Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Tannic Acid as a Green Cross-linker for Biomaterial Applications

Author(s): Seyed Yasaman Zolfaghari Moghaddam, Esmaeil Biazar*, Javad Esmaeili, Bahareh Kheilnezhad, Fatemeh Goleij and Samaneh Heidari

Volume 23, Issue 13, 2023

Published on: 12 October, 2022

Page: [1320 - 1340] Pages: 21

DOI: 10.2174/1389557522666220622112959

Open Access Journals Promotions 2
Abstract

Plant-derived tannic acid as a green material can play an important role in improving the mechanical and physical properties of biomaterials. Tannic acid can be used as an antioxidant, antimicrobial, and cross-linking agent in biomaterial products due to its unique functional groups. Its active phenolic groups can react with biomaterial functional groups to form bonds that improve performance. In this review, the mechanism of effectiveness of tannic acid as a natural crosslinker in improving the properties of biomaterials for various applications, such as tissue engineering, tissue adhesives, drug delivery, wound healing, and toxicity studies, has been investigated. In general, tannic acid can be a suitable alternative to synthetic crosslinkers in biomaterial applications.

Keywords: Biomaterials, tannic acid, crosslinker, mechanical and physical properties, toxicity studies cross-linking agent.

Graphical Abstract
[1]
Garg, T.; Bilandi, A.; Kapoor, B.; Kumar, S.; Joshi, R. Scaffold: Tissue engineering and regenerative medicine. Int. Res. J. Pharm., 2011, 2(12), 37-42.
[2]
Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7), 1105.
[http://dx.doi.org/10.3390/polym13071105] [PMID: 33808492]
[3]
Kheilnezhad, B.; Hadjizadeh, A. A review: Progress in preventing tissue adhesions from a biomaterial perspective. Biomater. Sci., 2021, 9(8), 2850-2873.
[http://dx.doi.org/10.1039/D0BM02023K] [PMID: 33710194]
[4]
Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol., 2015, 33(6), 362-369.
[http://dx.doi.org/10.1016/j.tibtech.2015.03.008] [PMID: 25887334]
[5]
Indurkar, A.; Pandit, A.; Jain, R.; Dandekar, P. Plant based cross-linkers for tissue engineering applications. J. Biomater. Appl., 2021, 36(1), 76-94.
[http://dx.doi.org/10.1177/0885328220979273] [PMID: 33342347]
[6]
Acharya, V.; Ghosh, A.; Chowdhury, A.R.; Datta, P. Tannic acid-crosslinked chitosan matrices enhance osteogenic differentiation and modulate epigenetic status of cultured cells over glutaraldehyde crosslinking. Soft Mater., 2022, 20(2), 149-160.
[7]
Grabska-Zielińska, S.; Sionkowska, A.; Carvalho, Â.; Monteiro, F.J. Biomaterials with potential use in bone tissue regeneration-collagen/chitosan/silk fibroin scaffolds cross-linked by EDC/NHS. Materials (Basel), 2021, 14(5), 1105.
[http://dx.doi.org/10.3390/ma14051105] [PMID: 33652959]
[8]
Vargas, G.; Acevedo, J.; López, J.; Romero, J. Study of cross-linking of gelatin by ethylene glycol diglycidyl ether. Mater. Lett., 2008, 62(21-22), 3656-3658.
[http://dx.doi.org/10.1016/j.matlet.2008.04.020]
[9]
Zhang, Y.; Zhu, P.C.; Edgren, D. Crosslinking reaction of poly (vinyl alcohol) with glyoxal. J. Polym. Res., 2010, 17(5), 725-730.
[http://dx.doi.org/10.1007/s10965-009-9362-z]
[10]
Medellín-Castillo, N.A.; Isaacs-Páez, E.D.; Rodríguez-Méndez, I.; González-García, R.; Labrada-Delgado, G.J.; Aragón-Piña, A.; García-Arreola, M.E. Formaldehyde and tripolyphosphate crosslinked chitosan hydrogels: Synthesis, characterization and modeling. Int. J. Biol. Macromol., 2021, 183, 2293-2304.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.020] [PMID: 34097967]
[11]
Zhang, G.; Dass, A.; Rawashdeh, A-M.M.; Thomas, J.; Counsil, J.A.; Sotiriou-Leventis, C.; Fabrizio, E.F.; Ilhan, F.; Vassilaras, P.; Scheiman, D.A.; McCorkle, L.; Palczer, A.; Johnston, J.C.; Meador, M.A.; Leventis, N. Isocyanate-crosslinked silica aerogel monoliths: Preparation and characterization. J. Non-Cryst. Solids, 2004, 350, 152-164.
[http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.041]
[12]
Saraydın, D.; Karadag, E.; Işıkver, Y.; Şahiner, N.; Güven, O. The influence of preparation methods on the swelling and network properties of acrylamide hydrogels with crosslinkers. J. Mol. Sci., 2004, 41(4), 419-431.
[13]
Hwang, Y-J.; Larsen, J.; Krasieva, T.B.; Lyubovitsky, J.G. Effect of genipin crosslinking on the optical spectral properties and structures of collagen hydrogels. ACS Appl. Mater. Interfaces, 2011, 3(7), 2579-2584.
[http://dx.doi.org/10.1021/am200416h] [PMID: 21644569]
[14]
Ma, B.; Wang, X.; Wu, C.; Chang, J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen. Biomater., 2014, 1(1), 81-89.
[http://dx.doi.org/10.1093/rb/rbu009] [PMID: 26816627]
[15]
Jöbstl, E.; Howse, J.R.; Fairclough, J.P.A.; Williamson, M.P. Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem., 2006, 54(12), 4077-4081.
[http://dx.doi.org/10.1021/jf053259f] [PMID: 16756328]
[16]
Kenawy, E.; Omer, A.M.; Tamer, T.M.; Elmeligy, M.A.; Eldin, M.S.M. Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. Int. J. Biol. Macromol., 2019, 139, 440-448.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.191] [PMID: 31369787]
[17]
Raucci, M.G.; Alvarez-Perez, M.A.; Demitri, C.; Giugliano, D.; De Benedictis, V.; Sannino, A.; Ambrosio, L. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation. J. Biomed. Mater. Res. A, 2015, 103(6), 2045-2056.
[http://dx.doi.org/10.1002/jbm.a.35343] [PMID: 25293976]
[18]
Hadrich, A.; Dulong, V.; Rihouey, C.; Labat, B.; Picton, L.; Le Cerf, D. Biomimetic hydrogel by enzymatic crosslinking of pullulan grafted with ferulic acid. Carbohydr. Polym., 2020, 250, 116967.
[http://dx.doi.org/10.1016/j.carbpol.2020.116967] [PMID: 33049898]
[19]
Bastos, B.M.; Farias, B.S.; Casati, M.O.; Engelmann, J.I.; Moura, J.M.; Pinto, L.A. Gelatin films from carp skin crosslinked by gallic acid and incorporated with chitosan/tuna lipid fractions. J. Polym. Environ., 2021, 29(7), 2096-2110.
[http://dx.doi.org/10.1007/s10924-020-01995-2]
[20]
Lü, X.; Zhai, W.; Zhou, Y.; Zhou, Y.; Zhang, H.; Chang, J. Crosslinking effect of Nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering. J. Mater. Sci. Mater. Med., 2010, 21(2), 473-480.
[http://dx.doi.org/10.1007/s10856-009-3924-9] [PMID: 19936890]
[21]
Antunes, A.P.M.; Attenburrow, G.; Covington, A.D.; Ding, J. Utilisation of oleuropein as a crosslinking agent in collagenic films. J. Leather Sci. Eng., 2008, 2(1), 17-23.
[22]
Zhai, W.; Lü, X.; Chang, J.; Zhou, Y.; Zhang, H. Quercetin-crosslinked porcine heart valve matrix: Mechanical properties, stability, anti-calcification and cytocompatibility. Acta Biomater., 2010, 6(2), 389-395.
[http://dx.doi.org/10.1016/j.actbio.2009.07.035] [PMID: 19651252]
[23]
Han, B.; Jaurequi, J.; Tang, B.W.; Nimni, M.E. Nimni, Proanthocyanidin: A natural crosslinking reagent for stabilizing collagen matrices, Journal of Biomedical Materials Research Part A: An official journal of the society for biomaterials, the japanese society for biomaterials, and the australian society for biomaterials and the korean society for biomaterials. 2003, 65(1), 118-124.
[24]
Kuo, M-L.; Lee, K-C.; Lin, J-K. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat. Res., 1992, 270(2), 87-95.
[http://dx.doi.org/10.1016/0027-5107(92)90119-M] [PMID: 1383740]
[25]
Yan, W.; Shi, M.; Dong, C.; Liu, L.; Gao, C. Applications of tannic acid in membrane technologies: A review. Adv. Colloid Interface Sci., 2020, 284, 102267.
[http://dx.doi.org/10.1016/j.cis.2020.102267] [PMID: 32966965]
[26]
Kaczmarek, B.; Sionkowska, A.; Otrocka-Domagała, I.; Polkowska, I. In vivo studies of novel scaffolds with tannic acid addition. Polym. Degrad. Stabil., 2018, 158, 26-30.
[http://dx.doi.org/10.1016/j.polymdegradstab.2018.10.018]
[27]
Kaczmarek, B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview. Materials (Basel), 2020, 13(14), E3224.
[http://dx.doi.org/10.3390/ma13143224] [PMID: 32698426]
[28]
Abolfazl Mozaffari, M.M. a, Mazeyar Parvinzadeh Gashti & Masoud Parsania, Effect of tannic acid on properties of electrospun gelatin nanofibres. Indian J. Fibre Text. Res., 2019, 45(2), 153-163.
[29]
Kaczmarek, B.; Sionkowska, A.; Osyczka, A.M. Scaffolds based on chitosan and collagen with glycosaminoglycans cross-linked by tannic acid. Polym. Test., 2018, 65, 163-168.
[http://dx.doi.org/10.1016/j.polymertesting.2017.11.026]
[30]
Guo, Z.; Xie, W.; Lu, J.; Guo, X.; Xu, J.; Xu, W.; Chi, Y.; Takuya, N.; Wu, H.; Zhao, L. Tannic acid-based metal phenolic networks for bio-applications: A review. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(20), 4098-4110.
[http://dx.doi.org/10.1039/D1TB00383F] [PMID: 33913461]
[31]
Bai, Z.; Wang, T.; Zheng, X.; Huang, Y.; Chen, Y.; Dan, W. High strength and bioactivity polyvinyl alcohol/collagen composite hydrogel with tannic acid as cross-linker. Polym. Eng. Sci., 2021, 61(1), 278-287.
[http://dx.doi.org/10.1002/pen.25574]
[32]
Jing, J.; Liang, S.; Yan, Y.; Tian, X.; Li, X. Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. ACS Biomater. Sci. Eng., 2019, 5(9), 4601-4611.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00604] [PMID: 33448833]
[33]
Zhao, Q.; Mu, S.; Long, Y.; Zhou, J.; Chen, W.; Astruc, D.; Gaidau, C.; Gu, H. Tannin‐Tethered gelatin hydrogels with considerable self‐healing and adhesive performances. Macromol. Mater. Eng., 2019, 304(4), 1800664.
[http://dx.doi.org/10.1002/mame.201800664]
[34]
Koopmann, A-K.; Schuster, C.; Torres-Rodríguez, J.; Kain, S.; Pertl-Obermeyer, H.; Petutschnigg, A.; Hüsing, N. Tannin-Based hybrid materials and their applications: A review. Molecules, 2020, 25(21), 4910.
[http://dx.doi.org/10.3390/molecules25214910] [PMID: 33114152]
[35]
Guo, J.; Sun, W.; Kim, J.P.; Lu, X.; Li, Q.; Lin, M.; Mrowczynski, O.; Rizk, E.B.; Cheng, J.; Qian, G.; Yang, J. Development of tannin-inspired antimicrobial bioadhesives. Acta Biomater., 2018, 72, 35-44.
[http://dx.doi.org/10.1016/j.actbio.2018.03.008] [PMID: 29555464]
[36]
Lee, H-Y.; Hwang, C-H.; Kim, H-E.; Jeong, S-H. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr. Polym., 2018, 186, 290-298.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.056] [PMID: 29455990]
[37]
Li, B.; Whalen, J.J.; Humayun, M.S.; Thompson, M.E. Reversible bioadhesives using tannic acid primed thermally‐responsive polymers. Adv. Funct. Mater., 2020, 30(5), 1907478.
[http://dx.doi.org/10.1002/adfm.201907478]
[38]
Nam, H.G.; Nam, M.G.; Yoo, P.J.; Kim, J-H. Hydrogen bonding-based strongly adhesive coacervate hydrogels synthesized using poly(N-vinylpyrrolidone) and tannic acid. Soft Matter, 2019, 15(4), 785-791.
[http://dx.doi.org/10.1039/C8SM02144A] [PMID: 30638244]
[39]
Xu, J.; Li, Y.; Chen, Y.; Wang, L.; Liao, M. Preparation and characterization of a novel polysialic acid/gelatin composite hydrogels cross-linked by tannic acid to improve wound healing after cesarean section dressing. J. Biomater. Sci. Polym. Ed., 2021, 32(15), 1927-1943.
[http://dx.doi.org/10.1080/09205063.2021.1950961] [PMID: 34240688]
[40]
Li, Y.; Fu, R.; Zhu, C.; Fan, D. An antibacterial bilayer hydrogel modified by tannic acid with oxidation resistance and adhesiveness to accelerate wound repair. Colloids Surf. B Biointerfaces, 2021, 205, 111869.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111869] [PMID: 34044334]
[41]
Feng, X.; Hou, X.; Cui, C.; Sun, S.; Sadik, S.; Wu, S.; Zhou, F. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Engineered Regeneration, 2021, 2, 57-62.
[http://dx.doi.org/10.1016/j.engreg.2021.05.002]
[42]
He, X.; Liu, X.; Yang, J.; Du, H.; Chai, N.; Sha, Z.; Geng, M.; Zhou, X.; He, C. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. Carbohydr. Polym., 2020, 247, 116689.
[http://dx.doi.org/10.1016/j.carbpol.2020.116689] [PMID: 32829817]
[43]
Preman, N.K. e S, S.P.; Prabhu, A.; Shaikh, S.B.; C, V.; Barki, R.R.; Bhandary, Y.P.; Rekha, P.D.; Johnson, R.P. Bioresponsive supramolecular hydrogels for hemostasis, infection control and accelerated dermal wound healing. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(37), 8585-8598.
[http://dx.doi.org/10.1039/D0TB01468K] [PMID: 32820296]
[44]
López, C.M.; Pich, A. Supramolecular stimuli‐responsive microgels crosslinked by tannic acid. Macromol. Rapid Commun., 2018, 39(6), e1700808.
[http://dx.doi.org/10.1002/marc.201700808] [PMID: 29388283]
[45]
Zheng, L.Y.; Shi, J.M.; Chi, Y.H. Tannic acid physically cross‐linked responsive hydrogel. Macromol. Chem. Phys., 2018, 219(19), 1800234.
[http://dx.doi.org/10.1002/macp.201800234]
[46]
Azadikhah, F.; Karimi, A.R.; Yousefi, G.H.; Hadizadeh, M. Dual antioxidant-photosensitizing hydrogel system: Cross-linking of chitosan with tannic acid for enhanced photodynamic efficacy. Int. J. Biol. Macromol., 2021, 188, 114-125.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.006] [PMID: 34358602]
[47]
Jia, C.; Cao, D.; Ji, S.; Zhang, X.; Muhoza, B. Tannic acid-assisted cross-linked nanoparticles as a delivery system of eugenol: The characterization, thermal degradation and antioxidant properties. Food Hydrocoll., 2020, 104, 105717.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105717]
[48]
Ho-Yong Lee, C-H.H. Hyoun-Ee, Kim.; Seol-Ha, Jeong. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydrate Polymers, 2017, 186, 290-298.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.056]
[49]
Gough, J.E.; Scotchford, C.A.; Downes, S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res., 2002, 61(1), 121-130.
[http://dx.doi.org/10.1002/jbm.10145] [PMID: 12001254]
[50]
Warang, M.; Waradkar, A.; Patwardhan, A.; Agrawal, N.; Kane, D.; Parulkar, G.; Khandeparkar, J. Metabolic changes and clinical outcomes in patients undergoing on and off pump coronary artery bypass surgery. Indian J. Thoracic Cardiovasc. Surg., 2007, 23(1), 9-15.
[http://dx.doi.org/10.1007/s12055-007-0003-z]
[51]
Yu, S.; Ji, Y.; Guo, C.; Lu, D.; Geng, Z.; Pei, D.; Liu, Q. A dual-cross-linked hydrogel based on hyaluronic acid/gelatin tethered via tannic acid: Mechanical properties’ enhancement and stability control. Iran. Polym. J., 2021, 30(3), 307-317.
[http://dx.doi.org/10.1007/s13726-020-00891-9]
[52]
Baldwin, A.; Uy, L.; Frank-Kamenetskii, A.; Strizzi, L.; Booth, B.W. The in vivo biocompatibility of novel tannic acid-collagen type I injectable bead scaffold material for breast reconstruction post-lumpectomy. J. Biomater. Appl., 2020, 34(9), 1315-1329.
[http://dx.doi.org/10.1177/0885328219899238] [PMID: 31903835]
[53]
Lee, J.; Yeo, M.; Kim, W.; Koo, Y.; Kim, G.H. Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure. Int. J. Biol. Macromol., 2018, 110, 497-503.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.105] [PMID: 29054525]
[54]
Zhou, L.; Fan, L.; Yi, X.; Zhou, Z.; Liu, C.; Fu, R.; Dai, C.; Wang, Z.; Chen, X.; Yu, P.; Chen, D.; Tan, G.; Wang, Q.; Ning, C. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano, 2018, 12(11), 10957-10967.
[http://dx.doi.org/10.1021/acsnano.8b04609] [PMID: 30285411]
[55]
Clua-Ferré, L.; de Chiara, F.; Rodríguez-Comas, J.; Comelles, J.; Martinez, E.; Godeau, A.L.; García-Alamán, A.; Gasa, R.; Ramón-Azcón, J. Collagen-Tannic acid spheroids for β-cell encapsulation fabricated using a 3D bioprinter. Adv. Mater. Technol., 2022, 2101696-2101708.
[http://dx.doi.org/10.1002/admt.202101696]
[56]
Hussain, Z.; Ullah, I.; Liu, X.; Shen, W.; Ding, P.; Zhang, Y.; Gao, T.; Mansoorianfar, M.; Gao, T.; Pei, R. Tannin-reinforced iron substituted hydroxyapatite nanorods functionalized collagen-based composite nanofibrous coating as a cell-instructive bone-implant interface scaffold. Chem. Eng. J., 2022, 438, 135611.
[http://dx.doi.org/10.1016/j.cej.2022.135611]
[57]
Modaresifar, K.; Azizian, S.; Hadjizadeh, A. Nano/biomimetic tissue adhesives development: From research to clinical application. Polym. Rev. (Phila. Pa.), 2016, 56(2), 329-361.
[http://dx.doi.org/10.1080/15583724.2015.1114493]
[58]
Guo, Q.; Chen, J.; Wang, J.; Zeng, H.; Yu, J. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale, 2020, 12(3), 1307-1324.
[http://dx.doi.org/10.1039/C9NR09780E] [PMID: 31907498]
[59]
Lee, H.; Lee, B.P.; Messersmith, P.B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007, 448(7151), 338-341.
[http://dx.doi.org/10.1038/nature05968] [PMID: 17637666]
[60]
Cholewinski, A.; Yang, F.K.; Zhao, B. Algae–mussel-inspired hydrogel composite glue for underwater bonding. Mater. Horiz., 2019, 6(2), 285-293.
[http://dx.doi.org/10.1039/C8MH01421C]
[61]
Xie, L.; Gong, L.; Zhang, J.; Han, L.; Xiang, L.; Chen, J.; Liu, J.; Yan, B.; Zeng, H. A wet adhesion strategy via synergistic cation–π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(38), 21944-21952.
[http://dx.doi.org/10.1039/C9TA08152F]
[62]
Zhao, Y.; Wu, Y.; Wang, L.; Zhang, M.; Chen, X.; Liu, M.; Fan, J.; Liu, J.; Zhou, F.; Wang, Z. Bio-inspired reversible underwater adhesive. Nat. Commun., 2017, 8(1), 2218.
[http://dx.doi.org/10.1038/s41467-017-02387-2] [PMID: 29263405]
[63]
Dompé, M.; Cedano-Serrano, F.J.; Heckert, O.; van den Heuvel, N.; van der Gucht, J.; Tran, Y.; Hourdet, D.; Creton, C.; Kamperman, M. Thermoresponsive complex coacervate-based underwater adhesive. Adv. Mater., 2019, 31(21), e1808179.
[http://dx.doi.org/10.1002/adma.201808179] [PMID: 30924992]
[64]
Rahim, M.A.; Kristufek, S.L.; Pan, S.; Richardson, J.J.; Caruso, F. Phenolic building blocks for the assembly of functional materials. Angew. Chem. Int. Ed. Engl., 2019, 58(7), 1904-1927.
[http://dx.doi.org/10.1002/anie.201807804] [PMID: 30221440]
[65]
Bai, S.; Zhang, X.; Cai, P.; Huang, X.; Huang, Y.; Liu, R.; Zhang, M.; Song, J.; Chen, X.; Yang, H. A silk-based sealant with tough adhesion for instant hemostasis of bleeding tissues. Nanoscale Horiz., 2019, 4(6), 1333-1341.
[http://dx.doi.org/10.1039/C9NH00317G]
[66]
Pan, F.; Ye, S.; Wang, R.; She, W.; Liu, J.; Sun, Z.; Zhang, W. Hydrogel networks as underwater contact adhesives for different surfaces. Mater. Horiz., 2020, 7(8), 2063-2070.
[http://dx.doi.org/10.1039/D0MH00176G]
[67]
Wang, Z.; Zhang, S.; Zhao, S.; Kang, H.; Wang, Z.; Xia, C.; Yu, Y.; Li, J. Facile biomimetic self-coacervation of tannic acid and polycation: Tough and wide pH range of underwater adhesives. Chem. Eng. J., 2021, 404, 127069.
[http://dx.doi.org/10.1016/j.cej.2020.127069]
[68]
Chen, C.; Yang, X.; Li, S.; Zhang, C.; Ma, Y.; Ma, Y.; Gao, P.; Gao, S.; Huang, X. Tannic acid–thioctic acid hydrogel: A novel injectable supramolecular adhesive gel for wound healing. Green Chem., 2021, 23(4), 1794-1804.
[http://dx.doi.org/10.1039/D0GC02909B]
[69]
Gao, X.; Dai, Q.; Yao, L.; Dong, H.; Li, Q.; Cao, X. A medical adhesive used in a wet environment by blending tannic acid and silk fibroin. Biomater. Sci., 2020, 8(9), 2694-2701.
[http://dx.doi.org/10.1039/D0BM00322K] [PMID: 32267256]
[70]
Spencer, C.M.; Cai, Y.; Martin, R.; Gaffney, S.H.; Goulding, P.N.; Magnolato, D.; Lilley, T.H.; Haslam, E. Polyphenol complexation-some thoughts and observations. Phytochemistry, 1988, 27(8), 2397-2409.
[http://dx.doi.org/10.1016/0031-9422(88)87004-3]
[71]
Du, X.; Hou, Y.; Wu, L.; Li, S.; Yu, A.; Kong, D.; Wang, L.; Niu, G. An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(26), 5682-5693.
[http://dx.doi.org/10.1039/D0TB00640H] [PMID: 32500887]
[72]
Fan, X.; Wang, S.; Fang, Y.; Li, P.; Zhou, W.; Wang, Z.; Chen, M.; Liu, H. Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Mater. Sci. Eng. C, 2020, 109, 110649.
[http://dx.doi.org/10.1016/j.msec.2020.110649] [PMID: 32228936]
[73]
Lee, D.; Hwang, H.; Kim, J-S.; Park, J.; Youn, D.; Kim, D.; Hahn, J.; Seo, M.; Lee, H. VATA: A poly (vinyl alcohol)-and tannic acid-based nontoxic underwater adhesive. ACS Appl. Mater. Interfaces, 2020, 12(18), 20933-20941.
[http://dx.doi.org/10.1021/acsami.0c02037] [PMID: 32233363]
[74]
Hong, S.; Wang, Y.; Park, S.Y.; Lee, H. Progressive fuzzy cation-π assembly of biological catecholamines. Sci. Adv., 2018, 4(9), eaat7457.
[http://dx.doi.org/10.1126/sciadv.aat7457] [PMID: 30202784]
[75]
Yu, G.; Dan, N.; Dan, W.; Chen, Y. Wearable tissue adhesive ternary hydrogel of n-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan, tannic acid, and polyacrylamide. Ind. Eng. Chem. Res., 2022, 61(16), 5502-5513.
[76]
Cheng, L.; Cai, Z.; Ye, T.; Yu, X.; Chen, Z.; Yan, Y.; Qi, J.; Wang, L.; Liu, Z.; Cui, W.; Deng, L. Injectable polypeptide‐protein hydrogels for promoting infected wound healing. Adv. Funct. Mater., 2020, 30(25), 2001196.
[http://dx.doi.org/10.1002/adfm.202001196]
[77]
Kamoun, E.A.; Kenawy, E.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res., 2017, 8(3), 217-233.
[http://dx.doi.org/10.1016/j.jare.2017.01.005] [PMID: 28239493]
[78]
Barrett, D.A.; Hartshome, M.S.; Hussain, M.A.; Shaw, P.N.; Davies, M.C. Resistance to nonspecific protein adsorption by poly(vinyl alcohol) thin films adsorbed to a poly(styrene) support matrix studied using surface plasmon resonance. Anal. Chem., 2001, 73(21), 5232-5239.
[http://dx.doi.org/10.1021/ac010368u] [PMID: 11721924]
[79]
He, F.; Jiao, H.; Tian, Y.; Zhao, L.; Liao, X.; Fan, Z.; Liu, B. Facile and large-scale synthesis of curcumin/PVA hydrogel: Effectively kill bacteria and accelerate cutaneous wound healing in the rat. J. Biomater. Sci. Polym. Ed., 2018, 29(4), 325-343.
[http://dx.doi.org/10.1080/09205063.2017.1417002] [PMID: 29235413]
[80]
Khorasani, M.T.; Joorabloo, A.; Moghaddam, A.; Shamsi, H. MansooriMoghadam, Z. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol., 2018, 114, 1203-1215.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.010] [PMID: 29634965]
[81]
Park, H-H.; Ko, S-C.; Oh, G-W.; Heo, S-J.; Kang, D-H.; Bae, S-Y.; Jung, W-K. Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application. J. Biomater. Sci. Polym. Ed., 2018, 29(7-9), 972-983.
[http://dx.doi.org/10.1080/09205063.2017.1374030] [PMID: 28853319]
[82]
Wang, L.; Li, X.; Sun, T.; Tsou, Y.H.; Chen, H.; Xu, X. Dual‐functional dextran‐PEG hydrogel as an antimicrobial biomedical material. Macromol. Biosci., 2018, 18(2), 1700325.
[http://dx.doi.org/10.1002/mabi.201700325] [PMID: 29193746]
[83]
Liao, J.; Jia, Y.; Wang, B.; Shi, K.; Qian, Z. Injectable hybrid poly (ε-caprolactone)-b-poly (ethylene glycol)-b-poly (ε-caprolactone) porous microspheres/alginate hydrogel cross-linked by calcium gluconate crystals deposited in the pores of microspheres improved skin wound healing. ACS Biomater. Sci. Eng., 2018, 4(3), 1029-1036.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00860] [PMID: 33418786]
[84]
Lamei, E.; Hasanzadeh, M. Fabrication of chitosan nanofibrous scaffolds based on tannic acid and metal-organic frameworks for hemostatic wound dressing applications. Int. J. Biol. Macromol., 2022, 208, 409-420.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.03.117] [PMID: 35339500]
[85]
Mark, H.; Bikales, N.; Overberger, C.; Menges, G. Encyclopedia of polymer science and engineering.elastomeric: Photographic applications to polyesters; Wiley-Interscience: New York, 1987, p. 11.
[86]
Agili, F.A.; Aly, S.F. Physicochemical characterization and release properties of oral drug delivery: A pH-sensitive nanocomposite based on sodium alginate–pectin–tannic acid–silver. Polym. Polymer Compos., 2020, 28(8-9), 598-608.
[http://dx.doi.org/10.1177/0967391119895073]
[87]
Smith, R.A.; Walker, R.C.; Levit, S.L.; Tang, C. Single-step self-assembly and physical crosslinking of PEGylated chitosan nanoparticles by tannic acid. Polymers (Basel), 2019, 11(5), 749.
[http://dx.doi.org/10.3390/polym11050749] [PMID: 31035564]
[88]
Popa, M.; Constantin, C.; Ochiuz, L.; Desbrieres, J.; Peptu, C. Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly (vinyl alcohol)/tannic acid hydrogels. Cellul. Chem. Technol., 2018, 52, 353-370.
[89]
Torrieri, G.; Ferreira, M.P.A.; Shahbazi, M-A.; Talman, V.; Karhu, S.T.; Pohjolainen, L.; Carvalho, C.; Pinto, J.F.; Hirvonen, J.; Ruskoaho, H.; Balasubramanian, V.; Santos, H.A. In Vitro evaluation of the therapeutic effects of dual-drug loaded spermine-acetalated dextran nanoparticles coated with tannic acid for cardiac applications. Adv. Funct. Mater., 2022, 32(5), 2109032.
[http://dx.doi.org/10.1002/adfm.202109032]
[90]
Shi, W.; Kong, Y.; Su, Y.; Kuss, M.A.; Jiang, X.; Li, X.; Xie, J.; Duan, B. Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(35), 7182-7195.
[http://dx.doi.org/10.1039/D1TB00156F] [PMID: 33651063]
[91]
Zhang, W.; Ling, C.; Liu, H.; Zhang, A.; Mao, L.; Wang, J.; Chao, J.; Backman, L.J.; Yao, Q.; Chen, J. Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. Chem. Eng. J., 2020, 396, 125232.
[http://dx.doi.org/10.1016/j.cej.2020.125232]
[92]
Abouelmagd, S.A.; Meng, F.; Kim, B-K.; Hyun, H.; Yeo, Y. Tannic acid-mediated surface functionalization of polymeric nanoparticles. ACS Biomater. Sci. Eng., 2016, 2(12), 2294-2303.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00497] [PMID: 28944286]
[93]
Kaczmarek, B.; Miłek, O.; Nadolna, K.; Owczarek, A.; Kleszczyński, K.; Osyczka, A.M. Normal and cancer cells response on the thin films based on chitosan and tannic acid. Toxicol. In Vitro, 2020, 62, 104688.
[http://dx.doi.org/10.1016/j.tiv.2019.104688] [PMID: 31648044]
[94]
Cometta, S.; Bock, N.; Suresh, S.; Dargaville, T.R.; Hutmacher, D.W. Antibacterial albumin-tannic acid coatings for scaffold-guided breast reconstruction. Front. Bioeng. Biotechnol., 2021, 9, 638577-638585.
[http://dx.doi.org/10.3389/fbioe.2021.638577] [PMID: 33869154]

© 2024 Bentham Science Publishers | Privacy Policy