Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Human Umbilical Cord Mesenchymal Stem Cells' Cultivation and Treatment of Liver Diseases

Author(s): Zihe Zhu, Qianqian Zhang, Lixin Liu* and Jun Xu*

Volume 18, Issue 3, 2023

Published on: 26 August, 2022

Page: [286 - 298] Pages: 13

DOI: 10.2174/1574888X17666220623111406

Price: $65

Abstract

Background: Over the past few years, mesenchymal stem cells (MSCs) have been regarded as effective for treating various diseases. Among the types of MSCs, human umbilical cord mesenchymal stem cells (hUC-MSCs) have been widely studied because of their advantages in non-invasive damage to donors and the wide range of sources.

Main body: This article reviews three aspects of hUC-MSCs. Foremost are the latest advances in the cultivation and preparation methods of hUC-MSCs. Furthermore, the treatments mechanism of hUCMSCs in organ transplantation and liver diseases. Finally, a summary of their use in clinical trials in liver diseases. The first part of this paper emphasizes the differences between the selection area and culture factors, including the separation method, long-term culturing in vitro, medium composition, serum, and three-dimensional (3D) skeleton system training, which could affect the characteristics of hUC-MSCs and the treatment of diseases. The second section mainly stresses the mechanisms of hUC-MSCs in the treatment of diseases, including immunoregulation and transdifferentiation into hepatocyte-like cells. Many new technologies mark and track cells in vivo and their safety. Briefly mention its role in the treatment of other diseases and vaccine preparation. In the third part, to accelerate the application of hUC-MSCs in the treatment of clinical diseases, it is necessary to expand the sample size of clinical trials to ensure their safety in the human body and determine the most effective infusion method and volume. Conclusion: hUC-MSCs have a substantial potential to become a more effective treatment for liver diseases. Clinical trials and mechanisms have laid the foundation for the normalization of clinical hUC-MSCs delivery.

Keywords: Umbilical cord mesenchymal stem cells, 3D scaffold culture system, treatment, liver diseases, immunoregulation, mechanism.

Graphical Abstract
[1]
Zhu J, Huang J, Chen J. Dictionary of surgery Beijing. Beijing: Science and Technology Press 2003.
[2]
Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7(5): 393-5.
[http://dx.doi.org/10.1080/14653240500319234] [PMID: 16236628]
[3]
Xing L, Ren J, Guo X, Qiao S, Tian T. Effect of decitabine and thalidomide on the immunological effect and bone marrow mesenchymal stem cells of patients with myelodysplastic syndrome. Am J Transl Res 2021; 13(4): 2462-71.
[PMID: 34017405]
[4]
D'Esposito V, Ambrosio M, Liguoro D, et al. In severe obesity, subcutaneous adipose tissue cell-derived cytokines are early markers of impaired glucose tolerance and are modulated by quercetin.International journal of obesity (2005) 2021; 45(8): 1811-20.
[5]
Mendt M, Daher M, Basar R, et al. Metabolic Reprogramming of GMP Grade Cord Tissue Derived Mesenchymal Stem Cells Enhances Their Suppressive Potential in GVHD. Front Immunol 2021; 12: 631353.
[http://dx.doi.org/10.3389/fimmu.2021.631353] [PMID: 34017325]
[6]
Khamis T, Abdelalim AF, Saeed AA, et al. Breast milk MSCs upregulated β-cells PDX1, Ngn3, and PCNA expression via remodeling ER stress/inflammatory/apoptotic signaling pathways in type 1 diabetic rats. Eur J Pharmacol 2021; 905: 174188.
[http://dx.doi.org/10.1016/j.ejphar.2021.174188] [PMID: 34004210]
[7]
Li T, Xia M, Gao Y, Chen Y, Xu Y. Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 2015; 15(9): 1293-306.
[http://dx.doi.org/10.1517/14712598.2015.1051528] [PMID: 26067213]
[8]
Li X, Xu Z, Bai J, et al. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase. Stem Cells Int 2016; 2016: 7495135.
[http://dx.doi.org/10.1155/2016/7495135] [PMID: 27418932]
[9]
Li Y, Hu G, Cheng Q. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Front Med 2015; 9(1): 20-9.
[http://dx.doi.org/10.1007/s11684-014-0371-x] [PMID: 25491769]
[10]
Moodley Y, Atienza D, Manuelpillai U, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 2009; 175(1): 303-13.
[http://dx.doi.org/10.2353/ajpath.2009.080629] [PMID: 19497992]
[11]
Coskun H, Can A. The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotent stromal cells. Placenta 2015; 36(2): 232-9.
[http://dx.doi.org/10.1016/j.placenta.2014.11.024] [PMID: 25524058]
[12]
Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta 1997; 18(1): 53-64.
[http://dx.doi.org/10.1016/S0143-4004(97)90071-0] [PMID: 9032810]
[13]
Ozkan S, Isildar B, Oncul M, Baslar Z, Kaleli S, Koyuturk M. Ultrastructural analysis of human umbilical cord derived MSCs at undifferentiated stage and during osteogenic and adipogenic differentiation. Ultrastruct Pathol 2018; 42(3): 199-210.
[http://dx.doi.org/10.1080/01913123.2018.1453905] [PMID: 29624114]
[14]
Chen Y. Effect of common clinical transplantation preservation media on biological characteristics and therapeutic effect of umbilical cord mesenchymal stem cells in vivo and its mechanism Tai Yuan. Shanxi Medical University 2012.
[15]
Mennan C, Wright K, Bhattacharjee A, Balain B, Richardson J, Roberts S. Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. BioMed Res Int 2013; 2013: 916136.
[http://dx.doi.org/10.1155/2013/916136] [PMID: 23984420]
[16]
Russo E, Lee JY, Nguyen H, et al. Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions. Stem Cell Rev Rep 2020; 16(3): 585-95.
[http://dx.doi.org/10.1007/s12015-020-09967-8] [PMID: 32185666]
[17]
Xie Y, Liu S, Wang L, et al. Individual heterogeneity screened umbilical cord-derived mesenchymal stromal cells with high Treg promotion demonstrate improved recovery of mouse liver fibrosis. Stem Cell Res Ther 2021; 12(1): 359.
[http://dx.doi.org/10.1186/s13287-021-02430-6] [PMID: 34158112]
[18]
Yang YK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 2018; 9(1): 131.
[http://dx.doi.org/10.1186/s13287-018-0876-3] [PMID: 29751774]
[19]
Wang Y, Zhang Z, Chi Y, et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 2013; 4(12): e950.
[http://dx.doi.org/10.1038/cddis.2013.480] [PMID: 24309937]
[20]
Zhang Y, Li Y, Li W, et al. Therapeutic Effect of Human Umbilical Cord Mesenchymal Stem Cells at Various Passages on Acute Liver Failure in Rats. Stem Cells Int 2018; 2018: 7159465.
[http://dx.doi.org/10.1155/2018/7159465] [PMID: 30538751]
[21]
Fu X, Xu B, Jiang J, et al. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clin Proteomics 2020; 17(1): 15.
[http://dx.doi.org/10.1186/s12014-020-09279-6] [PMID: 32489333]
[22]
Zhang T, Wang P, Liu Y, et al. Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo. Cell Tissue Res 2018; 373(2): 379-93.
[http://dx.doi.org/10.1007/s00441-018-2815-0] [PMID: 29500491]
[23]
Li Y, Zhong H, Wu M, et al. Decline of p300 contributes to cell senescence and growth inhibition of hUC-MSCs through p53/p21 signaling pathway. Biochem Biophys Res Commun 2019; 515(1): 24-30.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.061] [PMID: 31122700]
[24]
Li WW, Wei YH, Li H, Lai DM, Lin TN. Isolation and characterization of a novel strain of mesenchymal stem cells from mouse umbilical cord: potential application in cell-based therapy. PLoS One 2013; 8(8): e74478.
[http://dx.doi.org/10.1371/journal.pone.0074478] [PMID: 23991222]
[25]
Hendrijantini N, Hartono P. Phenotype Characteristics and Osteogenic Differentiation Potential of Human Mesenchymal Stem Cells Derived from Amnion Membrane (HAMSCs) and Umbilical Cord (HUC-MSCs). Acta Inform Med 2019; 27(2): 72-7.
[http://dx.doi.org/10.5455/aim.2019.27.72-77] [PMID: 31452562]
[26]
Xu B, Liu Y. Effects of different isolation methods and culture conditions on the bioactivity of human umbilical cord mesenchymal stem cells. China cosmetic medicine 2020; 29(02): 71-4.
[27]
Tekkatte C, Vidyasekar P, Kapadia NK, Verma RS. Enhancement of adipogenic and osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells by supplementation with umbilical cord blood serum. Cell Tissue Res 2012; 347(2): 383-95.
[http://dx.doi.org/10.1007/s00441-012-1328-5] [PMID: 22311206]
[28]
Romanov YA, Vtorushina VV, Dugina TN, Romanov AY, Petrova NV, Sukhikh GT. Human umbilical cord tissue-derived multipotent mesenchymal stromal cells exhibit maximum secretory activity in the presence of umbilical cord blood serum. Bull Exp Biol Med 2020; 169(4): 544-8.
[http://dx.doi.org/10.1007/s10517-020-04926-2] [PMID: 32910388]
[29]
Ding Y, Yang H, Feng JB, Qiu Y, Li DS, Zeng Y. Human umbilical cord-derived MSC culture: the replacement of animal sera with human cord blood plasma. in vitro. Cell Dev Biol Anim 2013; 49(10): 771-.
[http://dx.doi.org/10.1007/s11626-013-9663-8] [PMID: 24043577]
[30]
Chen G, Yue A, Ruan Z, et al. Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS One 2014; 9(6): e98565.
[http://dx.doi.org/10.1371/journal.pone.0098565] [PMID: 24887492]
[31]
Chen G, Yue A, Ruan Z, et al. Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium. Cell Tissue Bank 2014; 15(4): 513-21.
[http://dx.doi.org/10.1007/s10561-014-9420-6] [PMID: 24407613]
[32]
Gao W, Zhang H, Chang G, et al. Decreased intracellular pH induced by cariporide differentially contributes to human umbilical cord-derived mesenchymal stem cells differentiation Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2014; 33(1): 185-9 2014.
[33]
Zhang L, Yang J, Tian YM, Guo H, Zhang Y. Beneficial Effects of Hypoxic Preconditioning on Human Umbilical Cord Mesenchymal Stem Cells. Chin J Physiol 2015; 58(5): 343-53.
[PMID: 26536910]
[34]
Li D, Xu Y, Gao CY, Zhai YP. Adaptive protection against damage of preconditioning human umbilical cord-derived mesenchymal stem cells with hydrogen peroxide. Genet Mol Res 2014; 13(3): 7304-17.
[http://dx.doi.org/10.4238/2014.February.21.9] [PMID: 24634295]
[35]
Yoon JH, Roh EY, Shin S, et al. Introducing pulsed low-intensity ultrasound to culturing human umbilical cord-derived mesenchymal stem cells. Biotechnol Lett 2009; 31(3): 329-35.
[http://dx.doi.org/10.1007/s10529-008-9872-5] [PMID: 18985278]
[36]
Córdoba A, Satué M, Gómez-Florit M, et al. Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential. Adv Healthc Mater 2015; 4(4): 540-9.
[http://dx.doi.org/10.1002/adhm.201400587] [PMID: 25335455]
[37]
Wang M, Cai J, Huang F, et al. Pre-treatment of human umbilical cord-derived mesenchymal stem cells with interleukin-6 abolishes their growth-promoting effect on gastric cancer cells. Int J Mol Med 2015; 35(2): 367-75.
[http://dx.doi.org/10.3892/ijmm.2014.2019] [PMID: 25483835]
[38]
Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance. Cell Tissue Res 2015; 360(2): 297-307.
[http://dx.doi.org/10.1007/s00441-014-2055-x] [PMID: 25749992]
[39]
Chitrangi S, Nair P, Khanna A. Three-dimensional polymer scaffolds for enhanced differentiation of human mesenchymal stem cells to hepatocyte-like cells: a comparative study. J Tissue Eng Regen Med 2017; 11(8): 2359-72.
[http://dx.doi.org/10.1002/term.2136] [PMID: 27121646]
[40]
Chitrangi S, Nair P, Khanna A. 3D engineered in vitro hepatospheroids for studying drug toxicity and metabolism. Toxicology in vitro : an international journal published in association with BIBRA 2017; 38: 8-18.
[41]
Li Y, Wu Q, Wang Y, et al. Immunogenicity of hepatic differentiated human umbilical cord mesenchymal stem cells promoted by porcine decellularized liver scaffolds. Xenotransplantation 2017; 24(1): e12287.
[http://dx.doi.org/10.1111/xen.12287] [PMID: 28102609]
[42]
Li Y, Wu Q, Wang Y, et al. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds. Xenotransplantation 2017; 24(1): e12285.
[http://dx.doi.org/10.1111/xen.12285] [PMID: 28127796]
[43]
Mattioli-Belmonte M, Montemurro F, Licini C, et al. Cell-Free Demineralized Bone Matrix for Mesenchymal Stem Cells Survival and Colonization. Materials (Basel, Switzerland) 2019; 12(9)
[44]
Wu H, Shang Y, Zhang J, Cheang LH, Zeng X, Tu M. The effects of liquid crystal-based composite substrates on cell functional responses of human umbilical cord-derived mesenchymal stem cells by mechano-regulatory process. J Biomater Appl 2017; 32(4): 492-503.
[http://dx.doi.org/10.1177/0885328217733378] [PMID: 28992805]
[45]
2019.Jagiełło J, Sekuła-Stryjewska M, Noga S, et al. Impact of Graphene- Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. Int J Mol Sci 2019; 20(18): E4561. http://dx.doi.org/10.3390/ijms20184561 31540083
[46]
Jia Y, Cao N, Zhai J, et al. HGF Mediates Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells Improved Functional Recovery in a Senescence-Accelerated Mouse Model of Alzheimer’s Disease. Adv Sci (Weinh) 2020; 7(17): 1903809.
[http://dx.doi.org/10.1002/advs.201903809] [PMID: 32995116]
[47]
Gu J, Huang L, Zhang C, et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther 2020; 11(1): 43.
[http://dx.doi.org/10.1186/s13287-019-1545-x] [PMID: 32014055]
[48]
Chen XY, Chen YY, Lin W, et al. Therapeutic Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Recovering From Murine Pulmonary Emphysema Under Cigarette Smoke Exposure. Front Med (Lausanne) 2021; 8: 713824.
[http://dx.doi.org/10.3389/fmed.2021.713824] [PMID: 34646841]
[49]
Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020; 11(1): 361.
[http://dx.doi.org/10.1186/s13287-020-01875-5] [PMID: 32811531]
[50]
Yin Y, Hao H, Cheng Y, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis 2018; 9(7): 760.
[http://dx.doi.org/10.1038/s41419-018-0801-9] [PMID: 29988034]
[51]
Zhang K, Na T, Wang L, et al. Human diploid MRC-5 cells exhibit several critical properties of human umbilical cord-derived mesenchymal stem cells. Vaccine 2014; 32(50): 6820-7.
[http://dx.doi.org/10.1016/j.vaccine.2014.07.071] [PMID: 25086263]
[52]
Chen P, Zhang KH, Na T, et al. The hUC-MSCs cell line CCRC-1 represents a novel, safe and high-yielding HDCs for the production of human viral vaccines. Sci Rep 2017; 7(1): 12484.
[http://dx.doi.org/10.1038/s41598-017-11997-1] [PMID: 28970485]
[53]
Zheng G, Liu Y, Jing Q, Zhang L. Differentiation of human umbilical cord-derived mesenchymal stem cells into hepatocytes in vitro. Biomed Mater Eng 2015; 25(1) (Suppl.): 145-57.
[http://dx.doi.org/10.3233/BME-141249] [PMID: 25538065]
[54]
Luk JM, Wang PP, Lee CK, Wang JH, Fan ST. Hepatic potential of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods 2005; 305(1): 39-47.
[http://dx.doi.org/10.1016/j.jim.2005.07.006] [PMID: 16150456]
[55]
Chen Y, Dong XJ, Zhang GR, Shao JZ, Xiang LX. in vitro differentiation of mouse bone marrow stromal stem cells into hepatocytes induced by conditioned culture medium of hepatocytes. J Cell Biochem 2007; 102(1): 52-63.
[http://dx.doi.org/10.1002/jcb.21275] [PMID: 17340623]
[56]
Dong X, Pan R, Zhang H, Yang C, Shao J, Xiang L. Modification of histone acetylation facilitates hepatic differentiation of human bone marrow mesenchymal stem cells. PLoS One 2013; 8(5): e63405.
[http://dx.doi.org/10.1371/journal.pone.0063405] [PMID: 23658825]
[57]
Raut A, Khanna A. High-throughput sequencing to identify microRNA signatures during hepatic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells Hepatology research : The official journal of the Japan Society of Hepatology 2017; 47(9): 910-2, 2017.
[58]
Luo S, Xiao S, Ai Y, Wang B, Wang Y. Changes in the hepatic differentiation potential of human mesenchymal stem cells aged in vitro. Ann Transl Med 2021; 9(21): 1628.
[http://dx.doi.org/10.21037/atm-21-4918] [PMID: 34926672]
[59]
Fatima A, Malick TS, Khan I, Ishaque A, Salim A. Effect of glycyrrhizic acid and 18β-glycyrrhetinic acid on the differentiation of human umbilical cord-mesenchymal stem cells into hepatocytes. World J Stem Cells 2021; 13(10): 1580-94.
[http://dx.doi.org/10.4252/wjsc.v13.i10.1580] [PMID: 34786159]
[60]
Chen K, Wang D, Du WT, et al. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol 2010; 135(3): 448-58.
[http://dx.doi.org/10.1016/j.clim.2010.01.015] [PMID: 20207200]
[61]
Wang D, Chen K, Du WT, et al. CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res 2010; 316(15): 2414-23.
[http://dx.doi.org/10.1016/j.yexcr.2010.04.018] [PMID: 20420825]
[62]
Li X, Du W, Ma FX, Feng X, Bayard F, Han ZC. High Concentrations of TNF-α Induce Cell Death during Interactions between Human Umbilical Cord Mesenchymal Stem Cells and Peripheral Blood Mononuclear Cells. PLoS One 2015; 10(5): e0128647.
[http://dx.doi.org/10.1371/journal.pone.0128647] [PMID: 26023782]
[63]
Na T, Liu J, Zhang K, Ding M, Yuan BZ. The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. PLoS One 2015; 10(2): e0118168.
[http://dx.doi.org/10.1371/journal.pone.0118168] [PMID: 25692676]
[64]
Corsello T, Amico G, Corrao S, et al. Wharton’s Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and in vitro. Stem Cell Rev Rep 2019; 15(6): 900-18.
[http://dx.doi.org/10.1007/s12015-019-09907-1] [PMID: 31741193]
[65]
Gurunathan S, Kang MH, Jeyaraj M, Qasim M, Kim JH. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019; 8(4): E307.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[66]
Yao J, Zheng J, Cai J, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J 2019; 33(2): 1695-710.
[http://dx.doi.org/10.1096/fj.201800131RR] [PMID: 30226809]
[67]
Shao M, Xu Q, Wu Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p. Stem Cell Res Ther 2020; 11(1): 37.
[http://dx.doi.org/10.1186/s13287-020-1550-0] [PMID: 31973730]
[68]
Hermansyah D, Putra A, Muhar A. Retnaningsih , Wirastuti K, Dirja B Mesenchymal Stem Cells Suppress TGF-β Release to Decrease α-SMA Expression in Ameliorating CCl4-Induced Liver Fibrosis Medical archives (Sarajevo, Bosnia and Herzegovina) 2021; 75(1): 16-22.
[69]
Tang Y, Li Q, Meng F, et al. Therapeutic Potential of HGF-Expressing Human Umbilical Cord Mesenchymal Stem Cells in Mice with Acute Liver Failure. Int J Hepatol 2016; 2016: 5452487.
[http://dx.doi.org/10.1155/2016/5452487] [PMID: 27057357]
[70]
Lee J, Choi J, Kang S, et al. Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells 2020; 9(6): E1521.
[http://dx.doi.org/10.3390/cells9061521] [PMID: 32580448]
[71]
Yun JW, Ahn JH, Kwon E, et al. Human umbilical cord-derived mesenchymal stem cells in acute liver injury: Hepatoprotective efficacy, subchronic toxicity, tumorigenicity, and biodistribution. Regul Toxicol Pharmacol 2016; 81: 437-47.
[http://dx.doi.org/10.1016/j.yrtph.2016.09.029] [PMID: 27693706]
[72]
Zhang GZ, Sun HC, Zheng LB, Guo JB, Zhang XL. in vivo hepatic differentiation potential of human umbilical cord-derived mesenchymal stem cells: Therapeutic effect on liver fibrosis/cirrhosis. World J Gastroenterol 2017; 23(46): 8152-68.
[http://dx.doi.org/10.3748/wjg.v23.i46.8152] [PMID: 29290652]
[73]
Zhang LT, Peng XB, Fang XQ, Li JF, Chen H, Mao XR. Human umbilical cord mesenchymal stem cells inhibit proliferation of hepatic stellate cells in vitro. Int J Mol Med 2018; 41(5): 2545-52.
[http://dx.doi.org/10.3892/ijmm.2018.3500] [PMID: 29484382]
[74]
Xu X, Wang W, Lin L, Chen P. Liraglutide in combination with human umbilical cord mesenchymal stem cell could improve liver lesions by modulating TLR4/NF-kB inflammatory pathway and oxidative stress in T2DM/NAFLD rats. Tissue Cell 2020; 66: 101382.
[http://dx.doi.org/10.1016/j.tice.2020.101382] [PMID: 32933722]
[75]
Baig MT, Ghufran H, Mehmood A, Azam M, Humayun S, Riazuddin S. Vitamin E pretreated Wharton’s jelly-derived mesenchymal stem cells attenuate CCl4-induced hepatocyte injury in vitro and liver fibrosis in vivo. Biochem Pharmacol 2021; 186: 114480.
[http://dx.doi.org/10.1016/j.bcp.2021.114480] [PMID: 33617844]
[76]
Li Y, Dong J, Zhou Y, et al. Therapeutic effects of CXCL9-overexpressing human umbilical cord mesenchymal stem cells on liver fibrosis in rats. Biochem Biophys Res Commun 2021; 584: 87-94.
[http://dx.doi.org/10.1016/j.bbrc.2021.10.078] [PMID: 34775285]
[77]
Yang H, Xie Y, Li T, Liu S, Zeng S, Wang B. A novel minimally invasive OFM technique with orthotopic transplantation of hUC-MSCs and in vivo monitoring of liver metabolic microenvironment in liver fibrosis treatment. Stem Cell Res Ther 2021; 12(1): 534.
[http://dx.doi.org/10.1186/s13287-021-02599-w] [PMID: 34627378]
[78]
Wang Y, Han ZB, Ma J, et al. A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells Dev 2012; 21(9): 1401-8.
[http://dx.doi.org/10.1089/scd.2011.0441] [PMID: 21958114]
[79]
He J, Ruan G, Yao X, et al. Chronic toxicity test in cynomolgus monkeys for 98 days with repeated intravenous infusion of cynomolgus umbilical cord mesenchymal stem cells Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 43(3): 891-904 2017.
[80]
Ji F, Duan HG, Zheng CQ, Li J. Comparison of chloromethyl-dialkylcarbocyanine and green fluorescent protein for labeling human umbilical mesenchymal stem cells. Biotechnol Lett 2015; 37(2): 437-47.
[http://dx.doi.org/10.1007/s10529-014-1692-1] [PMID: 25280731]
[81]
Sanganeria P, Chandra S, Bahadur D, Khanna A. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells. Nanotechnology 2015; 26(12): 125103.
[http://dx.doi.org/10.1088/0957-4484/26/12/125103] [PMID: 25744689]
[82]
Detry O, Vandermeulen M, Delbouille MH, et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: A phase I-II, open-label, clinical study. J Hepatol 2017; 67(1): 47-55.
[http://dx.doi.org/10.1016/j.jhep.2017.03.001] [PMID: 28284916]
[83]
Mohamadnejad M, Alimoghaddam K, Bagheri M, et al. Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver international : Official journal of the International Association for the Study of the Liver 2013; 33(10): 1490-6.
[84]
Lin BL, Chen JF, Qiu WH, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. Hepatology 2017; 66(1): 209-19.
[http://dx.doi.org/10.1002/hep.29189] [PMID: 28370357]
[85]
Liang J, Zhang H, Zhao C, et al. Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. Int J Rheum Dis 2017; 20(9): 1219-26.
[http://dx.doi.org/10.1111/1756-185X.13015] [PMID: 28217916]
[86]
El-Ansary M, Abdel-Aziz I, Mogawer S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep 2012; 8(3): 972-81.
[http://dx.doi.org/10.1007/s12015-011-9322-y] [PMID: 21989829]
[87]
Salama H, Zekri AR, Medhat E, et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther 2014; 5(3): 70.
[http://dx.doi.org/10.1186/scrt459] [PMID: 24886681]
[88]
Suk KT, Yoon JH, Kim MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology 2016; 64(6): 2185-97.
[http://dx.doi.org/10.1002/hep.28693] [PMID: 27339398]
[89]
Zhang YC, Liu W, Fu BS, et al. Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy 2017; 19(2): 194-9.
[http://dx.doi.org/10.1016/j.jcyt.2016.11.005] [PMID: 27964826]
[90]
Wang L, Li J, Liu H, et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 2013; 28 (Suppl. 1): 85-92.
[http://dx.doi.org/10.1111/jgh.12029] [PMID: 23855301]
[91]
Shi M, Liu Z, Wang Y, et al. A Pilot Study of Mesenchymal Stem Cell Therapy for Acute Liver Allograft Rejection. Stem Cells Transl Med 2017; 6(12): 2053-61.
[http://dx.doi.org/10.1002/sctm.17-0134] [PMID: 29178564]
[92]
Shi M, Li YY, Xu RN, et al. Mesenchymal stem cell therapy in decompensated liver cirrhosis: a long-term follow-up analysis of the randomized controlled clinical trial. Hepatol Int 2021; 15(6): 1431-41.
[http://dx.doi.org/10.1007/s12072-021-10199-2] [PMID: 34843069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy