[14]
Matsumiya, T.; Ota, K.; Imaizumi, T.; Yoshida, H.; Kimura, H.; Satoh, K. Characterization of synergistic induction of CX3CL1/fractalkine by TNF-alpha and IFN-gamma in vascular endothelial cells: An essential role for TNF-alpha in post-transcriptional regulation of CX3CL1. J. Immunol., 2010, 184(8), 4205-4214.
[http://dx.doi.org/10.4049/jimmunol.0903212] [PMID: 20231691]
[15]
Kasama, T.; Kasama, T.; Takahashi, R.; Odai, T.; Wakabayashi, K.; Kanemitsu, H.; Nohtomi, K.; Takeuchi, H.T.; Matsukura, S.; Tezuka, M. Synergistic induction of CX3CL1 by TNF alpha and IFN gamma in osteoblasts from rheumatoid arthritis: Involvement of NF-kappa B and STAT-1 signaling pathways. J. Inflamm. Res., 2008, 1, 19-28.
[http://dx.doi.org/10.2147/JIR.S4019] [PMID: 22096344]
[16]
Isozaki, T.; Otsuka, K.; Sato, M.; Takahashi, R.; Wakabayashi, K.; Yajima, N.; Miwa, Y.; Kasama, T. Synergistic induction of CX3CL1 by interleukin-1β and interferon-γ in human lung fibroblasts: Involvement of signal transducer and activator of transcription 1 signaling pathways. Transl. Res., 2011, 157(2), 64-70.
[http://dx.doi.org/10.1016/j.trsl.2010.11.007] [PMID: 21256458]
[17]
Nomiyama, H.; Imai, T.; Kusuda, J.; Miura, R.; Callen, D.F.; Yoshie, O. Human chemokines fractalkine (SCYD1), MDC (SCYA22) and TARC (SCYA17) are clustered on chromosome 16q13. Cytogenet. Cell Genet., 1998, 81(1), 10-11.
[http://dx.doi.org/10.1159/000015000] [PMID: 9691168]
[18]
Murphy, P.M. International union of pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev., 2002, 54(2), 227-229.
[http://dx.doi.org/10.1124/pr.54.2.227] [PMID: 12037138]
[19]
Liu, L.B.; Xie, F.; Chang, K.K.; Li, M.Q.; Meng, Y.H.; Wang, X.H.; Li, H.; Li, D.J.; Yu, J.J. Hypoxia promotes the proliferation of cervical carcinoma cells through stimulating the secretion of IL-8. Int. J. Clin. Exp. Pathol., 2014, 7(2), 575-583.
[PMID: 24551277]
[20]
Maxwell, P.J.; Gallagher, R.; Seaton, A.; Wilson, C.; Scullin, P.; Pettigrew, J.; Stratford, I.J.; Williams, K.J.; Johnston, P.G.; Waugh, D.J.J. HIF-1 and NF-κB-mediated upregulation of CXCR1 and CXCR2 expression promotes cell survival in hypoxic prostate cancer cells. Oncogene, 2007, 26(52), 7333-7345.
[http://dx.doi.org/10.1038/sj.onc.1210536] [PMID: 17533374]
[21]
Gunderson, A.J.; Yamazaki, T.; McCarty, K.; Fox, N.; Phillips, M.; Alice, A.; Blair, T.; Whiteford, M.; O’Brien, D.; Ahmad, R.; Kiely, M.X.; Hayman, A.; Crocenzi, T.; Gough, M.J.; Crittenden, M.R.; Young, K.H. TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat. Commun., 2020, 11(1), 1749.
[http://dx.doi.org/10.1038/s41467-020-15404-8] [PMID: 32273499]
[22]
Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; Gawrońska-Szklarz, B.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors-A review of literature. Int. J. Mol. Sci., 2021, 22(2), 843.
[http://dx.doi.org/10.3390/ijms22020843] [PMID: 33467722]
[23]
Amerio, P.; Frezzolini, A.; Feliciani, C.; Verdolini, R.; Teofoli, P.; Pità, O.; Puddu, P. Eotaxins and CCR3 receptor in inflammatory and allergic skin diseases: Therapeutical implications. Curr. Drug Targets Inflamm. Allergy, 2003, 2(1), 81-94.
[http://dx.doi.org/10.2174/1568010033344480] [PMID: 14561178]
[24]
Chen, B.; Zhang, D.; Zhou, J.; Li, Q.; Zhou, L.; Li, S.M.; Zhu, L.; Chou, K.Y.; Zhou, L.; Tao, L.; Lu, L.M. High CCR6/CCR7 expression and Foxp3+ Treg cell number are positively related to the progression of laryngeal squamous cell carcinoma. Oncol. Rep., 2013, 30(3), 1380-1390.
[http://dx.doi.org/10.3892/or.2013.2603] [PMID: 23835793]
[25]
Xiong, T.; Pan, F.; Liang, Q.; Luo, R.; Li, D.; Mo, H.; Zhou, X. Prognostic value of the expression of chemokines and their receptors in regional lymph nodes of melanoma patients. J. Cell. Mol. Med., 2020, 24(6), 3407-3418.
[http://dx.doi.org/10.1111/jcmm.15015] [PMID: 31983065]
[26]
Stievano, L.; Piovan, E.; Amadori, A. C and CX3C chemokines: Cell sources and physiopathological implications. Crit. Rev. Immunol., 2004, 24(3), 205-288.
[http://dx.doi.org/10.1615/CritRevImmunol.v24.i3.40] [PMID: 15482255]
[27]
Umehara, H.; Bloom, E.T.; Okazaki, T.; Nagano, Y.; Yoshie, O.; Imai, T. Fractalkine in vascular biology: From basic research to clinical disease. Arterioscler. Thromb. Vasc. Biol., 2004, 24(1), 34-40.
[http://dx.doi.org/10.1161/01.ATV.0000095360.62479.1F] [PMID: 12969992]
[28]
Mizoue, L.S.; Bazan, J.F.; Johnson, E.C.; Handel, T.M. Solution structure and dynamics of the CX3C chemokine domain of fractalkine and its interaction with an N-terminal fragment of CX3CR1. Biochemistry, 1999, 38(5), 1402-1414.
[http://dx.doi.org/10.1021/bi9820614] [PMID: 9931005]
[29]
Fong, A.M.; Erickson, H.P.; Zachariah, J.P.; Poon, S.; Schamberg, N.J.; Imai, T.; Patel, D.D. Ultrastructure and function of the fractalkine mucin domain in CX(3)C chemokine domain presentation. J. Biol. Chem., 2000, 275(6), 3781-3786.
[http://dx.doi.org/10.1074/jbc.275.6.3781] [PMID: 10660527]
[30]
Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; Yoshie, O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 1997, 91(4), 521-530.
[http://dx.doi.org/10.1016/S0092-8674(00)80438-9] [PMID: 9390561]
[31]
White, G.E.; Greaves, D.R. Fractalkine: A survivor’s guide: Chemokines as antiapoptotic mediators. Arterioscler. Thromb. Vasc. Biol., 2012, 32(3), 589-594.
