Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Long Noncoding RNAs in Human Cancer and Apoptosis

Author(s): İpek Erdoğan, Osama Sweef and Bünyamin Akgül*

Volume 24, Issue 7, 2023

Published on: 14 September, 2022

Page: [872 - 888] Pages: 17

DOI: 10.2174/1389201023666220624094950

Price: $65

Abstract

Genome annotations have uncovered the production of at least one transcript from nearly all loci in the genome at some given time throughout the development. Surprisingly, many of these transcripts do not code for proteins and are relatively long in size, thus called long noncoding RNAs (lncRNAs). Next- and third-generation sequencing technologies have amassed numerous lncRNAs expressed under different phenotypic conditions, yet many remain to be functionally characterized. LncRNAs regulate gene expression by functioning as scaffold, decoy, signaling, and guide molecules both at the transcriptional and post-transcriptional levels, interacting with different types of macromolecules, such as proteins, DNA, and RNA. Here, we review the potential regulatory role of lncRNAs in apoptosis and cancer as some of these lncRNAs may have the diagnostic and therapeutic potential in cancer.

Keywords: lncRNAs, apoptosis, cancer, gene regulation, DNA, nucleotide.

Graphical Abstract
[1]
Brannan, C.I.; Dees, E.C.; Ingram, R.S.; Tilghman, S.M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol., 1990, 10(1), 28-36.
[http://dx.doi.org/10.1128/MCB.10.1.28] [PMID: 1688465]
[2]
Jarroux, J.; Morillon, A.; Pinskaya, M. History, Discovery, and Classification of LncRNAs. Advances in Experimental Medicine and Biology. Springer New York LLC; , 2017, 1008, pp. 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1]
[3]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[4]
Bhat, S.A.; Ahmad, S.M.; Mumtaz, P.T.; Malik, A.A.; Dar, M.A.; Urwat, U.; Shah, R.A.; Ganai, N.A. Long non-coding RNAS: Mechanism of action and functional utility. Noncoding RNA Research, 2016, 1(1), 43-50.
[http://dx.doi.org/10.1016/j.ncrna.2016.11.002]
[5]
Chen, J.; Sun, M.; Kent, W.J.; Huang, X.; Xie, H.; Wang, W.; Zhou, G.; Shi, R.Z.; Rowley, J.D. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res., 2004, 32(16), 4812-4820.
[http://dx.doi.org/10.1093/nar/gkh818] [PMID: 15356298]
[6]
Han, P.; Li, J.W.; Zhang, B.M.; Lv, J.C.; Li, Y.M.; Gu, X.Y.; Yu, Z.W.; Jia, Y.H.; Bai, X.F.; Li, L.; Liu, Y.L.; Cui, B.B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer, 2017, 16(1), 9.
[http://dx.doi.org/10.1186/s12943-017-0583-1] [PMID: 28086904]
[7]
Luo, Z.F.; Zhao, D.; Li, X.Q.; Cui, Y.X.; Ma, N.; Lu, C.X.; Liu, M.Y.; Zhou, Y. Clinical significance of HOTAIR expression in colon cancer. World J. Gastroenterol., 2016, 22(22), 5254-5259.
[http://dx.doi.org/10.3748/wjg.v22.i22.5254] [PMID: 27298568]
[8]
Yeasmin, F.; Yada, T.; Akimitsu, N. Micropeptides encoded in transcripts previously identified as long noncoding RNAs: A new chapter in transcriptomics and proteomics. Front. Genet., 2018, 9, 144.
[http://dx.doi.org/10.3389/fgene.2018.00144] [PMID: 29922328]
[9]
Ye, M.; Zhang, J.; Wei, M.; Liu, B.; Dong, K. Emerging role of long noncoding RNA-encoded micropeptides in cancer. Cancer Cell Int., 2020, 20(1), 506.
[http://dx.doi.org/10.1186/s12935-020-01589-x] [PMID: 33088214]
[10]
Kapranov, P.; St Laurent, G.; Raz, T.; Ozsolak, F.; Reynolds, C.P.; Sorensen, P.H.B.; Reaman, G.; Milos, P.; Arceci, R.J.; Thompson, J.F.; Triche, T.J. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol., 2010, 8(1), 149.
[http://dx.doi.org/10.1186/1741-7007-8-149] [PMID: 21176148]
[11]
Mercer, T.R.; Gerhardt, D.J.; Dinger, M.E.; Crawford, J.; Trapnell, C.; Jeddeloh, J.A.; Mattick, J.S.; Rinn, J.L. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat. Biotechnol., 2011, 30(1), 99-104.
[http://dx.doi.org/10.1038/nbt.2024] [PMID: 22081020]
[12]
He, Y.; Vogelstein, B.; Velculescu, V. E.; Papadopoulos, N.; Kinzler, K. W. The antisense transcriptomes of human cells. Science (80-.), 2008, 322(5909), 1855-1857.
[http://dx.doi.org/10.1126/science.1163853]
[13]
Faust, T.; Frankel, A.; D’Orso, I. Transcription control by long non-coding RNAs. Transcription, 2012, 3(2), 78-86.
[http://dx.doi.org/10.4161/trns.19349] [PMID: 22414755]
[14]
van Bakel, H.; Nislow, C.; Blencowe, B.J.; Hughes, T.R. Most “dark matter” transcripts are associated with known genes. PLoS Biol., 2010, 8(5), e1000371.
[http://dx.doi.org/10.1371/journal.pbio.1000371] [PMID: 20502517]
[15]
Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol., 2013, 10(6), 925-933.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[16]
Ulitsky, I.; Bartel, D.P. lincRNAs: Genomics, evolution, and mechanisms. Cell, 2013, 154(1), 26-46.
[http://dx.doi.org/10.1016/j.cell.2013.06.020] [PMID: 23827673]
[17]
Dinger, M.E.; Pang, K.C.; Mercer, T.R.; Mattick, J.S. Differentiating protein-coding and noncoding RNA: Challenges and ambiguities. PLOS Comput. Biol., 2008, 4(11), e1000176-e1000176.
[http://dx.doi.org/10.1371/journal.pcbi.1000176] [PMID: 19043537]
[18]
Louro, R.; Smirnova, A.S.; Verjovski-Almeida, S. Long intronic noncoding RNA transcription: Expression noise or expression choice? Genomics, 2009, 93(4), 291-298.
[http://dx.doi.org/10.1016/j.ygeno.2008.11.009] [PMID: 19071207]
[19]
Chen, L-L. Linking Long Noncoding RNA Localization and Function. Trends Biochem. Sci., 2016, 41(9), 761-772.
[http://dx.doi.org/10.1016/j.tibs.2016.07.003] [PMID: 27499234]
[20]
Volders, P-J.; Anckaert, J.; Verheggen, K.; Nuytens, J.; Martens, L.; Mestdagh, P.; Vandesompele, J. LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res., 2019, 47(D1), D135-D139.
[http://dx.doi.org/10.1093/nar/gky1031] [PMID: 30371849]
[21]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[22]
Hangauer, M.J.; Vaughn, I.W.; McManus, M.T. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet., 2013, 9(6), e1003569-e1003569.
[http://dx.doi.org/10.1371/journal.pgen.1003569] [PMID: 23818866]
[23]
Kopp, F.; Mendell, J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018, 393-407.
[http://dx.doi.org/10.1016/j.cell.2018.01.011]
[24]
Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding rna function in development and disease. Cell. Mol. Life Sci., 2016, 2491-2509.
[http://dx.doi.org/10.1007/s00018-016-2174-5]
[25]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[26]
Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; Blencowe, B.J.; Prasanth, S.G.; Prasanth, K.V. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39(6), 925-938.
[http://dx.doi.org/10.1016/j.molcel.2010.08.011] [PMID: 20797886]
[27]
Alkan, A.H.; Akgül, B. Endogenous miRNA Sponges. Methods Mol. Biol., 2022, 2257, 91-104.
[http://dx.doi.org/10.1007/978-1-0716-1170-8_5] [PMID: 34432275]
[28]
Wutz, A.; Rasmussen, T.P.; Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet., 2002, 30(2), 167-174.
[http://dx.doi.org/10.1038/ng820] [PMID: 11780141]
[29]
Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992), 689-693.
[http://dx.doi.org/10.1126/science.1192002] [PMID: 20616235]
[30]
Sun, M.; Nie, F.; Wang, Y.; Zhang, Z.; Hou, J.; He, D.; Xie, M.; Xu, L.; De, W.; Wang, Z.; Wang, J. LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1. Cancer Res., 2016, 76(21), 6299-6310.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0356] [PMID: 27651312]
[31]
Chujo, T.; Yamazaki, T.; Kawaguchi, T.; Kurosaka, S.; Takumi, T.; Nakagawa, S.; Hirose, T. Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J., 2017, 36(10), 1447-1462.
[http://dx.doi.org/10.15252/embj.201695848] [PMID: 28404604]
[32]
Clemson, C.M.; Hutchinson, J.N.; Sara, S.A.; Ensminger, A.W.; Fox, A.H.; Chess, A.; Lawrence, J.B. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell, 2009, 33(6), 717-726.
[http://dx.doi.org/10.1016/j.molcel.2009.01.026] [PMID: 19217333]
[33]
Staněk, D.; Fox, A. Nuclear bodies: News insights into structure and function. Curr Opin. Cell Bio., 2017, 94-101.
[http://dx.doi.org/10.1016/j.ceb.2017.05.001]
[34]
Bunch, H.; Lawney, B.P.; Burkholder, A.; Ma, D.; Zheng, X.; Motola, S.; Fargo, D.C.; Levine, S.S.; Wang, Y.E.; Hu, G. RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes. Genomics, 2016, 108(2), 64-77.
[http://dx.doi.org/10.1016/j.ygeno.2016.07.003] [PMID: 27432546]
[35]
Meller, V.H.; Joshi, S.S.; Deshpande, N. Modulation of Chromatin by Noncoding RNA. Annu. Rev. Genet., 2015, 49(1), 673-695.
[http://dx.doi.org/10.1146/annurev-genet-112414-055205] [PMID: 26631517]
[36]
Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. G E N E E X P R E S S I O N How do lncRNAs regulate transcription? Sci. Adv., 2017, 3(9), eaao2110.
[37]
Bryzghalov, O. Szcześniak, M.W.; Makałowska, I. Retroposition as a source of antisense long non-coding RNAs with possible regulatory functions. Acta Biochim. Pol., 2016, 63(4), 825-833.
[http://dx.doi.org/10.18388/abp.2016_1354] [PMID: 27801428]
[38]
Hombach, S.; Kretz, M. Non-Coding RNAs: Classification, Biology and Functioning BT - Non-Coding RNAs in Colorectal Cancer; Slaby, O; Calin, G.A., Ed.; Springer International Publishing: Cham, 2016, pp. 3-17.
[http://dx.doi.org/10.1007/978-3-319-42059-2_1]
[39]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S. García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[40]
Chao, M.P.; Majeti, R.; Weissman, I.L. Programmed cell removal: A new obstacle in the road to developing cancer. Nat. Rev. Cancer, 2011, 12(1), 58-67.
[http://dx.doi.org/10.1038/nrc3171] [PMID: 22158022]
[41]
Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N. Engl. J. Med., 2009, 361(16), 1570-1583.
[http://dx.doi.org/10.1056/NEJMra0901217] [PMID: 19828534]
[42]
Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F-T.; Zhou, T-T.; Liu, B.; Bao, J-K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x] [PMID: 23030059]
[43]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8] [PMID: 30655609]
[44]
Lockshin, R.A.; Williams, C.M. Programmed Cell Death-I. Cytology of Degeneration in the Intersegmental Muscles of the Pernyi Silkmoth. J. Insect Physiol., 1965, 11(2), 123-133.
[http://dx.doi.org/10.1016/0022-1910(65)90099-5] [PMID: 14287218]
[45]
Vanden Berghe, T.; Linkermann, A.; Jouan-Lanhouet, S.; Walczak, H.; Vandenabeele, P. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 135-147.
[http://dx.doi.org/10.1038/nrm3737] [PMID: 24452471]
[46]
Napoletano, F.; Baron, O.; Vandenabeele, P.; Mollereau, B.; Fanto, M. Intersections between Regulated Cell Death and Autophagy. Trends Cell Biol., 2019, 29(4), 323-338.
[http://dx.doi.org/10.1016/j.tcb.2018.12.007] [PMID: 30665736]
[47]
Teng, X.; Hardwick, J.M. Cell death in genome evolution. Semin. Cell Dev. Biol., 2015, 39, 3-11.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.014] [PMID: 25725369]
[48]
Kerr, J.F.R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26(4), 239-257.
[http://dx.doi.org/10.1038/bjc.1972.33] [PMID: 4561027]
[49]
Blank, M.; Shiloh, Y. Programs for cell death: Apoptosis is only one way to go. Cell Cycle, 2007, 686-695.
[http://dx.doi.org/10.4161/cc.6.6.3990]
[50]
Morrill, S.; He, D.Z.Z. Apoptosis in inner ear sensory hair cells. Journal of Otology, 2017, 151-164.
[http://dx.doi.org/10.1016/j.joto.2017.08.001]
[51]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[52]
Ashkenazi, A.; Dixit, V. M. Death receptors: Signaling and modulation. Science (80-. ), 1998, 281(5381), 1305-LP-1308..
[http://dx.doi.org/10.1126/science.281.5381.1305]
[53]
Watanabe-Fukunaga, R.; Brannan, C.I.; Copeland, N.G.; Jenkins, N.A.; Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature, 1992, 356(6367), 314-317.
[http://dx.doi.org/10.1038/356314a0] [PMID: 1372394]
[54]
Vanamee, É.S.; Faustman, D.L. Structural Principles of Tumor Necrosis Factor Superfamily Signaling; , 2018, 11, .
[55]
Wang, C.; Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet., 2009, 43(1), 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[56]
Kalkavan, H.; Green, D.R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ., 2018, 25(1), 46-55.
[http://dx.doi.org/10.1038/cdd.2017.179] [PMID: 29053143]
[57]
Zhang, M.; Zheng, J.; Nussinov, R.; Ma, B. Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane/631/114/2397/639/638/440/56/119/118 Article. Sci. Rep., 2017, 7(1)
[http://dx.doi.org/10.1038/s41598-017-02825-7] [PMID: 28572603]
[58]
Bender, T.; Martinou, J.C. Where killers meet--permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a011106.
[http://dx.doi.org/10.1101/cshperspect.a011106] [PMID: 23284044]
[59]
Nirmala, J.G.; Lopus, M. Cell Death mechanisms in eukaryotes. Cell Biology and Toxicology, 2020, 145-164.
[http://dx.doi.org/10.1007/s10565-019-09496-2]
[60]
Oropesa Ávila, M.; Fernández Vega, A.; Garrido Maraver, J.; Villanueva Paz, M.; De Lavera, I.; De La Mata, M.; Cordero, M. D.; Alcocer Gómez, E.; Delgado Pavón, A.; Álvarez Córdoba, M. Emerging roles of apoptotic microtubules during the execution phase of apoptosis. Cytoskeleton, 2015, 435-446.
[http://dx.doi.org/10.1002/cm.21254]
[61]
Thiede, B.; Rudel, T. Proteome analysis of apoptotic cells. Mass Spectrom. Rev., 2004, 23(5), 333-349.
[http://dx.doi.org/10.1002/mas.10079] [PMID: 15264233]
[62]
Budhidarmo, R.; Day, C.L. IAPs: Modular regulators of cell signalling. Semin. Cell Dev. Biol., 2015, 39, 80-90.
[http://dx.doi.org/10.1016/j.semcdb.2014.12.002] [PMID: 25542341]
[63]
Arya, R.; White, K. Cell death in development: Signaling pathways and core mechanisms. Semin. Cell Dev. Biol., 2015, 39, 12-19.
[http://dx.doi.org/10.1016/j.semcdb.2015.02.001] [PMID: 25668151]
[64]
Cullen, S.P.; Martin, S.J. Fas and TRAIL ‘death receptors’ as initiators of inflammation: Implications for cancer. Semin. Cell Dev. Biol., 2015, 39, 26-34.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.012] [PMID: 25655947]
[65]
Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol., 2015, 22(1), 5-7.
[http://dx.doi.org/10.1038/nsmb.2942] [PMID: 25565026]
[66]
Uszczynska-Ratajczak, B.; Lagarde, J.; Frankish, A.; Guigó, R.; Johnson, R. Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet., 2018, 19(9), 535-548.
[http://dx.doi.org/10.1038/s41576-018-0017-y] [PMID: 29795125]
[67]
Erdoğan, İ; Coşacak, M.İ; Nalbant, A.; Akgül, B. Deep sequencing reveals two Jurkat subpopulations with distinct miRNA profiles during camptothecin-induced apoptosis. Derg., 2018, 42(2), 113-122.
[http://dx.doi.org/10.3906/biy-1710-62] [PMID: 30814873]
[68]
Yaylak, B.; Erdogan, I.; Akgul, B. Transcriptomics Analysis of Circular RNAs Differentially Expressed in Apoptotic HeLa Cells. Front. Genet., 2019, 10, 176.
[http://dx.doi.org/10.3389/fgene.2019.00176] [PMID: 30918512]
[69]
Tüncel, Ö.; Yaylak, B.; Kara, M.; Erdoğan, İ; Akgül, B. Non-Coding RNAs in Apoptosis: Identification and Function. Turk. J. Biol., 2021.
[http://dx.doi.org/10.3906/biy-2109-35]
[70]
Worby, C.A.; Dixon, J.E. PTEN. Annu. Rev. Biochem., 2014, 83(1), 641-669.
[http://dx.doi.org/10.1146/annurev-biochem-082411-113907] [PMID: 24905788]
[71]
Hafner, A.; Bulyk, M.L.; Jambhekar, A.; Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol., 2019, 20(4), 199-210.
[http://dx.doi.org/10.1038/s41580-019-0110-x] [PMID: 30824861]
[72]
Poliseno, L.; Salmena, L.; Zhang, J.; Carver, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010, 465(7301), 1033-1038.
[http://dx.doi.org/10.1038/nature09144] [PMID: 20577206]
[73]
Johnsson, P.; Ackley, A.; Vidarsdottir, L.; Lui, W-O.; Corcoran, M.; Grandér, D.; Morris, K.V. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol., 2013, 20(4), 440-446.
[http://dx.doi.org/10.1038/nsmb.2516] [PMID: 23435381]
[74]
Hall, J.R.; Messenger, Z.J.; Tam, H.W.; Phillips, S.L.; Recio, L.; Smart, R.C. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis., 2015, 6(3), e1700.
[http://dx.doi.org/10.1038/cddis.2015.67] [PMID: 25789975]
[75]
Zhang, A.; Zhou, N.; Huang, J.; Liu, Q.; Fukuda, K.; Ma, D.; Lu, Z.; Bai, C.; Watabe, K.; Mo, Y-Y. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res., 2013, 23(3), 340-350.
[http://dx.doi.org/10.1038/cr.2012.164] [PMID: 23208419]
[76]
Peschansky, V.J.; Pastori, C.; Zeier, Z.; Motti, D.; Wentzel, K.; Velmeshev, D.; Magistri, M.; Bixby, J.L.; Lemmon, V.P.; Silva, J.P.; Wahlestedt, C. Changes in expression of the long non-coding RNA FMR4 associate with altered gene expression during differentiation of human neural precursor cells. Front. Genet., 2015, 6, 263.
[http://dx.doi.org/10.3389/fgene.2015.00263] [PMID: 26322075]
[77]
Hu, W.; Yuan, B.; Flygare, J.; Lodish, H.F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev., 2011, 25(24), 2573-2578.
[http://dx.doi.org/10.1101/gad.178780.111] [PMID: 22155924]
[78]
Atianand, M.K.; Hu, W.; Satpathy, A.T.; Shen, Y.; Ricci, E.P.; Alvarez-Dominguez, J.R.; Bhatta, A.; Schattgen, S.A.; McGowan, J.D.; Blin, J.; Braun, J.E.; Gandhi, P.; Moore, M.J.; Chang, H.Y.; Lodish, H.F.; Caffrey, D.R.; Fitzgerald, K.A. A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell, 2016, 165(7), 1672-1685.
[http://dx.doi.org/10.1016/j.cell.2016.05.075] [PMID: 27315481]
[79]
Geng, X.; Song, N.; Zhao, S.; Xu, J.; Liu, Y.; Fang, Y.; Liang, M.; Xu, X.; Ding, X. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI. Cell Death Discov., 2020, 6(1), 19.
[http://dx.doi.org/10.1038/s41420-020-0253-8] [PMID: 32257391]
[80]
Puvvula, P.K.; Desetty, R.D.; Pineau, P.; Marchio, A.; Moon, A.; Dejean, A.; Bischof, O. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat. Commun., 2014, 5(1), 5323.
[http://dx.doi.org/10.1038/ncomms6323] [PMID: 25406515]
[81]
Fu, X.; Ravindranath, L.; Tran, N.; Petrovics, G.; Srivastava, S. Regulation of Apoptosis by a Prostate-Specific and Prostate Cancer- Associated Noncoding Gene, PCGEM1; , 2006, p. 25.
[http://dx.doi.org/10.1089/dna.2006.25.135]
[82]
Kim, J.K.; Diehl, J.A. Nuclear cyclin D1: An oncogenic driver in human cancer. J. Cell. Physiol., 2009, 220(2), 292-296.
[http://dx.doi.org/10.1002/jcp.21791] [PMID: 19415697]
[83]
Guo, J.Q.; Li, S.J.; Guo, G.X. Long Noncoding RNA AFAP1-AS1 Promotes Cell Proliferation and Apoptosis of Gastric Cancer Cells via PTEN/p-AKT Pathway. Dig. Dis. Sci., 2017, 62(8), 2004-2010.
[http://dx.doi.org/10.1007/s10620-017-4584-0] [PMID: 28451917]
[84]
Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113.
[http://dx.doi.org/10.1080/15384047.2015.1108496] [PMID: 26574780]
[85]
Khaitan, D.; Dinger, M.E.; Mazar, J.; Crawford, J.; Smith, M.A.; Mattick, J.S.; Perera, R.J. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res., 2011, 71(11), 3852-3862.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4460] [PMID: 21558391]
[86]
Gong, Z.; Zhang, S.; Zeng, Z.; Wu, H.; Yang, Q.; Xiong, F.; Shi, L.; Yang, J.; Zhang, W.; Zhou, Y.; Zeng, Y.; Li, X.; Xiang, B.; Peng, S.; Zhou, M.; Li, X.; Tan, M.; Li, Y.; Xiong, W.; Li, G. LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2. PLoS One, 2014, 9(11), e110674.
[http://dx.doi.org/10.1371/journal.pone.0110674] [PMID: 25422887]
[87]
Yang, Q.; Cui, Z.L.; Wang, Q.; Jin, X.B.; Zhao, Y.; Wang, M.W.; Song, W.; Qu, H.W.; Kang, W.T. PlncRNA-1 Induces Apoptosis through the Her-2 Pathway in Prostate Cancer Cells. Asian J. Androl., 2016, 18.
[http://dx.doi.org/10.4103/1008-682X.178849] [PMID: 27232851]
[88]
Chen, T.; Gu, C.; Xue, C.; Yang, T.; Zhong, Y.; Liu, S.; Nie, Y.; Yang, H. LncRNA-uc002mbe.2 Interacting with hnRNPA2B1 Mediates AKT Deactivation and p21 Up-Regulation Induced by Trichostatin in Liver Cancer Cells. Front. Pharmacol., 2017, 8(SEP), 669.
[http://dx.doi.org/10.3389/fphar.2017.00669] [PMID: 28993733]
[89]
Zhao, H.; Zhang, X. Frazão, J.B.; Condino-Neto, A.; Newburger, P.E. HOX antisense lincRNA HOXA-AS2 is an apoptosis repressor in all trans retinoic acid treated NB4 promyelocytic leukemia cells. J. Cell. Biochem., 2013, 114(10), 2375-2383.
[http://dx.doi.org/10.1002/jcb.24586] [PMID: 23649634]
[90]
Wu, W.; Bhagat, T.D.; Yang, X.; Song, J.H.; Cheng, Y.; Agarwal, R.; Abraham, J.M.; Ibrahim, S.; Bartenstein, M.; Hussain, Z.; Suzuki, M.; Yu, Y.; Chen, W.; Eng, C.; Greally, J.; Verma, A.; Meltzer, S.J. Hypomethylation of noncoding DNA regions and overexpression of the long noncoding RNA, AFAP1-AS1, in Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology, 2013, 144(5), 956-966.e4.
[http://dx.doi.org/10.1053/j.gastro.2013.01.019] [PMID: 23333711]
[91]
Ji, D.; Zhong, X.; Jiang, X.; Leng, K.; Xu, Y.; Li, Z.; Huang, L.; Li, J.; Cui, Y. The role of long non-coding RNA AFAP1-AS1 in human malignant tumors. Pathol. Res. Pract., 2018, 214(10), 1524-1531.
[http://dx.doi.org/10.1016/j.prp.2018.08.014] [PMID: 30173945]
[92]
Mazar, J.; Zhao, W.; Khalil, A.M.; Lee, B.; Shelley, J.; Govindarajan, S.S.; Yamamoto, F.; Ratnam, M.; Aftab, M.N.; Collins, S.; Finck, B.N.; Han, X.; Mattick, J.S.; Dinger, M.E.; Perera, R.J. The functional characterization of long noncoding RNA SPRY4-IT1 in human melanoma cells. Oncotarget, 2014, 5(19), 8959-8969.
[http://dx.doi.org/10.18632/oncotarget.1863] [PMID: 25344859]
[93]
Gurer, D.C. Erdogan, İ; Ahmadov, U.; Basol, M.; Sweef, O.; Cakan-Akdogan, G.; Akgül, B. Transcriptomics Profiling Identifies Cisplatin-Inducible Death Receptor 5 Antisense Long Non-coding RNA as a Modulator of Proliferation and Metastasis in HeLa Cells. Front. Cell Dev. Biol., 2021, 9, 688855.
[http://dx.doi.org/10.3389/fcell.2021.688855] [PMID: 34497804]
[94]
Hong, B.; van den Heuvel, A.P.J.; Prabhu, V.V.; Zhang, S.; El-Deiry, W.S. Targeting tumor suppressor p53 for cancer therapy: Strategies, challenges and opportunities. Curr. Drug Targets, 2014, 15(1), 80-89.
[http://dx.doi.org/10.2174/1389450114666140106101412] [PMID: 24387333]
[95]
Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer Review Evolve Progressively from Normalcy via a Series of Pre, 2000, 100
[96]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[97]
Wong, R.S.Y. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30(1), 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[98]
Siddiqui, W.A.; Ahad, A.; Ahsan, H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Archives of Toxicology, 2015, 289-317.
[http://dx.doi.org/10.1007/s00204-014-1448-7]
[99]
Merino, D.; Lok, S.W.; Visvader, J.E.; Lindeman, G.J. Targeting BCL-2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer. Oncogene, 2016, 35(15), 1877-1887.
[http://dx.doi.org/10.1038/onc.2015.287] [PMID: 26257067]
[100]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res., 2017, 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634]
[101]
Hu, X.; Feng, Y.; Zhang, D.; Zhao, S.D.; Hu, Z.; Greshock, J.; Zhang, Y.; Yang, L.; Zhong, X.; Wang, L-P.; Jean, S.; Li, C.; Huang, Q.; Katsaros, D.; Montone, K.T.; Tanyi, J.L.; Lu, Y.; Boyd, J.; Nathanson, K.L.; Li, H.; Mills, G.B.; Zhang, L. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell, 2014, 26(3), 344-357.
[http://dx.doi.org/10.1016/j.ccr.2014.07.009] [PMID: 25203321]
[102]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[103]
Carlevaro-Fita, J. Lanzós, A.; Feuerbach, L.; Hong, C.; Mas-Ponte, D.; Pedersen, J.S.; Johnson, R.; Amin, S.B.; Bader, G.D.; Barenboim, J. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun. Biol., 2020, 3(1), 56.
[http://dx.doi.org/10.1038/s42003-019-0741-7] [PMID: 32024996]
[104]
Bussemakers, M.J.; van Bokhoven, A.; Verhaegh, G.W.; Smit, F.P.; Karthaus, H.F.; Schalken, J.A.; Debruyne, F.M.; Ru, N.; Isaacs, W.B. DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res., 1999, 59(23), 5975-5979.
[PMID: 10606244]
[105]
Srikantan, V.; Zou, Z.; Petrovics, G.; Xu, L.; Augustus, M.; Davis, L.; Livezey, J. R.; Connell, T.; Sesterhenn, I. A.; Yoshino, K. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc. Natl. Acad. Sci., 2000, 97(22), 12216-LP-12221..
[http://dx.doi.org/10.1073/pnas.97.22.12216]
[106]
Ji, P.; Diederichs, S.; Wang, W. Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; Thomas, M.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39), 8031-8041.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[107]
Gutschner, T. Hämmerle, M.; Diederichs, S. MALAT1 -- a paradigm for long noncoding RNA function in cancer. J. Mol. Med. (Berl.), 2013, 91(7), 791-801.
[http://dx.doi.org/10.1007/s00109-013-1028-y] [PMID: 23529762]
[108]
Balas, M.M.; Johnson, A.M. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Research, 2018, 108-117.
[http://dx.doi.org/10.1016/j.ncrna.2018.03.001]
[109]
Hajjari, M.; Salavaty, A. HOTAIR: An oncogenic long non-coding RNA in different cancers. Cancer Biol. Med., 2015, 12(1), 1-9.
[http://dx.doi.org/10.7497/j.issn.2095-3941.2015.0006] [PMID: 25859406]
[110]
Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Kobayashi, N.; Todo, Y.; Watari, H. Long Non-Coding RNA NEAT1: A Novel Target for Diagnosis and Therapy in Human Tumors. Frontiers in Genetics, 2018.
[http://dx.doi.org/10.3389/fgene.2018.00471]
[111]
Choudhry, H.; Albukhari, A.; Morotti, M.; Haider, S.; Moralli, D.; Smythies, J. Schِdel, J.; Green, C.M.; Camps, C.; Buffa, F.; Ratcliffe, P.; Ragoussis, J.; Harris, A.L.; Mole, D.R. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 2015, 34(34), 4482-4490.
[http://dx.doi.org/10.1038/onc.2014.378] [PMID: 25417700]
[112]
Chen, Q.; Cai, J.; Wang, Q.; Wang, Y.; Liu, M.; Yang, J.; Zhou, J.; Kang, C.; Li, M.; Jiang, C. Long Noncoding RNA NEAT1, Regulated by the EGFR Pathway, Contributes to Glioblastoma Progression Through the WNT/β-Catenin Pathway by Scaffolding EZH2. Clin. Cancer Res., 2018, 24(3), 684-695.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0605] [PMID: 29138341]
[113]
Wang, J.; Zhao, X.; Guo, Z.; Ma, X.; Song, Y.; Guo, Y. Regulation of NEAT1/miR-214-3p on the growth, migration and invasion of endometrial carcinoma cells. Arch. Gynecol. Obstet., 2017, 295(6), 1469-1475.
[http://dx.doi.org/10.1007/s00404-017-4365-1] [PMID: 28447190]
[114]
Xia, T.; Chen, S.; Jiang, Z.; Shao, Y.; Jiang, X.; Li, P.; Xiao, B.; Guo, J. Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci. Rep., 2015, 5(1), 13445.
[http://dx.doi.org/10.1038/srep13445] [PMID: 26306906]
[115]
Lin, A.; Li, C.; Xing, Z.; Hu, Q.; Liang, K.; Han, L.; Wang, C.; Hawke, D.H.; Wang, S.; Zhang, Y.; Wei, Y.; Ma, G.; Park, P.K.; Zhou, J.; Zhou, Y.; Hu, Z.; Zhou, Y.; Marks, J.R.; Liang, H.; Hung, M.C.; Lin, C.; Yang, L. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat. Cell Biol., 2016, 18(2), 213-224.
[http://dx.doi.org/10.1038/ncb3295] [PMID: 26751287]
[116]
Wang, Z.; Jin, Y.; Ren, H.; Ma, X.; Wang, B.; Wang, Y. Downregulation of the long non-coding RNA TUSC7 promotes NSCLC cell proliferation and correlates with poor prognosis. Am. J. Transl. Res., 2016, 8(2), 680-687.
[PMID: 27158360]
[117]
Wang, L.; Han, S.; Jin, G.; Zhou, X.; Li, M.; Ying, X.; Wang, L.; Wu, H.; Zhu, Q. Linc00963: A novel, long non-coding RNA involved in the transition of prostate cancer from androgen-dependence to androgen-independence. Int. J. Oncol., 2014, 44(6), 2041-2049.
[http://dx.doi.org/10.3892/ijo.2014.2363] [PMID: 24691949]
[118]
Fei, Z-H.; Yu, X-J.; Zhou, M.; Su, H-F.; Zheng, Z.; Xie, C-Y. Upregulated expression of long non-coding RNA LINC00982 regulates cell proliferation and its clinical relevance in patients with gastric cancer. Tumour Biol., 2016, 37(2), 1983-1993.
[http://dx.doi.org/10.1007/s13277-015-3979-9] [PMID: 26334618]
[119]
Su, H.; Sun, T.; Wang, H.; Shi, G.; Zhang, H.; Sun, F.; Ye, D. Decreased TCL6 expression is associated with poor prognosis in patients with clear cell renal cell carcinoma. Oncotarget, 2017, 8(4), 5789-5799.
[http://dx.doi.org/10.18632/oncotarget.11011] [PMID: 27494890]
[120]
Qi, P.; Xu, M.D.; Ni, S.J.; Shen, X.H.; Wei, P.; Huang, D.; Tan, C.; Sheng, W.Q.; Zhou, X.Y.; Du, X. Down-regulation of ncRAN, a long non-coding RNA, contributes to colorectal cancer cell migration and invasion and predicts poor overall survival for colorectal cancer patients. Mol. Carcinog., 2015, 54(9), 742-750.
[http://dx.doi.org/10.1002/mc.22137] [PMID: 24519959]
[121]
Vučićević D.; Gehre, M.; Dhamija, S.; Friis-Hansen, L.; Meierhofer, D.; Sauer, S.; Ørom, U.A. The long non-coding RNA PARROT is an upstream regulator of c-Myc and affects proliferation and translation. Oncotarget, 2016, 7(23), 33934-33947.
[http://dx.doi.org/10.18632/oncotarget.8985] [PMID: 27129154]
[122]
Schmidt, K.; Joyce, C.E.; Buquicchio, F.; Brown, A.; Ritz, J.; Distel, R.J.; Yoon, C.H.; Novina, C.D. The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region. Cell Rep., 2016, 15(9), 2025-2037.
[http://dx.doi.org/10.1016/j.celrep.2016.04.018] [PMID: 27210747]
[123]
Liu, P.Y.; Erriquez, D.; Marshall, G.M.; Tee, A.E.; Polly, P.; Wong, M.; Liu, B.; Bell, J.L.; Zhang, X.D.; Milazzo, G.; Cheung, B.B.; Fox, A.; Swarbrick, A.; Hüttelmaier, S.; Kavallaris, M.; Perini, G.; Mattick, J.S.; Dinger, M.E.; Liu, T. Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J. Natl. Cancer Inst., 2014, 106(7), dju113.
[http://dx.doi.org/10.1093/jnci/dju113] [PMID: 24906397]
[124]
Mertens, D.; Philippen, A.; Ruppel, M.; Allegra, D.; Bhattacharya, N.; Tschuch, C.; Wolf, S.; Idler, I.; Zenz, T.; Stilgenbauer, S. Chronic lymphocytic leukemia and 13q14: MiRs and more. Leuk. Lymphoma, 2009, 50(3), 502-505.
[http://dx.doi.org/10.1080/10428190902763509] [PMID: 19347735]
[125]
Qi, H-L.; Li, C-S.; Qian, C-W.; Xiao, Y-S.; Yuan, Y-F.; Liu, Q-Y.; Liu, Z-S. The long noncoding RNA, EGFR-AS1, a target of GHR, increases the expression of EGFR in hepatocellular carcinoma. Tumour Biol., 2016, 37(1), 1079-1089.
[http://dx.doi.org/10.1007/s13277-015-3887-z] [PMID: 26271667]
[126]
Li, Z.; Zhang, J.; Liu, X.; Li, S.; Wang, Q. Di Chen; Hu, Z.; Yu, T.; Ding, J.; Li, J.; Yao, M.; Fan, J.; Huang, S.; Gao, Q.; Zhao, Y.; He, X. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat. Commun., 2018, 9(1), 1572.
[http://dx.doi.org/10.1038/s41467-018-04006-0] [PMID: 29679004]
[127]
Sassenberg, M.; Droop, J.; Schulz, W.A.; Dietrich, D.; Loick, S.M.; Wiek, C.; Scheckenbach, K.; Gaisa, N.T.; Hoffmann, M.J. Upregulation of the long non-coding RNA CASC9 as a biomarker for squamous cell carcinoma. BMC Cancer, 2019, 19(1), 806.
[http://dx.doi.org/10.1186/s12885-019-6021-6] [PMID: 31412811]
[128]
Mao, H.; Wang, K.; Feng, Y.; Zhang, J.; Pan, L.; Zhan, Y.; Sheng, H.; Luo, G. Prognostic role of long non-coding RNA XIST expression in patients with solid tumors: A meta-analysis. Cancer Cell Int., 2018, 18(1), 34.
[http://dx.doi.org/10.1186/s12935-018-0535-x] [PMID: 29556138]
[129]
Bao, J.; Chen, X.; Hou, Y.; Kang, G.; Li, Q.; Xu, Y. LncRNA DBH-AS1 facilitates the tumorigenesis of hepatocellular carcinoma by targeting miR-138 via FAK/Src/ERK pathway. Biomed. Pharmacother., 2018, 107, 824-833.
[http://dx.doi.org/10.1016/j.biopha.2018.08.079] [PMID: 30142544]
[130]
Zhu, Y.; Liu, B.; Zhang, P.; Zhang, J.; Wang, L. LncRNA TUSC8 inhibits the invasion and migration of cervical cancer cells via miR-641/PTEN axis. Cell Biol. Int., 2019, 43(7), 781-788.
[http://dx.doi.org/10.1002/cbin.11152] [PMID: 31033083]
[131]
Jin, S-J.; Jin, M-Z.; Xia, B-R.; Jin, W-L. Long Non-coding RNA DANCR as an Emerging Therapeutic Target in Human Cancers. Front. Oncol., 2019, 9, 1225.
[http://dx.doi.org/10.3389/fonc.2019.01225] [PMID: 31799189]
[132]
Xie, H-W.; Wu, Q-Q.; Zhu, B.; Chen, F-J.; Ji, L.; Li, S-Q.; Wang, C-M.; Tong, Y-S.; Tuo, L.; Wu, M.; Liu, Z.H.; Lv, J.; Shi, W.H.; Cao, X.F. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biol., 2014, 35(8), 7743-7754.
[http://dx.doi.org/10.1007/s13277-014-2013-y] [PMID: 24810925]
[133]
Li, Y.; Luo, H.; Xiao, N.; Duan, J.; Wang, Z.; Wang, S. Long Noncoding RNA SChLAP1 Accelerates the Proliferation and Metastasis of Prostate Cancer via Targeting miR-198 and Promoting the MAPK1 Pathway. Oncol. Res., 2018, 26(1), 131-143.
[http://dx.doi.org/10.3727/096504017X14944585873631] [PMID: 28492138]
[134]
Qiu, M.; Xu, Y.; Wang, J.; Zhang, E.; Sun, M.; Zheng, Y.; Li, M.; Xia, W.; Feng, D.; Yin, R.; Xu, L. A novel lncRNA, LUADT1, promotes lung adenocarcinoma proliferation via the epigenetic suppression of p27. Cell Death Dis., 2015, 6(8), e1858.
[http://dx.doi.org/10.1038/cddis.2015.203] [PMID: 26291312]
[135]
Yuan, H.; Qin, Y.; Zeng, B.; Feng, Y.; Li, Y.; Xiang, T.; Ren, G. Long noncoding RNA LINC01089 predicts clinical prognosis and inhibits cell proliferation and invasion through the Wnt/β-catenin signaling pathway in breast cancer. OncoTargets Ther., 2019, 12, 4883-4895.
[http://dx.doi.org/10.2147/OTT.S208830] [PMID: 31417284]
[136]
Zhang, Q.; Len, T-Y.; Zhang, S-X.; Zhao, Q-H.; Yang, L-H. Exosomes transferring long non-coding RNA FAL1 to regulate ovarian cancer metastasis through the PTEN/AKT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 43-54.
[http://dx.doi.org/10.26355/eurrev_202001_19894] [PMID: 31957817]
[137]
Yu, W.; Qiao, Y.; Tang, X.; Ma, L.; Wang, Y.; Zhang, X.; Weng, W.; Pan, Q.; Yu, Y.; Sun, F.; Wang, J. Tumor suppressor long non-coding RNA, MT1DP is negatively regulated by YAP and Runx2 to inhibit FoxA1 in liver cancer cells. Cell. Signal., 2014, 26(12), 2961-2968.
[http://dx.doi.org/10.1016/j.cellsig.2014.09.011] [PMID: 25261601]
[138]
Li, W.; Li, Y.; Zhang, H.; Liu, M.; Gong, H.; Yuan, Y.; Shi, R.; Zhang, Z.; Liu, C.; Chen, C.; Liu, H.; Chen, J. HOTAIR promotes gefitinib resistance through modification of EZH2 and silencing p16 and p21 in non-small cell lung cancer. J. Cancer, 2021, 12(18), 5562-5572.
[http://dx.doi.org/10.7150/jca.56093] [PMID: 34405017]
[139]
Yan, M.; Zhang, L.; Li, G.; Xiao, S.; Dai, J.; Cen, X. Long noncoding RNA linc-ITGB1 promotes cell migration and invasion in human breast cancer. Biotechnol. Appl. Biochem., 2017, 64(1), 5-13.
[http://dx.doi.org/10.1002/bab.1461] [PMID: 26601916]
[140]
Wang, Y.; Chen, W.; Yang, C.; Wu, W.; Wu, S.; Qin, X.; Li, X. Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int. J. Oncol., 2012, 41(1), 276-284.
[http://dx.doi.org/10.3892/ijo.2012.1443] [PMID: 22576688]
[141]
Marques Howarth, M.; Simpson, D.; Ngok, S.P.; Nieves, B.; Chen, R.; Siprashvili, Z.; Vaka, D.; Breese, M.R.; Crompton, B.D.; Alexe, G.; Hawkins, D.S.; Jacobson, D.; Brunner, A.L.; West, R.; Mora, J.; Stegmaier, K.; Khavari, P.; Sweet-Cordero, E.A. Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. J. Clin. Invest., 2014, 124(12), 5275-5290.
[http://dx.doi.org/10.1172/JCI72124] [PMID: 25401475]
[142]
Visnovsky, J.; Kudela, E.; Farkasova, A.; Balharek, T.; Krkoska, M.; Danko, J. Amplification of TERT and TERC genes in cervical intraepithelial neoplasia and cervical cancer. Neuroendocrinol. Lett., 2014, 35(6), 518-522.
[PMID: 25433838]
[143]
Hu, G.; Yang, T.; Zheng, J.; Dai, J.; Nan, A.; Lai, Y.; Zhang, Y.; Yang, C.; Jiang, Y. Functional role and mechanism of lncRNA LOC728228 in malignant 16HBE cells transformed by anti-benzopyrene-trans-7,8-dihydrodiol-9,10-epoxide. Mol. Carcinog., 2015, 54(S1)(Suppl. 1), E192-E204.
[http://dx.doi.org/10.1002/mc.22314] [PMID: 25820656]
[144]
Chen, W.; Li, Y.; Guo, L.; Zhang, C.; Tang, S. Long non-coding RNA FTX predicts a poor prognosis of human cancers: A meta-analysis. Biosci. Rep., 2021, 41(1), BSR20203995.
[http://dx.doi.org/10.1042/BSR20203995] [PMID: 33398336]
[145]
Emmrich, S.; Streltsov, A.; Schmidt, F.; Thangapandi, V.R.; Reinhardt, D.; Klusmann, J-H. LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol. Cancer, 2014, 13(1), 171.
[http://dx.doi.org/10.1186/1476-4598-13-171] [PMID: 25027842]
[146]
Tu, C.; Ren, X.; He, J.; Zhang, C.; Chen, R.; Wang, W.; Li, Z. The Value of LncRNA BCAR4 as a Prognostic Biomarker on Clinical Outcomes in Human Cancers. J. Cancer, 2019, 10(24), 5992-6002.
[http://dx.doi.org/10.7150/jca.35113] [PMID: 31762809]
[147]
Marín-Béjar, O.; Mas, A.M.; González, J.; Martinez, D.; Athie, A.; Morales, X.; Galduroz, M.; Raimondi, I.; Grossi, E.; Guo, S.; Rouzaut, A.; Ulitsky, I.; Huarte, M. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol., 2017, 18(1), 202.
[http://dx.doi.org/10.1186/s13059-017-1331-y] [PMID: 29078818]
[148]
Yang, X.; Miao, S.; Mao, X.; Xiu, C.; Sun, J.; Pei, R.; Jia, S. LncRNA LINC-PINT Inhibits Malignant Behaviors of Laryngeal Squamous Cell Carcinoma Cells via Inhibiting ZEB1. Pathol. Oncol. Res., 2021, 27, 584466.
[http://dx.doi.org/10.3389/pore.2021.584466] [PMID: 34257531]
[149]
Han, X.; Liu, J.; Liu, Y.; Mou, L.; Li, C. LINC-PINT Inhibited Malignant Progression of Bladder Cancer by Targeting miR-155-5p. Cancer Manag. Res., 2021, 13, 4393-4401.
[http://dx.doi.org/10.2147/CMAR.S305547] [PMID: 34103994]
[150]
Sun, N.X.; Ye, C.; Zhao, Q.; Zhang, Q.; Xu, C.; Wang, S.B.; Jin, Z.J.; Sun, S.H.; Wang, F.; Li, W. Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One, 2014, 9(7), e100340.
[http://dx.doi.org/10.1371/journal.pone.0100340] [PMID: 25007342]
[151]
Dong, B.; Chen, X.; Zhang, Y.; Zhu, C.; Dong, Q. The prognostic value of lncRNA SNHG1 in cancer patients: A meta-analysis. BMC Cancer, 2019, 19(1), 780.
[http://dx.doi.org/10.1186/s12885-019-5987-4] [PMID: 31391030]
[152]
Shi, T.; Guo, D.; Xu, H.; Su, G.; Chen, J.; Zhao, Z.; Shi, J.; Wedemeyer, M.; Attenello, F.; Zhang, L.; Lu, W. HOTAIRM1, an enhancer lncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes. Mol. Biol. Rep., 2020, 47(4), 2723-2733.
[http://dx.doi.org/10.1007/s11033-020-05371-0] [PMID: 32180085]
[153]
Crea, F.; Watahiki, A.; Quagliata, L.; Xue, H.; Pikor, L.; Parolia, A.; Wang, Y.; Lin, D.; Lam, W.L.; Farrar, W.L.; Isogai, T.; Morant, R.; Castori-Eppenberger, S.; Chi, K.N.; Wang, Y.; Helgason, C.D. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget, 2014, 5(3), 764-774.
[http://dx.doi.org/10.18632/oncotarget.1769] [PMID: 24519926]
[154]
Xu, T-P.; Huang, M.D.; Xia, R.; Liu, X-X.; Sun, M.; Yin, L.; Chen, W-M.; Han, L.; Zhang, E-B.; Kong, R.; De, W.; Shu, Y.Q. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J. Hematol. Oncol., 2014, 7(1), 63.
[http://dx.doi.org/10.1186/s13045-014-0063-7] [PMID: 25167886]
[155]
Xu, W.; Wang, B.; Cai, Y.; Chen, J.; Meng, E.; Guo, C.; Zhou, G.; Yuan, C. The Therapeutic Value and Molecular Mechanisms of lncRNA FENDRR in Human Cancer. Curr. Pharm. Des., 2021, 27(39), 4100-4106.
[http://dx.doi.org/10.2174/1381612827666210820094702] [PMID: 34414867]
[156]
Qiu, S.; Chen, G.; Peng, J.; Liu, J.; Chen, J.; Wang, J.; Li, L.; Yang, K. LncRNA EGOT decreases breast cancer cell viability and migration via inactivation of the Hedgehog pathway. FEBS Open Bio, 2020, 10(5), 817-826.
[http://dx.doi.org/10.1002/2211-5463.12833] [PMID: 32150666]
[157]
Dong, D.; Mu, Z.; Zhao, C.; Sun, M. ZFAS1: A novel tumor-related long non-coding RNA. Cancer Cell Int., 2018, 18(1), 125.
[http://dx.doi.org/10.1186/s12935-018-0623-y] [PMID: 30186041]
[158]
Cai, H.; Ye, X.; He, B.; Li, Q.; Li, Y.; Gao, Y. LncRNA-AP001631.9 promotes cell migration in gastric cancer. Int. J. Clin. Exp. Pathol., 2015, 8(6), 6235-6244.
[PMID: 26261500]
[159]
Yin, Y.; Zhao, B.; Li, D.; Yin, G. Long non-coding RNA CASC15 promotes melanoma progression by epigenetically regulating PDCD4. Cell Biosci., 2018, 8(1), 42.
[http://dx.doi.org/10.1186/s13578-018-0240-4] [PMID: 30013768]
[160]
Hou, L.; Tu, J.; Cheng, F.; Yang, H.; Yu, F.; Wang, M.; Liu, J.; Fan, J.; Zhou, G. Long noncoding RNA ROR promotes breast cancer by regulating the TGF-β pathway. Cancer Cell Int., 2018, 18(1), 142.
[http://dx.doi.org/10.1186/s12935-018-0638-4] [PMID: 30250400]
[161]
Lv, L.; Chen, G.; Zhou, J.; Li, J.; Gong, J. WT1-AS promotes cell apoptosis in hepatocellular carcinoma through down-regulating of WT1. J. Exp. Clin. Cancer Res., 2015, 34(1), 119.
[http://dx.doi.org/10.1186/s13046-015-0233-7] [PMID: 26462627]
[162]
Birgani, M.T.; Hajjari, M.; Shahrisa, A.; Khoshnevisan, A.; Shoja, Z.; Motahari, P.; Farhangi, B. Long Non-Coding RNA SNHG6 as a Potential Biomarker for Hepatocellular Carcinoma. Pathol. Oncol. Res., 2018, 24(2), 329-337.
[http://dx.doi.org/10.1007/s12253-017-0241-3] [PMID: 28508329]
[163]
Chen, R.; Cheng, Q.; Owusu-Ansah, K.G.; Song, G.; Jiang, D.; Zhou, L.; Xu, X.; Wu, J.; Zheng, S. NKILA, a prognostic indicator, inhibits tumor metastasis by suppressing NF-κB/Slug mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Int. J. Biol. Sci., 2020, 16(3), 495-503.
[http://dx.doi.org/10.7150/ijbs.39582] [PMID: 32015685]
[164]
Dong, X.; Fang, Z.; Yu, M.; Zhang, L.; Xiao, R.; Li, X.; Pan, G.; Liu, J. Knockdown of Long Noncoding RNA HOXA-AS2 Suppresses Chemoresistance of Acute Myeloid Leukemia via the miR-520c-3p/S100A4 Axis. Cell. Physiol. Biochem., 2018, 51(2), 886-896.
[http://dx.doi.org/10.1159/000495387] [PMID: 30466095]
[165]
Liu, X-F.; Hao, J-L.; Xie, T.; Pant, O.P.; Lu, C-B.; Lu, C-W.; Zhou, D-D. The BRAF activated non-coding RNA: A pivotal long non-coding RNA in human malignancies. Cell Prolif., 2018, 51(4), e12449-e12449.
[http://dx.doi.org/10.1111/cpr.12449] [PMID: 29484737]
[166]
Yang, X.; Song, J.H.; Cheng, Y.; Wu, W.; Bhagat, T.; Yu, Y.; Abraham, J.M.; Ibrahim, S.; Ravich, W.; Roland, B.C.; Khashab, M.; Singh, V.K.; Shin, E.J.; Yang, X.; Verma, A.K.; Meltzer, S.J.; Mori, Y. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut, 2014, 63(6), 881-890.
[http://dx.doi.org/10.1136/gutjnl-2013-305266] [PMID: 24000294]
[167]
Ylipää, A.; Kivinummi, K.; Kohvakka, A.; Annala, M.; Latonen, L.; Scaravilli, M.; Kartasalo, K.; Leppänen, S-P.; Karakurt, S.; Seppälä, J.; Yli-Harja, O.; Tammela, T.L.; Zhang, W.; Visakorpi, T.; Nykter, M. Transcriptome Sequencing Reveals PCAT5 as a Novel ERG-Regulated Long Noncoding RNA in Prostate Cancer. Cancer Res., 2015, 75(19), 4026-4031.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0217] [PMID: 26282172]
[168]
Yao, J.; Zhou, B.; Zhang, J.; Geng, P.; Liu, K.; Zhu, Y.; Zhu, W. A new tumor suppressor LncRNA ADAMTS9-AS2 is regulated by DNMT1 and inhibits migration of glioma cells. Tumour Biol., 2014, 35(8), 7935-7944.
[http://dx.doi.org/10.1007/s13277-014-1949-2] [PMID: 24833086]
[169]
Pan, F.; Yao, J.; Chen, Y.; Zhou, C.; Geng, P.; Mao, H.; Fang, X. A novel long non-coding RNA FOXCUT and mRNA FOXC1 pair promote progression and predict poor prognosis in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(6), 2838-2849.
[PMID: 25031703]
[170]
Chen, S-X.; Yin, J-F.; Lin, B-C.; Su, H-F.; Zheng, Z.; Xie, C-Y.; Fei, Z-H. Upregulated expression of long noncoding RNA SNHG15 promotes cell proliferation and invasion through regulates MMP2/MMP9 in patients with GC. Tumour Biol., 2016, 37(5), 6801-6812.
[http://dx.doi.org/10.1007/s13277-015-4404-0] [PMID: 26662309]
[171]
Sun, Y-F.; Wang, Y.; Li, X-D.; Wang, H. SNHG15, a P53-regulated LncRNA, suppresses cisplatin-induced apoptosis and ROS accumulation through the MiR-335-3p/ZNF32 Axis. Am. J. Cancer Res., 2022, 12(2), 816-828.
[172]
Takayama, K.; Horie-Inoue, K.; Katayama, S.; Suzuki, T.; Tsutsumi, S.; Ikeda, K.; Urano, T.; Fujimura, T.; Takagi, K.; Takahashi, S.; Homma, Y.; Ouchi, Y.; Aburatani, H.; Hayashizaki, Y.; Inoue, S. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J., 2013, 32(12), 1665-1680.
[http://dx.doi.org/10.1038/emboj.2013.99] [PMID: 23644382]
[173]
Leucci, E.; Vendramin, R.; Spinazzi, M.; Laurette, P.; Fiers, M.; Wouters, J.; Radaelli, E.; Eyckerman, S.; Leonelli, C.; Vanderheyden, K.; Rogiers, A.; Hermans, E.; Baatsen, P.; Aerts, S.; Amant, F.; Van Aelst, S.; van den Oord, J.; de Strooper, B.; Davidson, I.; Lafontaine, D.L.; Gevaert, K.; Vandesompele, J.; Mestdagh, P.; Marine, J.C. Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 2016, 531(7595), 518-522.
[http://dx.doi.org/10.1038/nature17161] [PMID: 27008969]
[174]
Ghafouri-Fard, S.; Dashti, S.; Taheri, M. The HOTTIP (HOXA transcript at the distal tip) lncRNA: Review of oncogenic roles in human. Biomed. Pharmacother., 2020, 127, 110158.
[http://dx.doi.org/10.1016/j.biopha.2020.110158] [PMID: 32335298]
[175]
Li, L-J.; Zhu, J-L.; Bao, W-S.; Chen, D-K.; Huang, W-W.; Weng, Z-L. Long noncoding RNA GHET1 promotes the development of bladder cancer. Int. J. Clin. Exp. Pathol., 2014, 7(10), 7196-7205.
[PMID: 25400817]
[176]
Silva, J.M.; Boczek, N.J.; Berres, M.W.; Ma, X.; Smith, D.I. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol., 2011, 8(3), 496-505.
[http://dx.doi.org/10.4161/rna.8.3.14800] [PMID: 21532345]
[177]
Henry, W.S.; Hendrickson, D.G.; Beca, F.; Glass, B.; Lindahl-Allen, M.; He, L.; Ji, Z.; Struhl, K.; Beck, A.H.; Rinn, J.L.; Toker, A. LINC00520 is induced by Src, STAT3, and PI3K and plays a functional role in breast cancer. Oncotarget, 2016, 7(50), 81981-81994.
[http://dx.doi.org/10.18632/oncotarget.11962] [PMID: 27626181]
[178]
Wan, X.; Huang, W.; Yang, S.; Zhang, Y.; Pu, H.; Fu, F.; Huang, Y.; Wu, H.; Li, T.; Li, Y. Identification of androgen-responsive lncRNAs as diagnostic and prognostic markers for prostate cancer. Oncotarget, 2016, 7(37), 60503-60518.
[http://dx.doi.org/10.18632/oncotarget.11391] [PMID: 27556357]
[179]
Atmadibrata, B.; Liu, P.Y.; Sokolowski, N.; Zhang, L.; Wong, M.; Tee, A.E.; Marshall, G.M.; Liu, T. The novel long noncoding RNA linc00467 promotes cell survival but is down-regulated by N-Myc. PLoS One, 2014, 9(2), e88112.
[http://dx.doi.org/10.1371/journal.pone.0088112] [PMID: 24586304]
[180]
Dai, M.; Li, S.; Qin, X. Colorectal neoplasia differentially expressed: A long noncoding RNA with an imperative role in cancer. OncoTargets Ther., 2018, 11, 3755-3763.
[http://dx.doi.org/10.2147/OTT.S162754] [PMID: 29988699]
[181]
Kaller, M.; Götz, U.; Hermeking, H. Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity. Oncotarget, 2017, 8(61), 102783-102800.
[http://dx.doi.org/10.18632/oncotarget.22245] [PMID: 29262524]
[182]
Saha, S.; Kiran, M.; Kuscu, C.; Chatrath, A.; Wotton, D.; Mayo, M.W.; Dutta, A. Long Noncoding RNA DRAIC Inhibits Prostate Cancer Progression by Interacting with IKK to Inhibit NF-κB Activation. Cancer Res., 2020, 80(5), 950-963.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3460] [PMID: 31900260]
[183]
Wang, X.; Lu, X.; Geng, Z.; Yang, G.; Shi, Y. LncRNA PTCSC3/miR-574-5p Governs Cell Proliferation and Migration of Papillary Thyroid Carcinoma via Wnt/β-Catenin Signaling. J. Cell. Biochem., 2017, 118(12), 4745-4752.
[http://dx.doi.org/10.1002/jcb.26142] [PMID: 28513866]
[184]
Zhang, L.; Zhou, X-F.; Pan, G-F.; Zhao, J-P. Enhanced expression of long non-coding RNA ZXF1 promoted the invasion and metastasis in lung adenocarcinoma. Biomed. Pharmacother., 2014, 68(4), 401-407.
[http://dx.doi.org/10.1016/j.biopha.2014.03.001] [PMID: 24721325]
[185]
Malik, R.; Patel, L.; Prensner, J.R.; Shi, Y.; Iyer, M.K.; Subramaniyan, S.; Carley, A.; Niknafs, Y.S.; Sahu, A.; Han, S.; Ma, T.; Liu, M.; Asangani, I.A.; Jing, X.; Cao, X.; Dhanasekaran, S.M.; Robinson, D.R.; Feng, F.Y.; Chinnaiyan, A.M. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol. Cancer Res., 2014, 12(8), 1081-1087.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0257] [PMID: 25030374]
[186]
Gao, X.; Wen, J.; Gao, P.; Zhang, G.; Zhang, G. Overexpression of the long non-coding RNA, linc-UBC1, is associated with poor prognosis and facilitates cell proliferation, migration, and invasion in colorectal cancer. OncoTargets Ther., 2017, 10, 1017-1026.
[http://dx.doi.org/10.2147/OTT.S129343] [PMID: 28260919]
[187]
Tang, J.; Zhuo, H.; Zhang, X.; Jiang, R.; Ji, J.; Deng, L.; Qian, X.; Zhang, F.; Sun, B. A novel biomarker Linc00974 interacting with KRT19 promotes proliferation and metastasis in hepatocellular carcinoma. Cell Death Dis., 2014, 5(12), e1549-e1549.
[http://dx.doi.org/10.1038/cddis.2014.518] [PMID: 25476897]
[188]
Wu, J.; Zhang, J.; Shen, B.; Yin, K.; Xu, J.; Gao, W.; Zhang, L. Long noncoding RNA lncTCF7, induced by IL-6/STAT3 transactivation, promotes hepatocellular carcinoma aggressiveness through epithelial-mesenchymal transition. J. Exp. Clin. Cancer Res., 2015, 34(1), 116.
[http://dx.doi.org/10.1186/s13046-015-0229-3] [PMID: 26452542]
[189]
Wang, T.H.; Lin, Y.S.; Chen, Y.; Yeh, C.T.; Huang, Y.L.; Hsieh, T.H.; Shieh, T.M.; Hsueh, C.; Chen, T.C. Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition. Oncotarget, 2015, 6(27), 23342-23357.
[http://dx.doi.org/10.18632/oncotarget.4344] [PMID: 26160837]
[190]
Wei, G.; Luo, H.; Sun, Y.; Li, J.; Tian, L.; Liu, W.; Liu, L.; Luo, J.; He, J.; Chen, R. Transcriptome profiling of esophageal squamous cell carcinoma reveals a long noncoding RNA acting as a tumor suppressor. Oncotarget, 2015, 6(19), 17065-17080.
[http://dx.doi.org/10.18632/oncotarget.4185] [PMID: 26158411]
[191]
Xue, S.; Li, Q-W.; Che, J-P.; Guo, Y.; Yang, F-Q.; Zheng, J-H. Decreased expression of long non-coding RNA NBAT-1 is associated with poor prognosis in patients with clear cell renal cell carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3765-3774.
[PMID: 26097558]
[192]
Yu, Y.; Li, L.; Zheng, Z.; Chen, S.; Chen, E.; Hu, Y. Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J. Cell. Mol. Med., 2017, 21(5), 955-967.
[http://dx.doi.org/10.1111/jcmm.13035] [PMID: 27878953]
[193]
Zhu, K-P.; Ma, X-L.; Zhang, C-L. LncRNA ODRUL Contributes to Osteosarcoma Progression through the miR-3182/MMP2 Axis. Mol. Ther., 2017, 25(10), 2383-2393.
[http://dx.doi.org/10.1016/j.ymthe.2017.06.027] [PMID: 28750740]
[194]
Onagoruwa, O.T.; Pal, G.; Ochu, C.; Ogunwobi, O.O. Oncogenic Role of PVT1 and Therapeutic Implications. Front. Oncol., 2020, 10, 17.
[http://dx.doi.org/10.3389/fonc.2020.00017] [PMID: 32117705]
[195]
Kawasaki, Y.; Komiya, M.; Matsumura, K.; Negishi, L.; Suda, S.; Okuno, M.; Yokota, N.; Osada, T.; Nagashima, T.; Hiyoshi, M.; Okada-Hatakeyama, M.; Kitayama, J.; Shirahige, K.; Akiyama, T. MYU, a Target lncRNA for Wnt/c-Myc Signaling, Mediates Induction of CDK6 to Promote Cell Cycle Progression. Cell Rep., 2016, 16(10), 2554-2564.
[http://dx.doi.org/10.1016/j.celrep.2016.08.015] [PMID: 27568568]
[196]
Zeng, X.; Sikka, S.C.; Huang, L.; Sun, C.; Xu, C.; Jia, D.; Abdel-Mageed, A.B.; Pottle, J.E.; Taylor, J.T.; Li, M. Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation. Prostate Cancer Prostatic Dis., 2010, 13(2), 195-201.
[http://dx.doi.org/10.1038/pcan.2009.55] [PMID: 20029400]
[197]
Ghafouri-Fard, S.; Dashti, S.; Taheri, M.; Omrani, M.D. TINCR: An lncRNA with dual functions in the carcinogenesis process. Noncoding RNA Research, 2020, 5(3), 109-115.
[http://dx.doi.org/10.1016/j.ncrna.2020.06.003] [PMID: 32695943]
[198]
Cardoso, C.; Serafim, R.B.; Kawakami, A.; Gonçalves Pereira, C.; Roszik, J.; Valente, V.; Vazquez, V.L.; Fisher, D.E.; Espreafico, E.M. The lncRNA RMEL3 protects immortalized cells from serum withdrawal-induced growth arrest and promotes melanoma cell proliferation and tumor growth. Pigment Cell Melanoma Res., 2019, 32(2), 303-314.
[http://dx.doi.org/10.1111/pcmr.12751] [PMID: 30457212]
[199]
Ji, L.; Chen, S.; Gu, L.; Wang, J.; Zhang, X. LncRNA AGAP2-AS1 Promotes Cancer Cell Proliferation, Migration and Invasion in Colon Cancer by Forming a Negative Feedback Loop with LINC-PINT. Cancer Manag. Res., 2021, 13, 2153-2161.
[http://dx.doi.org/10.2147/CMAR.S260371] [PMID: 33688258]
[200]
Wu, H.F.; Lu, T-J.; Lo, Y-H.; Tu, Y-T.; Chen, Y-R.; Lee, M-C.; Chiang, Y-L.; Yeh, C-Y.; Tsai, K-W. Long Noncoding RNA LOC550643 Acts as an Oncogene in the Growth Regulation of Colorectal Cancer Cells. Cells, 2022, 11(7), 1065.
[http://dx.doi.org/10.3390/cells11071065] [PMID: 35406629]
[201]
Ma, Z.; Huang, H.; Xu, Y.; He, X.; Wang, J.; Hui, B.; Ji, H.; Zhou, J.; Wang, K. Current advances of long non-coding RNA highly upregulated in liver cancer in human tumors. OncoTargets Ther., 2017, 10, 4711-4717.
[http://dx.doi.org/10.2147/OTT.S136915] [PMID: 29026319]
[202]
Bida, O.; Gidoni, M.; Ideses, D.; Efroni, S.; Ginsberg, D. A novel mitosis-associated lncRNA, MA-linc1, is required for cell cycle progression and sensitizes cancer cells to Paclitaxel. Oncotarget, 2015, 6(29), 27880-27890.
[http://dx.doi.org/10.18632/oncotarget.4944] [PMID: 26337085]
[203]
Zheng, C.; Chu, M.; Chen, Q.; Chen, C.; Wang, Z-W.; Chen, X. The role of lncRNA OIP5-AS1 in cancer development and progression. Apoptosis, 2022.
[http://dx.doi.org/10.1007/s10495-022-01722-3] [PMID: 35316453]
[204]
Xu, R.; Peng, H.; Yang, N.; Liu, Z.; Lu, W. Nuclear LncRNA CERNA1 enhances the cisplatin-induced cell apoptosis and overcomes chemoresistance via epigenetic activation of BCL2L10 in ovarian cancer. Genes Dis., 2022.
[http://dx.doi.org/10.1016/j.gendis.2021.12.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy