[1]
Ravichandran, S.; Karthikeyan, E. Microwave synthesis-A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3(1), 466-470.
[4]
Sekhon, B.S. Microwave assisted pharmaceutical synthesis: An overview. Int. J. Pharm. Tech. Res., 2010, 2(1), 827-833.
[13]
Sahoo, B.M.; Panda, J.; Banik, B.K. Thermal and non-thermal effects of microwaves in synthesis. J. Indian Chem. Soc., 2018, 95, 1-9.
[14]
Mahato, A.K.; Sahoo, B.M.; Banik, B.K. Microwave-assisted synthesis: Paradigm of Green Chemistry. J. Indian Chem. Soc., 2018, 95, 1-13.
[15]
Agarwal, O.P. Organic chemistry: Reaction and reagents.Krishna Prakashan Media (p) Ltd 2008, 735-738.
[16]
Verma, A.; Sahu, L.; Chaudhary, N.; Dutta, T.; Dewangan, D.; Tripathi, D.K.A. Review: Pyrimidine their chemistry and pharmacological potentials. Asian J. Biochem. Pharmaceut. Res., 2012, 1(2), 1-15.
[17]
Arikkatt, S.D.; Baldwin, M.V.; Joseph, J.; Chandran, M.; Bhat, A.R.; Kumar, K. Pyrimidine derivatives and its biological potential-A review. Int. J. Org. Bio. Org. Chem., 2014, 4(1), 1-5.
[19]
Pratyusha, C.; Poornima, G.; Sandhyarani, K.; Krishnaveni, A.; Brahmaiah, B.; Sreekanth, N. An overview on synthesis and biological activity of pyrimidines. Int. J. Pharm. Sci. Rev. Res., 2013, 3(2), 86-90.
[20]
Dansena, H.; Dhongade, H.J.; Chandrakar, K. Pharmacological potentials of pyrimidine derivative: A review. Asian J. Pharm. Clin. Res., 2015, 8(4), 171-177.
[21]
Brown, D.J.; Mason, S.F. Chemistry of heterocyclic compounds: The pyrimidines. 2008, 6, 31-81.
[22]
Michael, B.S.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed; Wiley-Int, 2007, pp. 102-110.
[25]
Katritzky, A.R.; Rees, C.W. Comprehensive heterocyclic. Chemistry, 1984, 1984, 106.
[27]
Gore, R.P.; Rajput, A.P. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invent. Today, 2013, 5, 148-152.
[30]
Madhvi, A.S.; Jauhar, S.; Desai, K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res., 2012, 4(1), 645-661.
[38]
Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Microwave assisted synthesis of pyrimido[4,5-d]pyrimidine derivatives in dry media. Ukr. Bioorg. Acta, 2009, 1, 1-7.
[39]
Mario, L.A.; Vargas, D.; Francisco, L.A.; Julio, G.M.A. Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl) amino]pentanoate. Molbank, 2020, 4(M1166), 1-5.
[40]
Hassan, S.; Arman, S.S.; Ayoob, B. Three-component process for the synthesis of 4-amino-5-pyrimidinecarbonitriles under thermal aqueous conditions or microwave irradiation. ARKIVOC, 2008, (ii), 115-123.
[43]
Borisagar, M.; Joshi, K.; Ram, H.; Vyas, K.; Nimavat, K. A one-pot microwave irradiation synthesis of 1,2,4-triazolo[1,5-a]pyrimidines. Acta Chim. Pharm. Indica, 2012, 2(2), 101-105.
[44]
Nandini, P.; Krishnakant, W.; Dileep, K. Microwave promoted solvent-free Biginelli reaction for the one pot synthesis of dihydropyrimidin-2-(1H)-ones catalyzed by sulfamic acid. Asian J. Chem., 2011, 23(12), 5217-5219.
[48]
Cudden, C.M. Analgesics and anti-inflammatory drugs; Toxicology Cases for the Clinical and Forensic Laboratory, 2020, pp. 67-74.
[50]
Bhatewara, A.; Jetti, S.R.; Kadre, T.; Paliwal, P.; Jain, S. Microwave assisted synthesis and biological evaluation of dihydropyrimidinone derivatives as anti-inflammatory, antibacterial, and antifungal agents. Int. J. Med. Chem., 2013, 197612, 1-5.
[51]
Patil, P.A.; Bhole, R.P.; Chikhale, R.V.; Bhusari, K.P. Synthesis of 3,4-dihydropyrimidine-2(1H)-one derivatives using microwave for their biological screening. Int. J. Chemtech Res., 2009, 1(2), 373-384.
[56]
Patil, D.R.; Salunkhe, S.M.; Deshmukh, M.B.; Anbhule, P.V. One step synthesis of 6-amino-5-cyano-4-phenyl-2- mercapto pyrimidine using phosphorus pentoxide. The Open Cat. J, 2010, 3, 83-86.
[59]
Youssef, A.M.S.; Fouda, A.M.; Faty, R.M. Microwave assisted synthesis of some new thiazolopyrimidine and pyrimidothiazolopyrimido-pyrimidine derivatives with potential antimicrobial activity. Chem. Cent. J., 2018, 2018, 2-14.
[61]
Panneerselvam, T.; Reddy, M.J. Microwave assisted synthesis and antimicrobial evaluation of novel substituted thiosemicarbazide derivatives of pyrimidine. J. Het. Chem., 2020, 2020, 1-7.
[67]
Bansal, S.; Chaudhary, A.N.; Kothiyal, P. Microwave assisted synthesis and antibacterial activity of pyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2013, 5(S1), 346-348.
[68]
Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 3rd ed; Cambridge University Press: New York, 2008, pp. 327-451.
[72]
Jainey, P.J.; Ishwar, B.K. Microwave assisted synthesis of novel pyrimidines bearing benzene sulfonamides and evaluation of anticancer and antioxidant activities. Asian J. Pharm. Clin. Res., 2014, 7(S1), 111-114.
[74]
Singh, N.; Kshirsagar, S.S.; Nimje, H.M.; Chaudhari, P.S. Microwave assisted synthesis of 4-substituted 1,2,3,4-tetrahydropyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 109-111.
[75]
Sandhu, J.S.; Dhruv, K. Microwave enhanced, solvent free green protocol for the production of 3,4-dihydropyrimidine-2-(1H)-ones using AlCl3.6H2O as a catalyst. Indian J. Chem., 2010, 49B, 360-363.
[82]
Lalpara, J.N.; Hadiyal, S.D.; Radia, A.J.; Dhalani, J.M.; Dubal, G.G. Design and rapid microwave irradiated one-pot synthesis of tetrahydropyrimidine derivatives and their screening in-vitro anti-diabetic activity. Polycycl. Aromat. Compd., 2020, 2020, 1-15.
[83]
Gejalakshmi, S.; Harikrishnan, N.; Thillai, G.G.E.; Divyasri, A. Microwave assisted synthesis of tetrahydropyrmidine and in-silico screening of antidiabetic drug. Int. J. Curr. Pharm. Res., 2020, 12(1), 10-13.
[88]
Rajeev, K.; Tyagi, M.; Sharma, A.K. Current status and future scenario of pyrimidine derivatives having antimicrobial potential. Pharma Chem., 2014, 6(4), 298-320.
[92]
Shilpa, C.; Dipak, S.; Vimukta, S.; Arti, D. Microwave and conventional synthesis of pyrimidine derivatives and their pharmacological activity-A review. J. Pharm. Biomed. Sci., 2012, 21(10), 1-11.