[http://dx.doi.org/10.1161/ATVBAHA.111.237412] [PMID: 22247260]
[32]
Winter, A.N.; Subbarayan, M.S.; Grimmig, B.; Weesner, J.A.; Moss, L.; Peters, M.; Weeber, E.; Nash, K.; Bickford, P.C. Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. J. Neuroinflammation, 2020, 17(1), 157.
[http://dx.doi.org/10.1186/s12974-020-01828-y] [PMID: 32410624]
[33]
Hundhausen, C.; Misztela, D.; Berkhout, T.A.; Broadway, N.; Saftig, P.; Reiss, K.; Hartmann, D.; Fahrenholz, F.; Postina, R.; Matthews, V.; Kallen, K.J.; Rose-John, S.; Ludwig, A. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood, 2003, 102(4), 1186-1195.
[http://dx.doi.org/10.1182/blood-2002-12-3775] [PMID: 12714508]
[34]
Garton, K.J.; Gough, P.J.; Blobel, C.P.; Murphy, G.; Greaves, D.R.; Dempsey, P.J.; Raines, E.W. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem., 2001, 276(41), 37993-38001.
[http://dx.doi.org/10.1074/jbc.M106434200] [PMID: 11495925]
[35]
Hoover, D.M.; Mizoue, L.S.; Handel, T.M.; Lubkowski, J. The crystal structure of the chemokine domain of fractalkine shows a novel quaternary arrangement. J. Biol. Chem., 2000, 275(30), 23187-23193.
[http://dx.doi.org/10.1074/jbc.M002584200] [PMID: 10770945]
[36]
Ostuni, M.A.; Guellec, J.; Hermand, P.; Durand, P.; Combadière, C.; Pincet, F.; Deterre, P. CX3CL1, a chemokine finely tuned to adhesion: Critical roles of the stalk glycosylation and the membrane domain. Biol. Open, 2014, 3(12), 1173-1182.
[http://dx.doi.org/10.1242/bio.20149845] [PMID: 25395671]
[37]
Imaizumi, T.; Yoshida, H.; Satoh, K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J. Atheroscler. Thromb., 2004, 11(1), 15-21.
[http://dx.doi.org/10.5551/jat.11.15] [PMID: 15067194]
[38]
Chapman, G.A.; Moores, K.E.; Gohil, J.; Berkhout, T.A.; Patel, L.; Green, P.; Macphee, C.H.; Stewart, B.R. The role of fractalkine in the recruitment of monocytes to the endothelium. Eur. J. Pharmacol., 2000, 392(3), 189-195.
[http://dx.doi.org/10.1016/S0014-2999(00)00117-5] [PMID: 10762673]
[39]
Patel, S.; Mukovozov, I.; Robinson, L.A. Assessment of the recycling of the membrane-bound chemokine, CX3CL1. Methods Mol. Biol., 2011, 748, 143-153.
[http://dx.doi.org/10.1007/978-1-61779-139-0_10] [PMID: 21701972]
[40]
Liu, G.Y.; Kulasingam, V.; Alexander, R.T.; Touret, N.; Fong, A.M.; Patel, D.D.; Robinson, L.A. Recycling of the membrane-anchored chemokine, CX3CL1. J. Biol. Chem., 2005, 280(20), 19858-19866.
[http://dx.doi.org/10.1074/jbc.M413073200] [PMID: 15774461]
[41]
Maciejewski-Lenoir, D.; Chen, S.; Feng, L.; Maki, R.; Bacon, K.B. Characterization of fractalkine in rat brain cells: Migratory and activation signals for CX3CR-1-expressing microglia. J. Immunol., 1999, 163(3), 1628-1635.
[PMID: 10415068]
[42]
Sheridan, G.K.; Wdowicz, A.; Pickering, M.; Watters, O.; Halley, P.; O’Sullivan, N.C.; Mooney, C.; O’Connell, D.J.; O’Connor, J.J.; Murphy, K.J. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front. Cell. Neurosci., 2014, 8, 233.
[http://dx.doi.org/10.3389/fncel.2014.00233] [PMID: 25161610]
[43]
Marchica, V.; Toscani, D.; Corcione, A.; Bolzoni, M.; Storti, P.; Vescovini, R.; Ferretti, E.; Dalla Accardi, B.; Vicario, E.; Accardi, F.; Mancini, C.; Martella, E.; Ribatti, D.; Vacca, A.; Pistoia, V.; Giuliani, N. Bone Marrow CX3CL1/Fractalkine is a New Player of the Pro-Angiogenic Microenvironment in Multiple Myeloma Patients. Cancers (Basel), 2019, 11(3), 321.
[http://dx.doi.org/10.3390/cancers11030321] [PMID: 30845779]
[44]
Combadiere, C.; Salzwedel, K.; Smith, E.D.; Tiffany, H.L.; Berger, E.A.; Murphy, P.M. Identification of CX 3CR1. J. Biol. Chem., 1998, 273(37), 23799-23804.
[http://dx.doi.org/10.1074/jbc.273.37.23799] [PMID: 9726990]
[45]
Garin, A.; Pellet, P.; Deterre, P.; Debré, P.; Combadière, C. Cloning and functional characterization of the human fractalkine receptor promoter regions. Biochem. J., 2002, 368(3), 753-760.
[http://dx.doi.org/10.1042/bj20020951] [PMID: 12234253]
[46]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[47]
Meucci, O.; Fatatis, A.; Simen, A.A.; Miller, R.J. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci., , 2000, 97(14), 8075-8080.
[http://dx.doi.org/10.1073/pnas.090017497] [PMID: 10869418]
[48]
Cambien, B.; Pomeranz, M.; Schmid-Antomarchi, H.; Millet, M.A.; Breittmayer, V.; Rossi, B.; Schmid-Alliana, A. Signal transduction pathways involved in soluble fractalkine–induced monocytic cell adhesion. Blood, 2001, 97(7), 2031-2037.
[http://dx.doi.org/10.1182/blood.V97.7.2031] [PMID: 11264168]
[49]
Kansra, V.; Groves, C.; Gutierrez-Ramos, J.C.; Polakiewicz, R.D. Phosphatidylinositol 3-kinase-dependent extracellular calcium influx is essential for CX(3)CR1-mediated activation of the mitogen-activated protein kinase cascade. J. Biol. Chem., 2001, 276(34), 31831-31838.
[http://dx.doi.org/10.1074/jbc.M009374200] [PMID: 11432847]
[50]
Deiva, K.; Geeraerts, T.; Salim, H.; Leclerc, P.; Héry, C.; Hugel, B.; Freyssinet, J.M.; Tardieu, M. Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur. J. Neurosci., 2004, 20(12), 3222-3232.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03800.x] [PMID: 15610155]
[51]
Volin, M.V.; Huynh, N.; Klosowska, K.; Chong, K.K.; Woods, J.M. Fractalkine is a novel chemoattractant for rheumatoid arthritis fibroblast-like synoviocyte signaling through MAP kinases and Akt. Arthritis Rheum., 2007, 56(8), 2512-2522.
[http://dx.doi.org/10.1002/art.22806] [PMID: 17665439]
[52]
Lee, S.J.; Namkoong, S.; Kim, Y.M.; Kim, C.K.; Lee, H.; Ha, K.S.; Chung, H.T.; Kwon, Y.G.; Kim, Y.M. Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(6), H2836-H2846.
[http://dx.doi.org/10.1152/ajpheart.00113.2006] [PMID: 16877565]
[53]
Fong, A.M.; Robinson, L.A.; Steeber, D.A.; Tedder, T.F.; Yoshie, O.; Imai, T.; Patel, D.D. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J. Exp. Med., 1998, 188(8), 1413-1419.
[http://dx.doi.org/10.1084/jem.188.8.1413] [PMID: 9782118]
[54]
Fujita, M.; Takada, Y.K.; Takada, Y. Integrins αvβ3 and α4β1 act as coreceptors for fractalkine, and the integrin-binding defective mutant of fractalkine is an antagonist of CX3CR1. J. Immunol., 2012, 189(12), 5809-5819.
[http://dx.doi.org/10.4049/jimmunol.1200889] [PMID: 23125415]
[55]
Li, L.; Wang, X.; Zhao, Q.; Wang, E.; Wang, L.; Cheng, J.; Zhang, L.; Wang, B. CX3CR1 polymorphisms associated with an increased risk of developmental dysplasia of the hip in human. J. Orthop. Res., 2017, 35(2), 377-380.
[http://dx.doi.org/10.1002/jor.23294] [PMID: 27176135]
[56]
Collar, A.L.; Swamydas, M.; O’Hayre, M.; Sajib, M.S.; Hoffman, K.W.; Singh, S.P.; Mourad, A.; Johnson, M.D.; Ferre, E.M.N.; Farber, J.M.; Lim, J.K.; Mikelis, C.M.; Gutkind, J.S.; Lionakis, M.S. The homozygous CX3CR1-M280 mutation impairs human monocyte survival. JCI Insight, 2018, 3(3), e95417.
[http://dx.doi.org/10.1172/jci.insight.95417] [PMID: 29415879]
[57]
Nakayama, T.; Watanabe, Y.; Oiso, N.; Higuchi, T.; Shigeta, A.; Mizuguchi, N.; Katou, F.; Hashimoto, K.; Kawada, A.; Yoshie, O. Eotaxin-3/CC chemokine ligand 26 is a functional ligand for CX3CR1. J. Immunol., 2010, 185(11), 6472-6479.
[http://dx.doi.org/10.4049/jimmunol.0904126]
[58]
Nishimura, M.; Umehara, H.; Nakayama, T.; Yoneda, O.; Hieshima, K.; Kakizaki, M.; Dohmae, N.; Yoshie, O.; Imai, T. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol., 2002, 168(12), 6173-6180.
[http://dx.doi.org/10.4049/jimmunol.168.12.6173] [PMID: 12055230]
[59]
Vitale, S.; Cambien, B.; Karimdjee, B.F.; Barthel, R.; Staccini, P.; Luci, C.; Breittmayer, V.; Anjuère, F.; Schmid-Alliana, A.; Schmid-Antomarchi, H. Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut, 2007, 56(3), 365-372.
[http://dx.doi.org/10.1136/gut.2005.088989] [PMID: 16870716]
[60]
Dichmann, S.; Herouy, Y.; Purlis, D.; Rheinen, H.; Gebicke-Härter, P.; Norgauer, J. Fractalkine induces chemotaxis and actin polymerization in human dendritic cells. Inflamm. Res., 2001, 50(11), 529-533.
[http://dx.doi.org/10.1007/PL00000230] [PMID: 11766992]
[61]
Umehara, H.; Goda, S.; Imai, T.; Nagano, Y.; Minami, Y.; Tanaka, Y.; Okazaki, T.; Bloom, E.T.; Domae, N. Fractalkine, a CX 3 C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol. Cell Biol., 2001, 79(3), 298-302.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01004.x] [PMID: 11380684]
[62]
Guo, J.; Wang, B.; Zhang, M.; Chen, T.; Yu, Y.; Regulier, E.; Homann, H.E.; Qin, Z.; Ju, D.W.; Cao, X. Macrophage-derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther., 2002, 9(12), 793-803.
[http://dx.doi.org/10.1038/sj.gt.3301688] [PMID: 12040461]
[63]
Guo, J.; Zhang, M.; Wang, B.; Yuan, Z.; Guo, Z.; Chen, T.; Yu, Y.; Qin, Z.; Cao, X. Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int. J. Cancer, 2003, 103(2), 212-220.
[http://dx.doi.org/10.1002/ijc.10816] [PMID: 12455035]
[64]
Kim, M.; Rooper, L.; Xie, J.; Kajdacsy-Balla, A.A.; Barbolina, M.V. Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Mol. Cancer Res., 2012, 10(1), 11-24.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0256] [PMID: 22064656]
[65]
Tardáguila, M.; Mira, E.; García-Cabezas, M.A.; Feijoo, A.M.; Quintela-Fandino, M.; Azcoitia, I.; Lira, S.A.; Mañes, S. CX3CL1 promotes breast cancer via transactivation of the EGF pathway. Cancer Res., 2013, 73(14), 4461-4473.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3828] [PMID: 23720051]
[66]
Rivas-Fuentes, S.; Salgado-Aguayo, A.; Arratia-Quijada, J.; Gorocica-Rosete, P. Regulation and biological functions of the CX3CL1-CX3CR1 axis and its relevance in solid cancer: A mini-review. J. Cancer, 2021, 12(2), 571-583.
[http://dx.doi.org/10.7150/jca.47022] [PMID: 33391453]
[67]
Ryu, J.; Lee, C.W.; Hong, K.H.; Shin, J.A.; Lim, S.H.; Park, C.S.; Shim, J.; Nam, K.B.; Choi, K.J.; Kim, Y.H.; Han, K.H. Activation of fractalkine/CX3CR1 by vascular endothelial cells induces angiogenesis through VEGF-A/KDR and reverses hindlimb ischaemia. Cardiovasc. Res., 2008, 78(2), 333-340.
[http://dx.doi.org/10.1093/cvr/cvm067] [PMID: 18006432]
[68]
Volin, M.V.; Huynh, N.; Klosowska, K.; Reyes, R.D.; Woods, J.M. Fractalkine-induced endothelial cell migration requires MAP kinase signaling. Pathobiology, 2010, 77(1), 7-16.
[http://dx.doi.org/10.1159/000272949] [PMID: 20185962]
[69]
Marchesi, F.; Piemonti, L.; Fedele, G.; Destro, A.; Roncalli, M.; Albarello, L.; Doglioni, C.; Anselmo, A.; Doni, A.; Bianchi, P.; Laghi, L.; Malesci, A.; Cervo, L.; Malosio, M.; Reni, M.; Zerbi, A.; Di Carlo, V.; Mantovani, A.; Allavena, P. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma. Cancer Res., 2008, 68(21), 9060-9069.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1810] [PMID: 18974152]
[70]
Liang, Y.; Yi, L.; Liu, P.; Jiang, L.; Wang, H.; Hu, A.; Sun, C.; Dong, J. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J. Cancer, 2018, 9(19), 3603-3612.
[http://dx.doi.org/10.7150/jca.26497] [PMID: 30310518]
[71]
Liu, P.; Liang, Y.; Jiang, L.; Wang, H.; Wang, S.; Dong, J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int. J. Oncol., 2018, 53(4), 1544-1556.
[http://dx.doi.org/10.3892/ijo.2018.4487] [PMID: 30066854]
[72]
Liu, W.; Liang, Y.; Chan, Q.; Jiang, L.; Dong, J. CX3CL1 promotes lung cancer cell migration and invasion via the Src/focal adhesion kinase signaling pathway. Oncol. Rep., 2019, 41(3), 1911-1917.
[http://dx.doi.org/10.3892/or.2019.6957] [PMID: 30628679]
[73]
Okuma, A.; Hanyu, A.; Watanabe, S.; Hara, E. p16Ink4a and p21Cip1/Waf1 promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat. Commun., 2017, 8(1), 2050.
[http://dx.doi.org/10.1038/s41467-017-02281-x] [PMID: 29234059]
[74]
Sidibe, A.; Ropraz, P.; Jemelin, S.; Emre, Y.; Poittevin, M.; Pocard, M.; Bradfield, P.F.; Imhof, B.A. Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours. Nat. Commun., 2018, 9(1), 355.
[http://dx.doi.org/10.1038/s41467-017-02610-0] [PMID: 29367702]
[75]
Jamieson, W.L.; Shimizu, S.; D’Ambrosio, J.A.; Meucci, O.; Fatatis, A. CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: Potential role in prostate cancer bone tropism. Cancer Res., 2008, 68(6), 1715-1722.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1315] [PMID: 18339851]
[76]
Celesti, G.; Di Caro, G.; Bianchi, P.; Grizzi, F.; Marchesi, F.; Basso, G.; Rahal, D.; Delconte, G.; Catalano, M.; Cappello, P.; Roncalli, M.; Zerbi, A.; Montorsi, M.; Novelli, F.; Mantovani, A.; Allavena, P.; Malesci, A.; Laghi, L. Early expression of the fractalkine receptor CX3CR1 in pancreatic carcinogenesis. Br. J. Cancer, 2013, 109(9), 2424-2433.
[http://dx.doi.org/10.1038/bjc.2013.565] [PMID: 24084767]
[77]
Gurler Main, H.; Xie, J.; Muralidhar, G.G.; Elfituri, O.; Xu, H.; Kajdacsy-Balla, A.A.; Barbolina, M.V. Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from epithelial ovarian carcinoma. Oncogene, 2017, 36(21), 3025-3036.
[http://dx.doi.org/10.1038/onc.2016.456] [PMID: 27941884]
[78]
Gurler, H.; Macias, V.; Kajdacsy-Balla, A.; Barbolina, M. Examination of the fractalkine and fractalkine receptor expression in fallopian adenocarcinoma reveals differences when compared to ovarian carcinoma. Biomolecules, 2015, 5(4), 3438-3447.
[http://dx.doi.org/10.3390/biom5043438] [PMID: 26633537]
[79]
Gaudin, F.; Nasreddine, S.; Donnadieu, A.C.; Emilie, D.; Combadière, C.; Prévot, S.; Machelon, V.; Balabanian, K. Identification of the chemokine CX3CL1 as a new regulator of malignant cell proliferation in epithelial ovarian cancer. PLoS One, 2011, 6(7), e21546.
[http://dx.doi.org/10.1371/journal.pone.0021546] [PMID: 21750716]
[80]
Singh, S.K.; Mishra, M.K.; Singh, R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J. Ovarian Res., 2019, 12(1), 42.
[http://dx.doi.org/10.1186/s13048-019-0517-1] [PMID: 31077234]
[81]
Dachs, G.U.; Patterson, A.V.; Firth, J.D.; Ratcliffe, P.J.; Townsend, K.M.S.; Stratford, I.J.; Harris, A.L. Targeting gene expression to hypoxic tumor cells. Nat. Med., 1997, 3(5), 515-520.
[http://dx.doi.org/10.1038/nm0597-515] [PMID: 9142119]
[82]
Carmeliet, P.; Dor, Y.; Herbert, J.M.; Fukumura, D.; Brusselmans, K.; Dewerchin, M.; Neeman, M.; Bono, F.; Abramovitch, R.; Maxwell, P.; Koch, C.J.; Ratcliffe, P.; Moons, L.; Jain, R.K.; Collen, D.; Keshet, E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394(6692), 485-490.
[http://dx.doi.org/10.1038/28867] [PMID: 9697772]
[83]
Zhao, T.; Gao, S.; Wang, X.; Liu, J.; Duan, Y.; Yuan, Z.; Sheng, J.; Li, S.; Wang, F.; Yu, M.; Ren, H.; Hao, J. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene. PLoS One, 2012, 7(8), e43399.
[http://dx.doi.org/10.1371/journal.pone.0043399] [PMID: 22952674]
[84]
Kim, J.M.; Ko, Y.H.; Lee, S.S.; Huh, J.; Kang, C.S.; Kim, C.W.; Kang, Y.K.; Go, J.H.; Kim, M.K.; Kim, W.S.; Kim, Y.J.; Kim, H.J.; Kim, H.K.; Nam, J.H.; Moon, H.B.; Park, C.K.; Park, T.I.; Oh, Y.H.; Lee, D.W.; Lee, J.S.; Lee, J.; Lee, H.; Lim, S.C.; Jang, K.Y.; Chang, H.K.; Jeon, Y.K.; Jung, H.R.; Cho, M.S.; Cha, H.J.; Choi, S.J.; Han, J.H.; Hong, S.H.; Kim, I. WHO classification of malignant lymphomas in Korea: Report of the third nationwide study. Korean J. Pathol., 2011, 45(3), 254-260.
[http://dx.doi.org/10.4132/KoreanJPathol.2011.45.3.254]
[85]
Corcione, A.; Ferretti, E.; Bertolotto, M.; Fais, F.; Raffaghello, L.; Gregorio, A.; Tenca, C.; Ottonello, L.; Gambini, C.; Furtado, G.; Lira, S.; Pistoia, V. CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS One, 2009, 4(12), e8485.
[http://dx.doi.org/10.1371/journal.pone.0008485] [PMID: 20041188]
[86]
Ferretti, E.; Bertolotto, M.; Deaglio, S.; Tripodo, C.; Ribatti, D.; Audrito, V.; Blengio, F.; Matis, S.; Zupo, S.; Rossi, D.; Ottonello, L.; Gaidano, G.; Malavasi, F.; Pistoia, V.; Corcione, A. A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia, 2011, 25(8), 1268-1277.
[http://dx.doi.org/10.1038/leu.2011.88] [PMID: 21546901]
[87]
Yhim, H.Y.; Kim, J.A.; Ko, S.H.; Park, Y.; Yim, E.; Kim, H.S.; Kwak, J.Y. The prognostic significance of CD11b+CX3CR1+ monocytes in patients with newly diagnosed diffuse large B-cell lymphoma. Oncotarget, 2017, 8(54), 92289-92299.
[http://dx.doi.org/10.18632/oncotarget.21241] [PMID: 29190915]
[88]
Pistoia, V.; Morandi, F.; Bianchi, G.; Pezzolo, A.; Prigione, I.; Raffaghello, L. Immunosuppressive microenvironment in neuroblastoma. Front. Oncol., 2013, 3, 167.
[http://dx.doi.org/10.3389/fonc.2013.00167] [PMID: 23805414]
[89]
Nevo, I.; Sagi-Assif, O.; Meshel, T.; Ben-Baruch, A.; Jöhrer, K.; Greil, R.; Trejo, L.E.L.; Kharenko, O.; Feinmesser, M.; Yron, I.; Witz, I.P. The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett., 2009, 273(1), 127-139.
[http://dx.doi.org/10.1016/j.canlet.2008.07.029] [PMID: 18778890]
[90]
Zeng, Y.; Jiang, J.; Huebener, N.; Wenkel, J.; Gaedicke, G.; Xiang, R.; Lode, H.N. Fractalkine gene therapy for neuroblastoma is more effective in combination with targeted IL-2. Cancer Lett., 2005, 228(1-2), 187-193.
[http://dx.doi.org/10.1016/j.canlet.2005.01.057] [PMID: 15953676]
[91]
Korbecki, J.; Simińska, D.; Kojder, K.; Grochans, S.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Fractalkine/CX3CL1 in neoplastic processes. Int. J. Mol. Sci., 2020, 21(10), 3723.
[http://dx.doi.org/10.3390/ijms21103723] [PMID: 32466280]
[92]
Lu, J.; Steeg, P.S.; Price, J.E.; Krishnamurthy, S.; Mani, S.A.; Reuben, J.; Cristofanilli, M.; Dontu, G.; Bidaut, L.; Valero, V.; Hortobagyi, G.N.; Yu, D. Breast cancer metastasis: Challenges and opportunities. Cancer Res., 2009, 69(12), 4951-4953.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0099] [PMID: 19470768]
[93]
Jamieson-Gladney, W.L.; Zhang, Y.; Fong, A.M.; Meucci, O.; Fatatis, A. The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res., 2011, 13(5), R91.
[http://dx.doi.org/10.1186/bcr3016] [PMID: 21933397]
[94]
Onitilo, A.A.; Engel, J.M.; Greenlee, R.T.; Mukesh, B.N. Breast cancer subtypes based on ER/PR and Her2 expression: Comparison of clinicopathologic features and survival. Clin. Med. Res., 2009, 7(1-2), 4-13.
[http://dx.doi.org/10.3121/cmr.2008.825] [PMID: 19574486]
[95]
Andre, F.; Cabioglu, N.; Assi, H.; Sabourin, J.C.; Delaloge, S.; Sahin, A.; Broglio, K.; Spano, J.P.; Combadiere, C.; Bucana, C.; Soria, J.C.; Cristofanilli, M. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann. Oncol., 2006, 17(6), 945-951.
[http://dx.doi.org/10.1093/annonc/mdl053] [PMID: 16627550]
[96]
Park, M.H.; Lee, J.S.; Yoon, J.H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J. Surg. Oncol., 2012, 106(4), 386-392.
[http://dx.doi.org/10.1002/jso.23095] [PMID: 22422195]
[97]
Correia, A.L.; Guimaraes, J.C.; Auf der Maur, P.; De Silva, D.; Trefny, M.P.; Okamoto, R.; Bruno, S.; Schmidt, A.; Mertz, K.; Volkmann, K.; Terracciano, L.; Zippelius, A.; Vetter, M.; Kurzeder, C.; Weber, W.P.; Bentires-Alj, M. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021, 594(7864), 566-571.
[http://dx.doi.org/10.1038/s41586-021-03614-z] [PMID: 34079127]
[98]
Shen, F.; Zhang, Y.; Jernigan, D.L.; Feng, X.; Yan, J.; Garcia, F.U.; Meucci, O.; Salvino, J.M.; Fatatis, A. Novel small-molecule CX3CR1 antagonist impairs metastatic seeding and colonization of breast cancer cells. Mol. Cancer Res., 2016, 14(6), 518-527.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0013] [PMID: 27001765]
[99]
Zha, H.; Wang, X.; Zhu, Y.; Chen, D.; Han, X.; Yang, F.; Gao, J.; Hu, C.; Shu, C.; Feng, Y.; Tan, Y.; Zhang, J.; Li, Y.; Wan, Y.Y.; Guo, B.; Zhu, B. Intracellular activation of complement C3 leads to PD-L1 antibody treatment resistance by modulating tumor-associated macrophages. Cancer Immunol. Res., 2019, 7(2), 193-207.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0272] [PMID: 30514794]
[100]
Bassez, A.; Vos, H.; Van Dyck, L.; Floris, G.; Arijs, I.; Desmedt, C.; Boeckx, B.; Vanden Bempt, M.; Nevelsteen, I.; Lambein, K.; Punie, K.; Neven, P.; Garg, A.D.; Wildiers, H.; Qian, J.; Smeets, A.; Lambrechts, D. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med., 2021, 27(5), 820-832.
[http://dx.doi.org/10.1038/s41591-021-01323-8] [PMID: 33958794]
[101]
Marchesi, F.; Locatelli, M.; Solinas, G.; Erreni, M.; Allavena, P.; Mantovani, A. Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J. Neuroimmunol., 2010, 224(1-2), 39-44.
[http://dx.doi.org/10.1016/j.jneuroim.2010.05.007] [PMID: 20630606]
[102]
Lv, C.Y.; Zhou, T.; Chen, W.; Yin, X.D.; Yao, J.H.; Zhang, Y.F. Preliminary study correlating CX3CL1/CX3CR1 expression with gastric carcinoma and gastric carcinoma perineural invasion. World J. Gastroenterol., 2014, 20(15), 4428-4432.
[http://dx.doi.org/10.3748/wjg.v20.i15.4428] [PMID: 24764683]
[103]
Wei, L.M.; Cao, S.; Yu, W.D.; Liu, Y.L.; Wang, J.T. Overexpression of CX3CR1 is associated with cellular metastasis, proliferation and survival in gastric cancer. Oncol. Rep., 2015, 33(2), 615-624.
[http://dx.doi.org/10.3892/or.2014.3645] [PMID: 25482732]
[104]
Tang, J.; Chen, Y.; Cui, R.; Li, D.; Xiao, L.; Lin, P.; Du, Y.; Sun, H.; Yu, X.; Zheng, X. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol. Med. Rep., 2015, 12(6), 7907-7914.
[http://dx.doi.org/10.3892/mmr.2015.4438] [PMID: 26496926]
[105]
Sun, H.; He, T.; Wu, Y.; Yuan, H.; Ning, J.; Zhang, Z.; Deng, X.; Li, B.; Wu, C. Cytotoxin-associated gene a-negative Helicobacter pylori promotes gastric mucosal CX3CR1+CD4+ effector memory T cell recruitment in mice. Front. Microbiol., 2022, 13, 813774.
[http://dx.doi.org/10.3389/fmicb.2022.813774] [PMID: 35154057]
[106]
Zhu, Y.; Herndon, J.M.; Sojka, D.K.; Kim, K.W.; Knolhoff, B.L.; Zuo, C.; Cullinan, D.R.; Luo, J.; Bearden, A.R.; Lavine, K.J.; Yokoyama, W.M.; Hawkins, W.G.; Fields, R.C.; Randolph, G.J.; DeNardo, D.G. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity, 2017, 47, 323-338.
[107]
Xu, X.; Wang, Y.; Chen, J.; Ma, H.; Shao, Z.; Chen, H.; Jin, G. High expression of CX3CL1/CX3CR1 axis predicts a poor prognosis of pancreatic ductal adenocarcinoma. J. Gastrointest. Surg., 2012, 16(8), 1493-1498.
[http://dx.doi.org/10.1007/s11605-012-1921-7] [PMID: 22639377]
[108]
Ren, H.; Zhao, T.; Sun, J.; Wang, X.; Liu, J.; Gao, S.; Yu, M.; Hao, J. The CX3CL1/CX3CR1 reprograms glucose metabolism through HIF-1 pathway in pancreatic adenocarcinoma. J. Cell. Biochem., 2013, 114(11), 2603-2611.
[http://dx.doi.org/10.1002/jcb.24608] [PMID: 23857671]
[109]
Wang, H.; Cai, J.; Du, S.; Guo, Z.; Xin, B.; Wang, J.; Wei, W.; Shen, X. Fractalkine/CX3CR1 induces apoptosis resistance and proliferation through the activation of the AKT/NF-κB cascade in pancreatic cancer cells. Cell Biochem. Funct., 2017, 35(6), 315-326.
[http://dx.doi.org/10.1002/cbf.3278] [PMID: 28845524]
[110]
Huang, L.; Ma, B.; Ma, J.; Wang, F. Fractalkine/CX3CR1 axis modulated the development of pancreatic ductal adenocarcinoma via JAK/STAT signaling pathway. Biochem. Biophys. Res. Commun., 2017, 493(4), 1510-1517.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.006] [PMID: 28986258]
[111]
Xiao, L.J.; Chen, Y.Y.; Lin, P.; Zou, H.F.; Lin, F.; Zhao, L.N.; Li, D.; Guo, L.; Tang, J.B.; Zheng, X.L.; Yu, X.G. Hypoxia increases CX3CR1 expression via HIF-1 and NF-κB in androgen-independent prostate cancer cells. Int. J. Oncol., 2012, 41(5), 1827-1836.
[http://dx.doi.org/10.3892/ijo.2012.1610] [PMID: 22941344]
[112]
Tang, J.; Xiao, L.; Cui, R.; Li, D.; Zheng, X.; Zhu, L.; Sun, H.; Pan, Y.; Du, Y.; Yu, X. CX3CL1 increases invasiveness and metastasis by promoting epithelial-to-mesenchymal transition through the TACE/TGF-α/EGFR pathway in hypoxic androgen-independent prostate cancer cells. Oncol. Rep., 2016, 35(2), 1153-1162.
[http://dx.doi.org/10.3892/or.2015.4470] [PMID: 26718770]
[113]
Rozen, P.; Winawer, S.J.; Waye, J.D. Prospects for the worldwide control of colorectal cancer through screening. Gastrointest. Endosc., 2002, 55(6), 755-759.
[http://dx.doi.org/10.1067/mge.2002.123612] [PMID: 11979269]
[114]
Ohta, M.; Tanaka, F.; Yamaguchi, H.; Sadanaga, N.; Inoue, H.; Mori, M. The high expression of Fractalkine results in a better prognosis for colorectal cancer patients. Int. J. Oncol., 2005, 26(1), 41-47.
[http://dx.doi.org/10.3892/ijo.26.1.41] [PMID: 15586223]
[115]
Erreni, M.; Siddiqui, I.; Marelli, G.; Grizzi, F.; Bianchi, P.; Morone, D.; Marchesi, F.; Celesti, G.; Pesce, S.; Doni, A.; Rumio, C.; Roncalli, M.G.; Laghi, L.; Mantovani, A.; Allavena, P. The fractalkine-receptor axis improves human colorectal cancer prognosis by limiting tumor metastatic dissemination. J. Immunol., 2016, 196(2), 902-914.
[http://dx.doi.org/10.4049/jimmunol.1501335] [PMID: 26673138]
[116]
Zheng, J.; Yang, M.; Shao, J.; Miao, Y.; Han, J.; Du, J. Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol. Cancer, 2013, 12(1), 141.
[http://dx.doi.org/10.1186/1476-4598-12-141] [PMID: 24245985]
[117]
Dimberg, J.; Dienus, O.; Löfgren, S.; Hugander, A.; Wågsäter, D. Polymorphisms of Fractalkine receptor CX3CR1 and plasma levels of its ligand CX3CL1 in colorectal cancer patients. Int. J. Colorectal Dis., 2007, 22(10), 1195-1200.
[http://dx.doi.org/10.1007/s00384-007-0343-6] [PMID: 17611763]
[118]
Lee, S.; Latha, K.; Manyam, G.; Yang, Y.; Rao, A.; Rao, G. Role of CX3CR1 signaling in malignant transformation of gliomas. Neuro-oncol., 2020, 22(10), 1463-1473.
[http://dx.doi.org/10.1093/neuonc/noaa075] [PMID: 32236410]
[119]
Ferretti, E.; Pistoia, V.; Corcione, A. Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/480941] [PMID: 24799766]
[120]
Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(4), 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[121]
Schmall, A.; Al-tamari, H.M.; Herold, S.; Kampschulte, M.; Weigert, A.; Wietelmann, A.; Vipotnik, N.; Grimminger, F.; Seeger, W.; Pullamsetti, S.S.; Savai, R. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer. Am. J. Respir. Crit. Care Med., 2015, 191(4), 437-447.
[http://dx.doi.org/10.1164/rccm.201406-1137OC] [PMID: 25536148]
[122]
Ishida, Y.; Kuninaka, Y.; Yamamoto, Y.; Nosaka, M.; Kimura, A.; Furukawa, F.; Mukaida, N.; Kondo, T. Pivotal involvement of the CX3CL1-CX3CR1 Axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis. J. Invest. Dermatol., 2020, 140(10), 1951-1961.e6.
[http://dx.doi.org/10.1016/j.jid.2020.02.023] [PMID: 32179066]
[123]
Amsellem, V.; Abid, S.; Poupel, L.; Parpaleix, A.; Rodero, M.; Gary-Bobo, G.; Latiri, M.; Dubois-Rande, J.L.; Lipskaia, L.; Combadiere, C.; Adnot, S. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 chemokine systems in hypoxic pulmonary hypertension. Am. J. Respir. Cell Mol. Biol., 2017, 56(5), 597-608.
[http://dx.doi.org/10.1165/rcmb.2016-0201OC] [PMID: 28125278]
[124]
Liu, Y.; Ma, H.; Dong, T.; Yan, Y.; Sun, L.; Wang, W. Clinical significance of expression level of CX3CL1–CX3CR1 axis in bone metastasis of lung cancer. Clin. Transl. Oncol., 2021, 23(2), 378-388.
[http://dx.doi.org/10.1007/s12094-020-02431-6] [PMID: 32638214]
[125]
Liu, J.; Li, Y.; Zhu, X.; Li, Q.; Liang, X.; Xie, J.; Hu, S.; Peng, W.; Li, C. Increased CX3CL1 mRNA expression level is a positive prognostic factor in patients with lung adenocarcinoma. Oncol. Lett., 2019, 17(6), 4877-4890.
[http://dx.doi.org/10.3892/ol.2019.10211] [PMID: 31186696]
[126]
Xin, H.; Kikuchi, T.; Andarini, S.; Ohkouchi, S.; Suzuki, T.; Nukiwa, T.; Huqun, ; Hagiwara, K.; Honjo, T.; Saijo, Y. Antitumor immune response by CX3CL1 fractalkine gene transfer depends on both NK and T cells. Eur. J. Immunol., 2005, 35(5), 1371-1380.
[http://dx.doi.org/10.1002/eji.200526042] [PMID: 15789339]
[127]
Xin, H.; Kanehira, M.; Mizuguchi, H.; Hayakawa, T.; Kikuchi, T.; Nukiwa, T.; Saijo, Y. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells, 2007, 25(7), 1618-1626.
[http://dx.doi.org/10.1634/stemcells.2006-0461] [PMID: 17412895]
[128]
Li, G.; Hattermann, K.; Mentlein, R.; Mehdorn, H.M.; Held-Feindt, J. The transmembrane chemokines CXCL16 and CX3CL1 and their receptors are expressed in human meningiomas. Oncol. Rep., 2013, 29(2), 563-570.
[http://dx.doi.org/10.3892/or.2012.2164] [PMID: 23229614]
[129]
Tang, L.; Hu, H.; Hu, P.; Lan, Y.; Peng, M.; Chen, M.; Ren, H. Gene therapy with CX3CL1/Fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Ther., 2007, 14(16), 1226-1234.
[http://dx.doi.org/10.1038/sj.gt.3302959] [PMID: 17597794]
[130]
Milani, S.; Herbst, H.; Schuppan, D.; Grappone, C.; Pellegrini, G.; Pinzani, M.; Casini, A.; Calabró, A.; Ciancio, G.; Stefanini, F. Differential expression of matrix metalloproteinasematrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am. J. Pathol., 1994, 144, 528-537.
[PMID: 8129038]
[131]
Matsubara, T.; Ono, T.; Yamanoi, A.; Tachibana, M.; Nagasue, N. Fractalkine-CX3CR1 axis regulates tumor cell cycle and deteriorates prognosis after radical resection for hepatocellular carcinoma. J. Surg. Oncol., 2007, 95(3), 241-249.
[http://dx.doi.org/10.1002/jso.20642] [PMID: 17323338]
[132]
Huang, F.; Geng, X.P. Chemokines and hepatocellular carcinoma. World J. Gastroenterol., 2010, 16(15), 1832-1836.
[http://dx.doi.org/10.3748/wjg.v16.i15.1832] [PMID: 20397259]
[133]
Miao, S.; Lu, M.; Liu, Y.; Shu, D.; Zhu, Y.; Song, W.; Ma, Y.; Ma, R.; Zhang, B.; Fang, C.; Ming, Z.Y. Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1‐CX3CR1 dependent manner and induce tumour cell apoptosis. Mol. Oncol., 2020, 14(10), 2546-2559.
[http://dx.doi.org/10.1002/1878-0261.12783] [PMID: 32799418]
[134]
Chen, E.B.; Zhou, Z.J.; Xiao, K.; Zhu, G.Q.; Yang, Y.; Wang, B.; Zhou, S.L.; Chen, Q.; Yin, D.; Wang, Z.; Shi, Y.H.; Gao, D.M.; Chen, J.; Zhao, Y.; Wu, W.Z.; Fan, J.; Zhou, J.; Dai, Z. The miR-561-5p/CX 3 CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX 3 CR1 + natural killer cells infiltration. Theranostics, 2019, 9(16), 4779-4794.
[http://dx.doi.org/10.7150/thno.32543] [PMID: 31367257]
[135]
Luo, P.; Chu, S.; Zhang, Z.; Xia, C.; Chen, N. Fractalkine/CX3CR1 is involved in the cross-talk between neuron and glia in neurological diseases. Brain Res. Bull., 2019, 146, 12-21.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.017] [PMID: 30496784]
[136]
Cho, S.H.; Sun, B.; Zhou, Y.; Kauppinen, T.M.; Halabisky, B.; Wes, P.; Ransohoff, R.M.; Gan, L. CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J. Biol. Chem., 2011, 286(37), 32713-32722.
[http://dx.doi.org/10.1074/jbc.M111.254268] [PMID: 21771791]
[137]
González-Prieto, M.; Gutiérrez, I.L.; García-Bueno, B.; Caso, J.R.; Leza, J.C.; Ortega-Hernández, A.; Gómez-Garre, D.; Madrigal, J.L.M. Microglial CX3CR1 production increases in Alzheimer’s disease and is regulated by noradrenaline. Glia, 2021, 69(1), 73-90.
[http://dx.doi.org/10.1002/glia.23885] [PMID: 32662924]
[138]
Wang, L.; Liu, Y.; Yan, S.; Du, T.; Fu, X.; Gong, X.; Zhou, X.; Zhang, T.; Wang, X. Disease progression-dependent expression of CD200R1 and CX3CR1 in mouse models of Parkinson’s Disease. Aging Dis., 2020, 11(2), 254-268.
[http://dx.doi.org/10.14336/AD.2019.0615] [PMID: 32257540]
[139]
Kim, A.; García-García, E.; Straccia, M.; Comella-Bolla, A.; Miguez, A.; Masana, M.; Alberch, J.; Canals, J.M.; Rodríguez, M.J. Reduced fractalkine levels lead to striatal synaptic plasticity deficits in Huntington’s disease. Front. Cell. Neurosci., 2020, 14, 163.
[http://dx.doi.org/10.3389/fncel.2020.00163] [PMID: 32625064]
[140]
Yang, G.; Liu, Z.; Wang, L.; Chen, X.; Wang, X.; Dong, Q.; Zhang, D.; Yang, Z.; Zhou, Q.; Sun, J.; Xue, L.; Wang, X.; Gao, M.; Li, L.; Yi, R.; Ilgiz, G.; Ai, J.; Zhao, S. MicroRNA-195 protection against focal cerebral ischemia by targeting CX3CR1. J. Neurosurg., 2018, 1-10.
[http://dx.doi.org/10.3171/2018.5.JNS173061] [PMID: 30497184]
[141]
Wang, J.; Gan, Y.; Han, P.; Yin, J.; Liu, Q.; Ghanian, S.; Gao, F.; Gong, G.; Tang, Z. Ischemia-induced neuronal cell death is mediated by chemokine receptor CX3CR1. Sci. Rep., 2018, 8(1), 556.
[http://dx.doi.org/10.1038/s41598-017-18774-0] [PMID: 29323156]
[142]
Komissarov, A.; Potashnikova, D.; Freeman, M.L.; Gontarenko, V.; Maytesyan, D.; Lederman, M.M.; Vasilieva, E.; Margolis, L. Driving T cells to human atherosclerotic plaques: CCL3/CCR5 and CX3CL1/CX3CR1 migration axes. Eur. J. Immunol., 2021, 51(7), 1857-1859.
[http://dx.doi.org/10.1002/eji.202049004] [PMID: 33772780]
[143]
Cormican, S.; Griffin, M.D. Fractalkine (CX3CL1) and its receptor CX3CR1: A promising therapeutic target in chronic kidney disease? Front. Immunol., 2021, 12, 664202.
[http://dx.doi.org/10.3389/fimmu.2021.664202] [PMID: 34163473]
[144]
Chen, S.; Luo, D.; Streit, W.J.; Harrison, J.K. TGF-β1 upregulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J. Neuroimmunol., 2002, 133(1-2), 46-55.
[http://dx.doi.org/10.1016/S0165-5728(02)00354-5] [PMID: 12446007]
[145]
Sciumè, G.; Soriani, A.; Piccoli, M.; Frati, L.; Santoni, A.; Bernardini, G. CX3CR1/CX3CL1 axis negatively controls glioma cell invasion and is modulated by transforming growth factor-β1. Neuro-oncol., 2010, 12(7), 701-710.
[http://dx.doi.org/10.1093/neuonc/nop076] [PMID: 20511186]
[146]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[147]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[148]
Su, Y.C.; Chang, H.; Sun, S.J.; Liao, C.Y.; Wang, L.Y.; Ko, J.L.; Chang, J.T. Differential impact of CX3CL1 on lung cancer prognosis in smokers and non-smokers. Mol. Carcinog., 2018, 57(5), 629-639.
[http://dx.doi.org/10.1002/mc.22787] [PMID: 29380447]
[149]
Stout, M.C.; Narayan, S.; Pillet, E.S.; Salvino, J.M.; Campbell, P.M. Inhibition of CX3CR1 reduces cell motility and viability in pancreatic adenocarcinoma epithelial cells. Biochem. Biophys. Res. Commun., 2018, 495(3), 2264-2269.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.116] [PMID: 29274778]
[150]
Liu, W.; Bian, C.; Liang, Y.; Jiang, L.; Qian, C.; Dong, J. CX3CL1: A potential chemokine widely involved in the process spinal metastases. Oncotarget, 2017, 8(9), 15213-15219.
[http://dx.doi.org/10.18632/oncotarget.14773] [PMID: 28122354]
[151]
Roskoski, R.Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol. Res., 2015, 94, 9-25.
[http://dx.doi.org/10.1016/j.phrs.2015.01.003] [PMID: 25662515]
[152]
Yoon, H.; Dehart, J.P.; Murphy, J.M.; Lim, S.T.S. Understanding the roles of FAK in cancer: Inhibitors, genetic models, and new insights. J. Histochem. Cytochem., 2015, 63(2), 114-128.
[http://dx.doi.org/10.1369/0022155414561498] [PMID: 25380750]
[153]
Jean, C.; Chen, X.L.; Nam, J.O.; Tancioni, I.; Uryu, S.; Lawson, C.; Ward, K.K.; Walsh, C.T.; Miller, N.L.G.; Ghassemian, M.; Turowski, P.; Dejana, E.; Weis, S.; Cheresh, D.A.; Schlaepfer, D.D. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J. Cell Biol., 2014, 204(2), 247-263.
[http://dx.doi.org/10.1083/jcb.201307067] [PMID: 24446483]
[154]
Ruest, P.J.; Roy, S.; Shi, E.; Mernaugh, R.L.; Hanks, S.K. Phosphospecific antibodies reveal focal adhesion kinase activation loop phosphorylation in nascent and mature focal adhesions and requirement for the autophosphorylation site. Cell Growth Differ., 2000, 11(1), 41-48.
[PMID: 10672902]
[155]
Green, T.P.; Fennell, M.; Whittaker, R.; Curwen, J.; Jacobs, V.; Allen, J.; Logie, A.; Hargreaves, J.; Hickinson, D.M.; Wilkinson, R.W.; Elvin, P.; Boyer, B.; Carragher, N.; Plé, P.A.; Bermingham, A.; Holdgate, G.A.; Ward, W.H.J.; Hennequin, L.F.; Davies, B.R.; Costello, G.F. Preclinical anticancer activity of the potent, oral Src inhibitor AZD0530. Mol. Oncol., 2009, 3(3), 248-261.
[http://dx.doi.org/10.1016/j.molonc.2009.01.002] [PMID: 19393585]
[156]
Chang, Y-M.; Bai, L.; Liu, S.; Yang, J.C.; Kung, H-J.; Evans, C.P. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene, 2008, 27(49), 6365-6375.
[http://dx.doi.org/10.1038/onc.2008.250] [PMID: 18679417]
[157]
Yamauchi, T.; Hoki, T.; Oba, T.; Saito, H.; Attwood, K.; Sabel, M.S.; Chang, A.E.; Odunsi, K.; Ito, F. CX3CR1–CD8+ T cells are critical in antitumor efficacy but functionally suppressed in the tumor microenvironment. JCI Insight, 2020, 5(8), e133920.
[http://dx.doi.org/10.1172/jci.insight.133920] [PMID: 32255766]
[158]
Lavergne, E.; Combadière, B.; Bonduelle, O.; Iga, M.; Gao, J.L.; Maho, M.; Boissonnas, A.; Murphy, P.M.; Debré, P.; Combadière, C. Fractalkine mediates natural killer-dependent antitumor responses in vivo. Cancer Res., 2003, 63(21), 7468-7474.
[PMID: 14612547]
[159]
Shulby, S.A.; Dolloff, N.G.; Stearns, M.E.; Meucci, O.; Fatatis, A. CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res., 2004, 64(14), 4693-4698.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3437] [PMID: 15256432]
[160]
Castellana, D.; Zobairi, F.; Martinez, M.C.; Panaro, M.A.; Mitolo, V.; Freyssinet, J.M.; Kunzelmann, C. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: A role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res., 2009, 69(3), 785-793.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1946] [PMID: 19155311]
[161]
Siddiqui, I.; Erreni, M.; van Brakel, M.; Debets, R.; Allavena, P. Enhanced recruitment of genetically modified CX3CR1-positive human T cells into Fractalkine/CX3CL1 expressing tumors: Importance of the chemokine gradient. J. Immunother. Cancer, 2016, 4(1), 21.
[http://dx.doi.org/10.1186/s40425-016-0125-1] [PMID: 27096098]
[162]
Böttcher, J.P.; Beyer, M.; Meissner, F.; Abdullah, Z.; Sander, J.; Höchst, B.; Eickhoff, S.; Rieckmann, J.C.; Russo, C.; Bauer, T.; Flecken, T.; Giesen, D.; Engel, D.; Jung, S.; Busch, D.H.; Protzer, U.; Thimme, R.; Mann, M.; Kurts, C.; Schultze, J.L.; Kastenmüller, W.; Knolle, P.A. Functional classification of memory CD8+ T cells by CX3CR1 expression. Nat. Commun., 2015, 6(1), 8306.
[http://dx.doi.org/10.1038/ncomms9306] [PMID: 26404698]
[163]
Yan, Y.; Cao, S.; Liu, X.; Harrington, S.M.; Bindeman, W.E.; Adjei, A.A.; Jang, J.S.; Jen, J.; Li, Y.; Chanana, P.; Mansfield, A.S.; Park, S.S.; Markovic, S.N.; Dronca, R.S.; Dong, H. CX3CR1 identifies PD-1 therapy–responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight, 2018, 3(8), e97828.
[http://dx.doi.org/10.1172/jci.insight.97828] [PMID: 29669928]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy