Review Article

FGF23在CKD- mbd及其他器官中的作用

卷 30, 期 7, 2023

发表于: 19 September, 2022

页: [841 - 856] 页: 16

弟呕挨: 10.2174/0929867329666220627122733

价格: $65

摘要

成纤维细胞生长因子23 (FGF23)是近十年来发现的一种新型内分泌产物。除了与骨病有关外,它还被发现与肾脏代谢和甲状旁腺代谢有关,特别是作为一种生物标志物和用于肾脏疾病的关键因素。FGF23早在慢性肾病(CKD)的第二和第三阶段就上调,以应对相对磷过载。FGF23的早期上升对身体有保护作用,对维持磷酸盐平衡至关重要。但随着肾功能的下降,eGFR(估计肾小球滤过率)下降,FGF23引起的磷排泄作用减弱。它最终会导致各种并发症,如骨病(慢性肾病-矿物质和骨代谢紊乱),血管钙化(VC)等等。抗FGF23的单克隆抗体目前用于治疗FGF23增加的遗传疾病。CKD也是一种FGF23增加的状态。本文综述了FGF23在CKD中的作用,并讨论了CKD条件下各器官与FGF23之间的串扰。研究高磷血症对CKD不同器官的影响非常重要。本文还讨论了FGF23的治疗前景。

关键词: FGF23, CKD- mbd, CKD,骨骼,心血管,甲状旁腺,内皮,肾脏。

[1]
Igwe, J.C.; Jiang, X.; Paic, F.; Ma, L.; Adams, D.J.; Baldock, P.A.; Pilbeam, C.C.; Kalajzic, I. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J. Cell. Biochem., 2009, 108(3), 621-630.
[http://dx.doi.org/10.1002/jcb.22294] [PMID: 19670271]
[2]
Kharitonenkov, A.; Adams, A.C. Inventing new medicines: The FGF21 story. Mol. Metab., 2013, 3(3), 221-229.
[http://dx.doi.org/10.1016/j.molmet.2013.12.003] [PMID: 24749049]
[3]
Kuzina, E.S.; Ung, P.M-U.; Mohanty, J.; Tome, F.; Choi, J.; Pardon, E.; Steyaert, J.; Lax, I.; Schlessinger, A.; Schlessinger, J.; Lee, S. Structures of ligand-occupied β-Klotho complexes reveal a molecular mechanism underlying endocrine FGF specificity and activity. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7819-7824.
[http://dx.doi.org/10.1073/pnas.1822055116] [PMID: 30944224]
[4]
Chen, G.; Liu, Y.; Goetz, R.; Fu, L.; Jayaraman, S.; Hu, M-C.; Moe, O.W.; Liang, G.; Li, X.; Mohammadi, M. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature, 2018, 553(7689), 461-466.
[http://dx.doi.org/10.1038/nature25451] [PMID: 29342138]
[5]
Shimada, T.; Hasegawa, H.; Yamazaki, Y.; Muto, T.; Hino, R.; Takeuchi, Y.; Fujita, T.; Nakahara, K.; Fukumoto, S.; Yamashita, T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res., 2004, 19(3), 429-435.
[http://dx.doi.org/10.1359/JBMR.0301264] [PMID: 15040831]
[6]
Shimada, T.; Muto, T.; Urakawa, I.; Yoneya, T.; Yamazaki, Y.; Okawa, K.; Takeuchi, Y.; Fujita, T.; Fukumoto, S.; Yamashita, T. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology, 2002, 143(8), 3179-3182.
[http://dx.doi.org/10.1210/endo.143.8.8795] [PMID: 12130585]
[7]
White, K.E.; Carn, G.; Lorenz-Depiereux, B.; Benet-Pages, A.; Strom, T.M.; Econs, M.J. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int., 2001, 60(6), 2079-2086.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00064.x] [PMID: 11737582]
[8]
Wolf, M.; White, K.E. Coupling FGF23 production and cleavage: Iron deficiency, rickets and kidney disease. Curr. Opin. Nephrol. Hypertens., 2014, 23(4), 411.
[http://dx.doi.org/10.1097/01.mnh.0000447020.74593.6f] [PMID: 24867675]
[9]
Kurosu, H.; Kuro-O, M. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol. Cell. Endocrinol., 2009, 299(1), 72-78.
[http://dx.doi.org/10.1016/j.mce.2008.10.052] [PMID: 19063940]
[10]
Musgrove, J.; Wolf, M. Regulation and effects of FGF23 in chronic kidney disease. Annu. Rev. Physiol., 2020, 82(1), 365-390.
[http://dx.doi.org/10.1146/annurev-physiol-021119-034650] [PMID: 31743079]
[11]
Olauson, H.; Mencke, R.; Hillebrands, J-L.; Larsson, T.E. Tissue expression and source of circulating αKlotho. Bone, 2017, 100, 19-35.
[http://dx.doi.org/10.1016/j.bone.2017.03.043] [PMID: 28323144]
[12]
Hensel, N.; Schön, A.; Konen, T.; Lübben, V.; Förthmann, B.; Baron, O.; Grothe, C.; Leifheit-Nestler, M.; Claus, P.; Haffner, D. Fibroblast growth factor 23 signaling in hippocampal cells: Impact on neuronal morphology and synaptic density. J. Neurochem., 2016, 137(5), 756-769.
[http://dx.doi.org/10.1111/jnc.13585] [PMID: 26896818]
[13]
Krick, S.; Grabner, A.; Baumlin, N.; Yanucil, C.; Helton, S.; Grosche, A.; Sailland, J.; Geraghty, P.; Viera, L.; Russell, D.W.; Wells, J.M.; Xu, X.; Gaggar, A.; Barnes, J.; King, G.D.; Campos, M.; Faul, C.; Salathe, M. Fibroblast growth factor 23 and Klotho contribute to airway inflammation. Eur. Respir. J., 2018, 52(1), 1800236.
[http://dx.doi.org/10.1183/13993003.00236-2018] [PMID: 29748308]
[14]
Smith, E.R.; Holt, S.G.; Hewitson, T.D. αKlotho-FGF23 interactions and their role in kidney disease: A molecular insight. Cell. Mol. Life Sci., 2019, 76(23), 4705-4724.
[http://dx.doi.org/10.1007/s00018-019-03241-y] [PMID: 31350618]
[15]
Vervloet, M. Renal and extrarenal effects of fibroblast growth factor 23. Nat. Rev. Nephrol., 2019, 15(2), 109-120.
[http://dx.doi.org/10.1038/s41581-018-0087-2] [PMID: 30514976]
[16]
Ben-Dov, I.Z.; Galitzer, H.; Lavi-Moshayoff, V.; Goetz, R.; Kuro-o, M.; Mohammadi, M.; Sirkis, R.; Naveh-Many, T.; Silver, J. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest., 2007, 117(12), 4003-4008.
[http://dx.doi.org/10.1172/JCI32409] [PMID: 17992255]
[17]
Hessle, L.; Johnson, K.A.; Anderson, H.C.; Narisawa, S.; Sali, A.; Goding, J.W.; Terkeltaub, R.; Millán, J.L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA, 2002, 99(14), 9445-9449.
[http://dx.doi.org/10.1073/pnas.142063399] [PMID: 12082181]
[18]
Grabner, A.; Schramm, K.; Silswal, N.; Hendrix, M.; Yanucil, C.; Czaya, B.; Singh, S.; Wolf, M.; Hermann, S.; Stypmann, J.; Di Marco, G.S.; Brand, M.; Wacker, M.J.; Faul, C. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci. Rep., 2017, 7(1), 1993.
[http://dx.doi.org/10.1038/s41598-017-02068-6] [PMID: 28512310]
[19]
Farrow, E.G.; Davis, S.I.; Summers, L.J.; White, K.E. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol., 2009, 20(5), 955-960.
[http://dx.doi.org/10.1681/ASN.2008070783] [PMID: 19357251]
[20]
Kaneko, I.; Saini, R.K.; Griffin, K.P.; Whitfield, G.K.; Haussler, M.R.; Jurutka, P.W. FGF23 gene regulation by 1,25-dihydroxyvitamin D: Opposing effects in adipocytes and osteocytes. J. Endocrinol., 2015, 226(3), 155-166.
[http://dx.doi.org/10.1530/JOE-15-0225] [PMID: 26148725]
[21]
Saito, H.; Maeda, A.; Ohtomo, S.; Hirata, M.; Kusano, K.; Kato, S.; Ogata, E.; Segawa, H.; Miyamoto, K.; Fukushima, N. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem., 2005, 280(4), 2543-2549.
[http://dx.doi.org/10.1074/jbc.M408903200] [PMID: 15531762]
[22]
Faul, C.; Amaral, A.P.; Oskouei, B.; Hu, M-C.; Sloan, A.; Isakova, T.; Gutiérrez, O.M.; Aguillon-Prada, R.; Lincoln, J.; Hare, J.M.; Mundel, P.; Morales, A.; Scialla, J.; Fischer, M.; Soliman, E.Z.; Chen, J.; Go, A.S.; Rosas, S.E.; Nessel, L.; Townsend, R.R.; Feldman, H.I.; St John Sutton, M.; Ojo, A.; Gadegbeku, C.; Di Marco, G.S.; Reuter, S.; Kentrup, D.; Tiemann, K.; Brand, M.; Hill, J.A.; Moe, O.W.; Kuro-O, M.; Kusek, J.W.; Keane, M.G.; Wolf, M. FGF23 induces left ventricular hypertrophy. J. Clin. Invest., 2011, 121(11), 4393-4408.
[http://dx.doi.org/10.1172/JCI46122] [PMID: 21985788]
[23]
Marthi, A.; Donovan, K.; Haynes, R.; Wheeler, D.C.; Baigent, C.; Rooney, C.M.; Landray, M.J.; Moe, S.M.; Yang, J.; Holland, L.; di Giuseppe, R.; Bouma-de Krijger, A.; Mihaylova, B.; Herrington, W.G. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: A meta-analysis. J. Am. Soc. Nephrol., 2018, 29(7), 2015-2027.
[http://dx.doi.org/10.1681/ASN.2017121334] [PMID: 29764921]
[24]
Raimann, A.; Ertl, D.A.; Helmreich, M.; Sagmeister, S.; Egerbacher, M.; Haeusler, G. Fibroblast growth factor 23 and Klotho are present in the growth plate. Connect. Tissue Res., 2013, 54(2), 108-117.
[http://dx.doi.org/10.3109/03008207.2012.753879] [PMID: 23206185]
[25]
Murali, S.K.; Roschger, P.; Zeitz, U.; Klaushofer, K.; Andrukhova, O.; Erben, R.G. FGF23 regulates bone mineralization in a 1, 25 (OH) 2D3 and klotho-independent manner. J. Bone Miner. Res., 2016, 31(1), 129-142.
[http://dx.doi.org/10.1002/jbmr.2606] [PMID: 26235988]
[26]
Allard, L.; Demoncheaux, N.; Machuca-Gayet, I.; Georgess, D.; Coury-Lucas, F.; Jurdic, P.; Bacchetta, J. Biphasic effects of vitamin D and FGF23 on human osteoclast biology. Calcif. Tissue Int., 2015, 97(1), 69-79.
[http://dx.doi.org/10.1007/s00223-015-0013-6] [PMID: 25987164]
[27]
Kinoshita, Y.; Fukumoto, S. X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: Prospect for new treatment. Endocr. Rev., 2018, 39(3), 274-291.
[http://dx.doi.org/10.1210/er.2017-00220] [PMID: 29381780]
[28]
Minisola, S.; Peacock, M.; Fukumoto, S.; Cipriani, C.; Pepe, J.; Tella, S.H.; Collins, M.T. Tumour-induced osteomalacia. Nat. Rev. Dis. Primers, 2017, 3(1), 17044.
[http://dx.doi.org/10.1038/nrdp.2017.44] [PMID: 28703220]
[29]
Lafferty, F.W.; Reynolds, E.S.; Pearson, O.H. Tumoral calcinosis: A metabolic disease of obscure etiology. Am. J. Med., 1965, 38(1), 105-118.
[http://dx.doi.org/10.1016/0002-9343(65)90164-6] [PMID: 14251895]
[30]
Tiosano, D.; Abrams, S.A.; Weisman, Y. Lessons learned from hereditary 1,25-Dihydroxyvitamin D-resistant rickets patients on Vitamin D functions. J. Nutr., 2021, 151(3), 473-481.
[http://dx.doi.org/10.1093/jn/nxaa380] [PMID: 33438017]
[31]
DeLuca, H.F. The metabolism and functions of vitamin D. In: Adv. Exp. Med. Biol; , 1986; 196, pp. 361-375.
[http://dx.doi.org/10.1007/978-1-4684-5101-6_24]
[32]
Eisenberg, E. Effects of serum calcium level and parathyroid extracts on phosphate and calcium excretion in hypoparathyroid patients. J. Clin. Invest., 1965, 44(6), 942-946.
[http://dx.doi.org/10.1172/JCI105211] [PMID: 14322028]
[33]
Isakova, T.; Wahl, P.; Vargas, G.S.; Gutiérrez, O.M.; Scialla, J.; Xie, H.; Appleby, D.; Nessel, L.; Bellovich, K.; Chen, J.; Hamm, L.; Gadegbeku, C.; Horwitz, E.; Townsend, R.R.; Anderson, C.A.; Lash, J.P.; Hsu, C.Y.; Leonard, M.B.; Wolf, M. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int., 2011, 79(12), 1370-1378.
[http://dx.doi.org/10.1038/ki.2011.47] [PMID: 21389978]
[34]
Ratsma, D.M.A.; Zillikens, M.C.; van der Eerden, B.C.J. Upstream regulators of fibroblast growth factor 23. Front. Endocrinol. (Lausanne), 2021, 12, 588096.
[http://dx.doi.org/10.3389/fendo.2021.588096] [PMID: 33716961]
[35]
Shalhoub, V.; Shatzen, E.M.; Ward, S.C.; Davis, J.; Stevens, J.; Bi, V.; Renshaw, L.; Hawkins, N.; Wang, W.; Chen, C.; Tsai, M.M.; Cattley, R.C.; Wronski, T.J.; Xia, X.; Li, X.; Henley, C.; Eschenberg, M.; Richards, W.G. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest., 2012, 122(7), 2543-2553.
[http://dx.doi.org/10.1172/JCI61405] [PMID: 22728934]
[36]
David, V.; Martin, A.; Isakova, T.; Spaulding, C.; Qi, L.; Ramirez, V.; Zumbrennen-Bullough, K.B.; Sun, C.C.; Lin, H.Y.; Babitt, J.L.; Wolf, M. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int., 2016, 89(1), 135-146.
[http://dx.doi.org/10.1038/ki.2015.290] [PMID: 26535997]
[37]
Smith, E.R.; Cai, M.M.; McMahon, L.P.; Holt, S.G. Biological variability of plasma intact and C-terminal FGF23 measurements. J. Clin. Endocrinol. Metab., 2012, 97(9), 3357-3365.
[http://dx.doi.org/10.1210/jc.2012-1811] [PMID: 22689697]
[38]
Farrow, E.G.; Yu, X.; Summers, L.J.; Davis, S.I.; Fleet, J.C.; Allen, M.R.; Robling, A.G.; Stayrook, K.R.; Jideonwo, V.; Magers, M.J.; Garringer, H.J.; Vidal, R.; Chan, R.J.; Goodwin, C.B.; Hui, S.L.; Peacock, M.; White, K.E. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc. Natl. Acad. Sci. USA, 2011, 108(46), E1146-E1155.
[http://dx.doi.org/10.1073/pnas.1110905108] [PMID: 22006328]
[39]
Carpenter, T.O.; Imel, E.A.; Holm, I.A.; Jan de Beur, S.M.; Insogna, K.L. A clinician’s guide to X-linked hypophosphatemia. J. Bone Miner. Res., 2011, 26(7), 1381-1388.
[http://dx.doi.org/10.1002/jbmr.340] [PMID: 21538511]
[40]
Baroncelli, G.I.; Mora, S. X-Linked Hypophosphatemic Rickets: Multisystemic disorder in children requiring multidisciplinary management. Front. Endocrinol. (Lausanne), 2021, 12, 688309.
[http://dx.doi.org/10.3389/fendo.2021.688309] [PMID: 34421819]
[41]
Thomas, B.; Matsushita, K.; Abate, K.H.; Al-Aly, Z.; Ärnlöv, J.; Asayama, K.; Atkins, R.; Badawi, A.; Ballew, S.H.; Banerjee, A.; Barregård, L.; Barrett-Connor, E.; Basu, S.; Bello, A.K.; Bensenor, I.; Bergstrom, J.; Bikbov, B.; Blosser, C.; Brenner, H.; Carrero, J.J.; Chadban, S.; Cirillo, M.; Cortinovis, M.; Courville, K.; Dandona, L.; Dandona, R.; Estep, K.; Fernandes, J.; Fischer, F.; Fox, C.; Gansevoort, R.T.; Gona, P.N.; Gutierrez, O.M.; Hamidi, S.; Hanson, S.W.; Himmelfarb, J.; Jassal, S.K.; Jee, S.H.; Jha, V.; Jimenez-Corona, A.; Jonas, J.B.; Kengne, A.P.; Khader, Y.; Khang, Y.H.; Kim, Y.J.; Klein, B.; Klein, R.; Kokubo, Y.; Kolte, D.; Lee, K.; Levey, A.S.; Li, Y.; Lotufo, P.; El Razek, H.M.A.; Mendoza, W.; Metoki, H.; Mok, Y.; Muraki, I.; Muntner, P.M.; Noda, H.; Ohkubo, T.; Ortiz, A.; Perico, N.; Polkinghorne, K.; Al-Radaddi, R.; Remuzzi, G.; Roth, G.; Rothenbacher, D.; Satoh, M.; Saum, K.U.; Sawhney, M.; Schöttker, B.; Shankar, A.; Shlipak, M.; Silva, D.A.S.; Toyoshima, H.; Ukwaja, K.; Umesawa, M.; Vollset, S.E.; Warnock, D.G.; Werdecker, A.; Yamagishi, K.; Yano, Y.; Yonemoto, N.; Zaki, M.E.S.; Naghavi, M.; Forouzanfar, M.H.; Murray, C.J.L.; Coresh, J.; Vos, T. Global cardiovascular and renal outcomes of reduced GFR. J. Am. Soc. Nephrol., 2017, 28(7), 2167-2179.
[http://dx.doi.org/10.1681/ASN.2016050562] [PMID: 28408440]
[42]
Yilmaz, M.I.; Saglam, M.; Caglar, K.; Cakir, E.; Sonmez, A.; Ozgurtas, T.; Aydin, A.; Eyileten, T.; Ozcan, O.; Acikel, C.; Tasar, M.; Genctoy, G.; Erbil, K.; Vural, A.; Zoccali, C. The determinants of endothelial dysfunction in CKD: Oxidative stress and asymmetric dimethylarginine. Am. J. Kidney Dis., 2006, 47(1), 42-50.
[http://dx.doi.org/10.1053/j.ajkd.2005.09.029] [PMID: 16377384]
[43]
Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial dysfunction in chronic kidney disease, from biology to clinical outcomes: A 2020 update. J. Clin. Med., 2020, 9(8), 2359.
[http://dx.doi.org/10.3390/jcm9082359] [PMID: 32718053]
[44]
Six, I.; Okazaki, H.; Gross, P.; Cagnard, J.; Boudot, C.; Maizel, J.; Drueke, T.B.; Massy, Z.A. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One, 2014, 9(4), e93423.
[http://dx.doi.org/10.1371/journal.pone.0093423] [PMID: 24695641]
[45]
Richter, B.; Haller, J.; Haffner, D.; Leifheit-Nestler, M. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells. Pflugers Arch., 2016, 468(9), 1621-1635.
[http://dx.doi.org/10.1007/s00424-016-1858-x] [PMID: 27448998]
[46]
Shuto, E.; Taketani, Y.; Tanaka, R.; Harada, N.; Isshiki, M.; Sato, M.; Nashiki, K.; Amo, K.; Yamamoto, H.; Higashi, Y.; Nakaya, Y.; Takeda, E. Dietary phosphorus acutely impairs endothelial function. J. Am. Soc. Nephrol., 2009, 20(7), 1504-1512.
[http://dx.doi.org/10.1681/ASN.2008101106] [PMID: 19406976]
[47]
Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res., 2000, 87(7), E10-E17.
[http://dx.doi.org/10.1161/01.RES.87.7.e10] [PMID: 11009570]
[48]
Reynolds, J.L.; Joannides, A.J.; Skepper, J.N.; McNair, R.; Schurgers, L.J.; Proudfoot, D.; Jahnen-Dechent, W.; Weissberg, P.L.; Shanahan, C.M. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J. Am. Soc. Nephrol., 2004, 15(11), 2857-2867.
[http://dx.doi.org/10.1097/01.ASN.0000141960.01035.28] [PMID: 15504939]
[49]
Villa-Bellosta, R.; Sorribas, V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler. Thromb. Vasc. Biol., 2009, 29(5), 761-766.
[http://dx.doi.org/10.1161/ATVBAHA.108.183384] [PMID: 19213941]
[50]
Lau, W.L.; Leaf, E.M.; Hu, M.C.; Takeno, M.M.; Kuro-o, M.; Moe, O.W.; Giachelli, C.M. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int., 2012, 82(12), 1261-1270.
[http://dx.doi.org/10.1038/ki.2012.322] [PMID: 22932118]
[51]
Lim, K.; Lu, T-S.; Molostvov, G.; Lee, C.; Lam, F.T.; Zehnder, D.; Hsiao, L-L. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation, 2012, 125(18), 2243-2255.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.053405] [PMID: 22492635]
[52]
Jimbo, R.; Kawakami-Mori, F.; Mu, S.; Hirohama, D.; Majtan, B.; Shimizu, Y.; Yatomi, Y.; Fukumoto, S.; Fujita, T.; Shimosawa, T. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int., 2014, 85(5), 1103-1111.
[http://dx.doi.org/10.1038/ki.2013.332] [PMID: 24088960]
[53]
Lin, R.; Vucak-Dzumhur, M.; Elder, G.J. Changes to bone mineral density, the trabecular bone score and hip structural analysis following parathyroidectomy: A case report. BMC Nephrol., 2020, 21(1), 513.
[http://dx.doi.org/10.1186/s12882-020-02168-y] [PMID: 33243169]
[54]
Wang, X.; Shapiro, J.I. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat. Rev. Nephrol., 2019, 15(3), 159-175.
[http://dx.doi.org/10.1038/s41581-018-0101-8] [PMID: 30664681]
[55]
Kennedy, D.; Omran, E.; Periyasamy, S.M.; Nadoor, J.; Priyadarshi, A.; Willey, J.C.; Malhotra, D.; Xie, Z.; Shapiro, J.I. Effect of chronic renal failure on cardiac contractile function, calcium cycling, and gene expression of proteins important for calcium homeostasis in the rat. J. Am. Soc. Nephrol., 2003, 14(1), 90-97.
[http://dx.doi.org/10.1097/01.ASN.0000037403.95126.03] [PMID: 12506141]
[56]
Richter, B.; Faul, C. FGF23 actions on target tissues-with and without Klotho. Front. Endocrinol. (Lausanne), 2018, 9, 189.
[http://dx.doi.org/10.3389/fendo.2018.00189] [PMID: 29770125]
[57]
Katz, M.; Amit, I.; Yarden, Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta, 2007, 1773(8), 1161-1176.
[http://dx.doi.org/10.1016/j.bbamcr.2007.01.002] [PMID: 17306385]
[58]
Scialla, J.J.; Xie, H.; Rahman, M.; Anderson, A.H.; Isakova, T.; Ojo, A.; Zhang, X.; Nessel, L.; Hamano, T.; Grunwald, J.E.; Raj, D.S.; Yang, W.; He, J.; Lash, J.P.; Go, A.S.; Kusek, J.W.; Feldman, H.; Wolf, M. Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol., 2014, 25(2), 349-360.
[http://dx.doi.org/10.1681/ASN.2013050465] [PMID: 24158986]
[59]
Moe, S.M.; Chertow, G.M.; Parfrey, P.S.; Kubo, Y.; Block, G.A.; Correa-Rotter, R.; Drüeke, T.B.; Herzog, C.A.; London, G.M.; Mahaffey, K.W.; Wheeler, D.C.; Stolina, M.; Dehmel, B.; Goodman, W.G.; Floege, J. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: The evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation, 2015, 132(1), 27-39.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013876] [PMID: 26059012]
[60]
Pastor-Arroyo, E-M.; Gehring, N.; Krudewig, C.; Costantino, S.; Bettoni, C.; Knöpfel, T.; Sabrautzki, S.; Lorenz-Depiereux, B.; Pastor, J.; Strom, T.M.; Hrabě de Angelis, M.; Camici, G.G.; Paneni, F.; Wagner, C.A.; Rubio-Aliaga, I. The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int., 2018, 94(1), 49-59.
[http://dx.doi.org/10.1016/j.kint.2018.02.017] [PMID: 29735309]
[61]
Pavik, I.; Jaeger, P.; Ebner, L.; Wagner, C.A.; Petzold, K.; Spichtig, D.; Poster, D.; Wüthrich, R.P.; Russmann, S.; Serra, A.L. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: A sequence suggested from a cross-sectional study. Nephrol. Dial. Transplant., 2013, 28(2), 352-359.
[http://dx.doi.org/10.1093/ndt/gfs460] [PMID: 23129826]
[62]
Hu, M.C.; Shi, M.; Cho, H.J.; Adams-Huet, B.; Paek, J.; Hill, K.; Shelton, J.; Amaral, A.P.; Faul, C.; Taniguchi, M.; Wolf, M.; Brand, M.; Takahashi, M.; Kuro-O, M.; Hill, J.A.; Moe, O.W. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol., 2015, 26(6), 1290-1302.
[http://dx.doi.org/10.1681/ASN.2014050465] [PMID: 25326585]
[63]
Leifheit-Nestler, M.; Große Siemer, R.; Flasbart, K.; Richter, B.; Kirchhoff, F.; Ziegler, W.H.; Klintschar, M.; Becker, J.U.; Erbersdobler, A.; Aufricht, C.; Seeman, T.; Fischer, D.C.; Faul, C.; Haffner, D. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol. Dial. Transplant., 2016, 31(7), 1088-1099.
[http://dx.doi.org/10.1093/ndt/gfv421] [PMID: 26681731]
[64]
Leifheit-Nestler, M.; Grabner, A.; Hermann, L.; Richter, B.; Schmitz, K.; Fischer, D-C.; Yanucil, C.; Faul, C.; Haffner, D. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats. Nephrol. Dial. Transplant., 2017, 32(9), 1493-1503.
[http://dx.doi.org/10.1093/ndt/gfw454] [PMID: 28339837]
[65]
Edmonston, D.; Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol., 2020, 16(1), 7-19.
[http://dx.doi.org/10.1038/s41581-019-0189-5] [PMID: 31519999]
[66]
Hasegawa, H.; Nagano, N.; Urakawa, I.; Yamazaki, Y.; Iijima, K.; Fujita, T.; Yamashita, T.; Fukumoto, S.; Shimada, T. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int., 2010, 78(10), 975-980.
[http://dx.doi.org/10.1038/ki.2010.313] [PMID: 20844473]
[67]
Westerberg, P-A.; Linde, T.; Wikström, B.; Ljunggren, O.; Stridsberg, M.; Larsson, T.E. Regulation of fibroblast growth factor-23 in chronic kidney disease. Nephrol. Dial. Transplant., 2007, 22(11), 3202-3207.
[http://dx.doi.org/10.1093/ndt/gfm347] [PMID: 17567652]
[68]
Canalejo, A.; Almadén, Y.; Torregrosa, V.; Gomez-Villamandos, J.C.; Ramos, B.; Campistol, J.M.; Felsenfeld, A.J.; Rodríguez, M. The in vitro effect of calcitriol on parathyroid cell proliferation and apoptosis. J. Am. Soc. Nephrol., 2000, 11(10), 1865-1872.
[http://dx.doi.org/10.1681/ASN.V11101865] [PMID: 11004217]
[69]
Levin, A.; Bakris, G.L.; Molitch, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int., 2007, 71(1), 31-38.
[http://dx.doi.org/10.1038/sj.ki.5002009] [PMID: 17091124]
[70]
Carpenter, T.O.; Mitnick, M.A.; Ellison, A.; Smith, C.; Insogna, K.L. Nocturnal hyperparathyroidism: A frequent feature of X-linked hypophosphatemia. J. Clin. Endocrinol. Metab., 1994, 78(6), 1378-1383.
[PMID: 8200940]
[71]
Meir, T.; Levi, R.; Lieben, L.; Libutti, S.; Carmeliet, G.; Bouillon, R.; Silver, J.; Naveh-Many, T. Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology. Am. J. Physiol. Renal Physiol., 2009, 297(5), F1192-F1198.
[http://dx.doi.org/10.1152/ajprenal.00360.2009] [PMID: 19692484]
[72]
Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 2005, 16(2), 139-149.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.001] [PMID: 15863030]
[73]
Chande, S.; Bergwitz, C. Role of phosphate sensing in bone and mineral metabolism. Nat. Rev. Endocrinol., 2018, 14(11), 637-655.
[http://dx.doi.org/10.1038/s41574-018-0076-3] [PMID: 30218014]
[74]
KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl., 2009, 113, S1-S130.
[PMID: 19644521]
[75]
Sprague, S.M.; Bellorin-Font, E.; Jorgetti, V.; Carvalho, A.B.; Malluche, H.H.; Ferreira, A.; D’Haese, P.C.; Drüeke, T.B.; Du, H.; Manley, T.; Rojas, E.; Moe, S.M. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am. J. Kidney Dis., 2016, 67(4), 559-566.
[http://dx.doi.org/10.1053/j.ajkd.2015.06.023] [PMID: 26321176]
[76]
Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; Vervloet, M.G.; Leonard, M.B. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int., 2017, 92(1), 26-36.
[http://dx.doi.org/10.1016/j.kint.2017.04.006] [PMID: 28646995]
[77]
Evenepoel, P.; Cunningham, J.; Ferrari, S.; Haarhaus, M.; Javaid, M.K.; Lafage-Proust, M-H.; Prieto-Alhambra, D.; Torres, P.U.; Cannata-Andia, J. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D; Oxford University Press: UK, 2021.
[78]
Rodríguez-García, M.; Gómez-Alonso, C.; Naves-Díaz, M.; Diaz-Lopez, J.B.; Diaz-Corte, C.; Cannata-Andía, J.B.; Group, A.S. Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol. Dial. Transplant., 2009, 24(1), 239-246.
[http://dx.doi.org/10.1093/ndt/gfn466] [PMID: 18725376]
[79]
Honma, M.; Ikebuchi, Y.; Kariya, Y.; Hayashi, M.; Hayashi, N.; Aoki, S.; Suzuki, H. RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J. Bone Miner. Res., 2013, 28(9), 1936-1949.
[http://dx.doi.org/10.1002/jbmr.1941] [PMID: 23529793]
[80]
Paszty, C.; Turner, C.H.; Robinson, M.K. Sclerostin: A gem from the genome leads to bone-building antibodies. J. Bone Miner. Res., 2010, 25(9), 1897-1904.
[http://dx.doi.org/10.1002/jbmr.161] [PMID: 20564241]
[81]
Rowe, P.S. The wrickkened pathways of FGF23, MEPE and PHEX. Crit. Rev. Oral Biol. Med., 2004, 15(5), 264-281.
[http://dx.doi.org/10.1177/154411130401500503] [PMID: 15470265]
[82]
Robling, A.G.; Bonewald, L.F. The osteocyte: New insights. Annu. Rev. Physiol., 2020, 82(1), 485-506.
[http://dx.doi.org/10.1146/annurev-physiol-021119-034332] [PMID: 32040934]
[83]
Fratzl-Zelman, N.; Gamsjaeger, S.; Blouin, S.; Kocijan, R.; Plasenzotti, P.; Rokidi, S.; Nawrot-Wawrzyniak, K.; Roetzer, K.; Uyanik, G.; Haeusler, G.; Shane, E.; Cohen, A.; Klaushofer, K.; Paschalis, E.P.; Roschger, P.; Fratzl, P.; Zwerina, J.; Zwettler, E. Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J. Struct. Biol., 2020, 211(3), 107556.
[http://dx.doi.org/10.1016/j.jsb.2020.107556] [PMID: 32619592]
[84]
Miller, P.D.; Jamal, S.A.; Evenepoel, P.; Eastell, R.; Boonen, S. Renal safety in patients treated with bisphosphonates for osteoporosis: A review. J. Bone Miner. Res., 2013, 28(10), 2049-2059.
[http://dx.doi.org/10.1002/jbmr.2058] [PMID: 23907861]
[85]
Seeman, E.; Martin, T.J. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat. Rev. Rheumatol., 2019, 15(4), 225-236.
[http://dx.doi.org/10.1038/s41584-019-0172-3] [PMID: 30755735]
[86]
Hsu, J.J.; Lu, J.; Umar, S.; Lee, J.T.; Kulkarni, R.P.; Ding, Y.; Chang, C-C.; Hsiai, T.K.; Hokugo, A.; Gkouveris, I.; Tetradis, S.; Nishimura, I.; Demer, L.L.; Tintut, Y. Effects of teriparatide on morphology of aortic calcification in aged hyperlipidemic mice. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(6), H1203-H1213.
[http://dx.doi.org/10.1152/ajpheart.00718.2017] [PMID: 29451816]
[87]
Angelova, P.R.; Baev, A.Y.; Berezhnov, A.V.; Abramov, A.Y. Role of inorganic polyphosphate in mammalian cells: From signal transduction and mitochondrial metabolism to cell death. Biochem. Soc. Trans., 2016, 44(1), 40-45.
[http://dx.doi.org/10.1042/BST20150223] [PMID: 26862186]
[88]
Beck, L.; Leroy, C.; Salaün, C.; Margall-Ducos, G.; Desdouets, C.; Friedlander, G. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J. Biol. Chem., 2009, 284(45), 31363-31374.
[http://dx.doi.org/10.1074/jbc.M109.053132] [PMID: 19726692]
[89]
Teixeira, C.C.; Mansfield, K.; Hertkorn, C.; Ischiropoulos, H.; Shapiro, I.M. Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation. Am. J. Physiol. Cell Physiol., 2001, 281(3), C833-C839.
[http://dx.doi.org/10.1152/ajpcell.2001.281.3.C833] [PMID: 11502560]
[90]
Couasnay, G.; Beck-Cormier, S.; Devignes, C-S.; Sourice, S.; Bianchi, A.; Véziers, J.; Weiss, P.; Provot, S.; Guicheux, J.; Beck, L. Maintenance of chondrocyte survival by PIT1/SLC20A1-mediated regulation of endoplasmic reticulum homeostasis. Osteoarthritis Cartilage, 2016, 24, S135.
[http://dx.doi.org/10.1016/j.joca.2016.01.265]
[91]
Gutiérrez, O.M.; Wolf, M.; Taylor, E.N. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin. J. Am. Soc. Nephrol., 2011, 6(12), 2871-2878.
[http://dx.doi.org/10.2215/CJN.02740311] [PMID: 22034506]
[92]
Isakova, T.; Gutierrez, O.; Shah, A.; Castaldo, L.; Holmes, J.; Lee, H.; Wolf, M. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J. Am. Soc. Nephrol., 2008, 19(3), 615-623.
[http://dx.doi.org/10.1681/ASN.2007060673] [PMID: 18216315]
[93]
Sirikul, W.; Siri-Angkul, N.; Chattipakorn, N.; Chattipakorn, S.C. Fibroblast growth factor 23 and osteoporosis: Evidence from bench to bedside. Int. J. Mol. Sci., 2022, 23(5), 2500.
[http://dx.doi.org/10.3390/ijms23052500] [PMID: 35269640]
[94]
Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; Ahmadian, E.; Al-Aly, Z.; Alipour, V.; Almasi-Hashiani, A.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amini, S.; Andrei, T.; Andrei, C.L.; Andualem, Z.; Anjomshoa, M.; Arabloo, J.; Ashagre, A.F.; Asmelash, D.; Ataro, Z.; Atout, M.M.W.; Ayanore, M.A.; Badawi, A.; Bakhtiari, A.; Ballew, S.H.; Balouchi, A.; Banach, M.; Barquera, S.; Basu, S.; Bayih, M.T.; Bedi, N.; Bello, A.K.; Bensenor, I.M.; Bijani, A.; Boloor, A.; Borzì, A.M.; Cámera, L.A.; Carrero, J.J.; Carvalho, F.; Castro, F.; Catalá-López, F.; Chang, A.R.; Chin, K.L.; Chung, S-C.; Cirillo, M.; Cousin, E.; Dandona, L.; Dandona, R.; Daryani, A.; Das Gupta, R.; Demeke, F.M.; Demoz, G.T.; Desta, D.M.; Do, H.P.; Duncan, B.B.; Eftekhari, A.; Esteghamati, A.; Fatima, S.S.; Fernandes, J.C.; Fernandes, E.; Fischer, F.; Freitas, M.; Gad, M.M.; Gebremeskel, G.G.; Gebresillassie, B.M.; Geta, B.; Ghafourifard, M.; Ghajar, A.; Ghith, N.; Gill, P.S.; Ginawi, I.A.; Gupta, R.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hariyani, N.; Hasan, M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Heidari, B.; Herteliu, C.; Hoang, C.L.; Hosseini, M.; Hostiuc, M.; Irvani, S.S.N.; Islam, S.M.S.; Jafari Balalami, N.; James, S.L.; Jassal, S.K.; Jha, V.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Kabir, A.; Kahsay, A.; Kasaeian, A.; Kassa, T.D.; Kassaye, H.G.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Kisa, A.; Kovesdy, C.P.; Kuate Defo, B.; Kumar, G.A.; Larsson, A.O.; Lim, L-L.; Lopez, A.D.; Lotufo, P.A.; Majeed, A.; Malekzadeh, R.; März, W.; Masaka, A.; Meheretu, H.A.A.; Miazgowski, T.; Mirica, A.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Mohammad, D.K.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Morales, L.; Moreno Velasquez, I.; Mousavi, S.M.; Mukhopadhyay, S.; Nachega, J.B.; Nadkarni, G.N.; Nansseu, J.R.; Natarajan, G.; Nazari, J.; Neal, B.; Negoi, R.I.; Nguyen, C.T.; Nikbakhsh, R.; Noubiap, J.J.; Nowak, C.; Olagunju, A.T.; Ortiz, A.; Owolabi, M.O.; Palladino, R.; Pathak, M.; Poustchi, H.; Prakash, S.; Prasad, N.; Rafiei, A.; Raju, S.B.; Ramezanzadeh, K.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Rezapour, A.; Ribeiro, D.C.; Roever, L.; Rothenbacher, D.; Rwegerera, G.M.; Saadatagah, S.; Safari, S.; Sahle, B.W.; Salem, H.; Sanabria, J.; Santos, I.S.; Sarveazad, A.; Sawhney, M.; Schaeffner, E.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Silva, D.A.S.; Singh, J.A.; Singh, N.P.; Sisay, M.M.M.; Soheili, A.; Sutradhar, I.; Teklehaimanot, B.F.; Tesfay, B.; Teshome, G.F.; Thakur, J.S.; Tonelli, M.; Tran, K.B.; Tran, B.X.; Tran Ngoc, C.; Ullah, I.; Valdez, P.R.; Varughese, S.; Vos, T.; Vu, L.G.; Waheed, Y.; Werdecker, A.; Wolde, H.F.; Wondmieneh, A.B.; Wulf Hanson, S.; Yamada, T.; Yeshaw, Y.; Yonemoto, N.; Yusefzadeh, H.; Zaidi, Z.; Zaki, L.; Zaman, S.B.; Zamora, N.; Zarghi, A.; Zewdie, K.A.; Ärnlöv, J.; Coresh, J.; Perico, N.; Remuzzi, G.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017. Lancet, 2020, 395(10225), 709-733.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[95]
Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int., 2011, 80(12), 1258-1270.
[http://dx.doi.org/10.1038/ki.2011.368] [PMID: 21993585]
[96]
Ferreira, A.C.; Cotovio, P.; Aires, I.; Mendes, M.; Navarro, D.; Silva, C.; Caeiro, F.; Salvador, R.; Correia, B.; Cabral, G. The role of bone volume, FGF23 and sclerostin in calcifications and mortality; A cohort study in CKD stage 5 patients. Calcif. Tissue Int., 2021, [EPub ahead of print].
[PMID: 34477944]
[97]
Xu, Y.; Evans, M.; Soro, M.; Barany, P.; Carrero, J.J. Secondary hyperparathyroidism and adverse health outcomes in adults with chronic kidney disease. Clin. Kidney J., 2021, 14(10), 2213-2220.
[http://dx.doi.org/10.1093/ckj/sfab006] [PMID: 34603697]
[98]
Gutiérrez, O.M. Recent advances in the role of diet in bone and mineral disorders in chronic kidney disease. Curr. Osteoporos. Rep., 2021, 19(6), 574-579.
[http://dx.doi.org/10.1007/s11914-021-00710-x] [PMID: 34729692]
[99]
Machado, A.D.; Gómez, L.M.; Marchioni, D.M.L.; Dos Anjos, F.S.N.; Molina, M.d.C.B.; Lotufo, P.A.; Benseñor, I.J.M.; Titan, S.M. Association between dietary intake and coronary artery calcification in non-dialysis chronic kidney disease: The PROGREDIR study. 2018, 10(3), 372.
[http://dx.doi.org/10.3390/nu10030372]
[100]
De Pascale, M.R.; Della Mura, N.; Vacca, M.; Napoli, C.J.G.F. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors, 2020, 38(1), 35-63.
[http://dx.doi.org/10.1080/08977194.2020.1825410]
[101]
Neyra, J.A.; Hu, M.C.; Moe, O.W.J.N. Fibroblast Growth Factor 23 and αKlotho in acute kidney injury. Curr. Status Diagnos. Thera. Appl., 2020, 144(12), 665-672.
[102]
Cheung, W.H.; Wong, R.M.Y.; Choy, V.M.H.; Li, M.C.M.; Cheng, K.Y.K.; Chow, S.K.H.J.I. Enhancement of osteoporotic fracture healing by vibration treatment: The role of osteocytes. 2021, 52, S97-S100.
[103]
Clinkenbeard, E. L.; White, K. E. J. B. Heritable and acquired disorders of phosphate metabolism: Etiologies involving FGF23 and current therapeutics. Bone, 2017, 102, 31-39.
[http://dx.doi.org/10.1016/j.bone.2017.01.034]
[104]
Agrawal, A.; Ni, P.; Agoro, R.; White, K.E.; DiMarchi, R.D. Identification of a second Klotho interaction site in the C terminus of FGF23. Cell Rep., 2021, 34(4), 108665.
[http://dx.doi.org/10.1016/j.celrep.2020.108665] [PMID: 33503417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy