Review Article

悉尼酮:合成,反应性和生物活性

卷 30, 期 10, 2023

发表于: 03 October, 2022

页: [1122 - 1144] 页: 23

弟呕挨: 10.2174/0929867329666220620123050

价格: $65

摘要

悉尼酮是最著名的介离子化合物之一。自1935年由Earl和Mecknay合成以来,许多研究表明,悉尼酮的化学行为,物理和生物学特性使其成为有机化学中最有用的化合物。悉尼酮与亲偶极试剂(炔烃或烯烃)进行热1,3-偶极环加成反应,得到仅含有吡唑部分的衍生物,这些衍生物具有多种应用,例如制药和农用化学品。然而,悉尼酮环加成烃与炔烃的反应需要苛刻的条件,如高温和长反应时间,使所得产物的区域选择性较差。为了克服这些限制,已经开发了名为CuSAC(铜催化的Sydnone-Al炔烃环加成)和SPSAC(菌株促进的Sydnone-Al炔烃环加成)的新反应,从而产生了具有有趣的恒定动力学的吡唑。

关键词: 悉尼酮,介离子,杂环,官能化,1,3-偶极环加成,双正交反应,生物活性,应用

[1]
Earl, J.C.; Mackney, A.W. 204. The action of acetic anhydride on N-nitrosophenylglycine and some of its derivatives. J. Chem. Soc., 1935, 899-900.
[http://dx.doi.org/10.1039/jr9350000899]
[2]
Badami, B.V. Mesoionic compounds. Resonance, 2006, 11(10), 40-48.
[http://dx.doi.org/10.1007/BF02835674]
[3]
Raymond, C.F.J.; Martin, J.N. In synthetic applications of 1,3-Dipolar cycloaddition chemistry toward heterocycles and natural products John Wiley & Sons: New York, 2002; 59, pp. 1-81.
[4]
Patel, Y.M.; Patel, K.C. Synthesis and biological evaluation of new sydnone based derivatives. J. Saudi Chem. Soc., 2015, 19(2), 193-199.
[http://dx.doi.org/10.1016/j.jscs.2012.02.005]
[5]
Shih, M.H.; Xu, Y.Y.; Yang, Y.S.; Lin, G.L. A facile synthesis and antimicrobial activity evaluation of sydnonyl-substituted thiazolidine derivatives. Molecules, 2015, 20(4), 6520-6532.
[http://dx.doi.org/10.3390/molecules20046520] [PMID: 25871371]
[6]
Dunkley, C.S.; Thoman, C.J. Synthesis and biological evaluation of a novel phenyl substituted sydnone series as potential antitumor agents. Bioorg. Med. Chem. Lett., 2003, 13(17), 2899-2901.
[http://dx.doi.org/10.1016/S0960-894X(03)00487-6] [PMID: 14611853]
[7]
Taj, T.; Kamble, R.R.; Gireesh, T.M.; Hunnur, R.K.; Margankop, S.B. One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities. Eur. J. Med. Chem., 2011, 46(9), 4366-4373.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.007] [PMID: 21802797]
[8]
Shih, M.H.; Chen, J.C.; Lin, G.L.; Lin, T.T.; Sun, M.H. Novel synthesis of palladium (II) complexes derived from 3-arylsydnone-4-carbaldehyde N(4)-phenylthiosemicarba-zones and biological activity. J. Pharm. Pharmacol., 2014, 66(1), 73-83.
[http://dx.doi.org/10.1111/jphp.12157] [PMID: 24164544]
[9]
Decuypère, E.; Plougastel, L.; Audisio, D.; Taran, F. Sydnone-alkyne cycloaddition: Applications in synthesis and bioconjugation. Chem. Commun. (Camb.), 2017, 53(84), 11515-11527.
[http://dx.doi.org/10.1039/C7CC06405E] [PMID: 28959814]
[10]
Küçükgüzel, Ş.G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97, 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[11]
Liu, X.; Xiang, L.; Li, J.; Wu, Y.; Zhang, K. Stoichiometric imbalance-promoted step-growth polymerization based on self-accelerating 1, 3-dipolar cycloaddition click reactions. Polym. Chem., 2020, 11(1), 125-134.
[http://dx.doi.org/10.1039/C9PY01362H]
[12]
Kacprzak, K.; Skiera, I.; Piasecka, M.; Paryzek, Z. Alkaloids and isoprenoids modification by copper (I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry): Toward new functions and molecular architectures. Chem. Rev., 2016, 116(10), 5689-5743.
[http://dx.doi.org/10.1021/acs.chemrev.5b00302] [PMID: 27115045]
[13]
Estupinan, D.; Gegenhuber, T.; Blinco, J.P.; Barner-Kowollik, C.; Barner, L. Self-reporting fluorescent step-growth raft polymers based on nitrile imine-mediated tetrazole-ene cycloaddition chemistry. ACS Macro Lett., 2017, 6(3), 229-234.
[http://dx.doi.org/10.1021/acsmacrolett.7b00024]
[14]
Hodgson, S.M.; Bakaic, E.; Stewart, S.A.; Hoare, T.; Adronov, A. Properties of poly (ethylene glycol)hydrogels cross-linked via strain-promoted alkyne–azide cycloaddition (SPAAC). Biomacromolecules, 2016, 17(3), 1093-1100.
[http://dx.doi.org/10.1021/acs.biomac.5b01711] [PMID: 26842783]
[15]
Boutureira, O.; Bernardes, G.J. Advances in chemical protein modification. Chem. Rev., 2015, 115(5), 2174-2195.
[http://dx.doi.org/10.1021/cr500399p] [PMID: 25700113]
[16]
An, P.; Lewandowski, T.M.; Erbay, T.G.; Liu, P.; Lin, Q. Sterically shielded, stabilized nitrile imine for rapid bioorthogonal protein labeling in live cells. J. Am. Chem. Soc., 2018, 140(14), 4860-4868.
[http://dx.doi.org/10.1021/jacs.8b00126] [PMID: 29565582]
[17]
Albota, F.; Drăghici, C.; Caira, M.R.; Dumitrascu, F. 1,3-Dipolar cycloaddition between acetylenic dipolarophiles and sydnone-N-ylides as bis (1, 3-dipoles). Tetrahedron, 2015, 71(48), 9095-9100.
[http://dx.doi.org/10.1016/j.tet.2015.10.021]
[18]
Baker, W.; Ollis, W.D. Meso-ionic compounds. Q. Rev. Chem. Soc., 1957, 11(1), 15-29.
[http://dx.doi.org/10.1039/qr9571100015]
[19]
Stewart, F.H.C. The chemistry of the sydnones. Chem. Rev., 1964, 64(2), 129-147.
[http://dx.doi.org/10.1021/cr60228a004]
[20]
Baker, W.; Ollis, W.D.; Poole, V.D. Cyclic mesoionic compounds. Part I. The structure of the sydnones and related compounds. J. Chem. Soc., 1949, 307-314.
[http://dx.doi.org/10.1039/jr9490000307]
[21]
Bantreil, X.; Pétry, N.; Lamaty, F. Coordination complexes involving sydnones as ligands. Dalton Trans., 2019, 48(42), 15753-15761.
[http://dx.doi.org/10.1039/C9DT03115D] [PMID: 31593195]
[22]
Kier, L.B.; Roche, E.B. Molecular orbital calculations of the electronic structure of the sydnones. J. Pharm. Sci., 1966, 55(8), 807-812.
[http://dx.doi.org/10.1002/jps.2600550811]
[23]
Browne, D.L.; Harrity, J.P. Recent developments in the chemistry of sydnones. Tetrahedron, 2010, 66(3), 553-568.
[http://dx.doi.org/10.1016/j.tet.2009.10.085]
[24]
Ollis, W.D.; Ramsden, C.A. Meso-ionic compounds. Adv. Heterocycl. Chem., 1976, 19, 1-122.
[http://dx.doi.org/10.1016/S0065-2725(08)60230-5]
[25]
Baker, W.; Ollis, W.D.; Poole, V.D. Cyclicy; meso-ionic compounds. Part III. Further properties of the sydnones and the mechanism of their formation. J. Chem. Soc., 1950, 1542-1551.
[http://dx.doi.org/10.1039/jr9500001542]
[26]
Rai, N.S.; Kalluraya, B.; Lingappa, B.; Shenoy, S.; Puranic, V.G. Convenient access to 1,3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. Eur. J. Med. Chem., 2008, 43(8), 1715-1720.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.002] [PMID: 17923171]
[27]
Pétry, N.; Vanderbeeken, T.; Malher, A.; Bringer, Y.; Retailleau, P.; Bantreil, X.; Lamaty, F. Mechanosynthesis of sydnone-containing coordination complexes. Chem. Commun. (Camb.), 2019, 55(64), 9495-9498.
[http://dx.doi.org/10.1039/C9CC04673A] [PMID: 31328215]
[28]
Butković, K.; Vuk, D.; Marinić, Ž.; Penić, J.; Šindler-Kulyk, M. Synthesis and photochemistry of 3-(o-stilbeneyl)-4-H/Me/Ph-sydnones; intramolecular cyclization to 1, 2-benzodiazepines and/or quinolines. Tetrahedron, 2010, 66(48), 9356-9362.
[http://dx.doi.org/10.1016/j.tet.2010.10.013]
[29]
Favre, C.; Friscourt, F. Fluorogenic sydnone-modified coumarins switched-on by copper-free click chemistry. Org. Lett., 2018, 20(14), 4213-4217.
[http://dx.doi.org/10.1021/acs.orglett.8b01587] [PMID: 29995429]
[30]
Decuypère, E.; Riomet, M.; Sallustrau, A.; Bregant, S.; Thai, R.; Pieters, G.; Clavier, G.; Audisio, D.; Taran, F. Sydnone-coumarins as clickable turn-on fluorescent sensors for molecular imaging. Chem. Commun. (Camb.), 2018, 54(76), 10758-10761.
[http://dx.doi.org/10.1039/C8CC06070C] [PMID: 30198046]
[31]
Shao, Z.; Zhang, C.; Zhu, X.; Wang, Y.; Xu, W.; Chen, Y.; Liang, Y. Design of a 1,8-naphthalimide-based Off-On type bioorthogonal reagent for fluorescent imaging in live cells. Chin. Chem. Lett., 2019, 30(12), 2169-2172.
[http://dx.doi.org/10.1016/j.cclet.2019.06.023]
[32]
Dumitrascu, F.; Draghici, C.; Vuluga, D.; Caproiu, M.T. New pyrazoles by 1,3-dipolar cycloaddition reactions between sydnones and activated alkynes. Rev. Roum. Chim., 2006, 51(4), 255.
[33]
Il’ya, A.C.; Moiseev, S.K. Recent developments in the chemistry of sydnones and sydnone imines. Adv. Heterocycl. Chem., 2020, 131, 49-164.
[http://dx.doi.org/10.1016/bs.aihch.2019.11.003]
[34]
Tien, H.J.; Nonaka, T.; Sekine, T. Anodic chlorination and bromination of 3-substituted sydnone compounds. Chem. Lett., 1979, 8(3), 283-286.
[http://dx.doi.org/10.1246/cl.1979.283]
[35]
Aleem, A.S.; Turnbull, K. Halogenation of 3-(3, 5-dimethoxyphenyl)sydnone. Org. Prep. Proced. Int., 2015, 47(1), 87-93.
[http://dx.doi.org/10.1080/00304948.2015.983810]
[36]
Bose, A.; Mal, P. Electrophilic aryl-halogenation using N-halosuccinimides under ball-milling. Tetrahedron Lett., 2014, 55(13), 2154-2156.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.064]
[37]
Parrino, F.; Camera Roda, G.; Loddo, V.; Palmisano, L. Elemental bromine production by TiO2 photocatalysis and/or ozonation. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10391-10395.
[http://dx.doi.org/10.1002/anie.201603635] [PMID: 27461437]
[38]
Ding, M.F.; Cheng, K.F.; Chen, Y.N.; Lin, S.T. The electrophilic substitution of sydnones:The reaction with 3-aryl-4-phenylsydnones, 3-arylmethylsydnones and 3-phenyle-thylsydnone. Univ. J. Chem., 2013, 1(3), 113-120.
[http://dx.doi.org/10.13189/ujc.2013.010306]
[39]
Kale, S.B.; Jori, P.K.; Thatikonda, T.; Gonnade, R.G.; Das, U. 1,6-Conjugate-addition-induced [2+1] annulation of para-quinone methides and pyrazolones: Synthesis of bis-spiro compounds with contiguous quaternary spiro-centers. Org. Lett., 2019, 21(19), 7736-7740.
[http://dx.doi.org/10.1021/acs.orglett.9b02641] [PMID: 31544462]
[40]
Zysman-Colman, E.; Arias, K.; Siegel, J.S. Synthesis of arylbromides from arenes and N-bromosuccinimide (NBS) in acetonitrile. A convenient method for aromatic bromination. Can. J. Chem., 2009, 87(2), 440-447.
[http://dx.doi.org/10.1139/V08-176]
[41]
Bovonsombat, P.; Teecomegaet, P.; Kulvaranon, P.; Pandey, A.; Chobtumskul, K.; Tungsirisurp, S.; Choosakoonkriang, S. Regioselective monobromination of aromatics via a halogen bond acceptor-donor interaction of catalytic thioamide and N-bromosuccinimide. Tetrahedron, 2017, 73(46), 6564-6572.
[http://dx.doi.org/10.1016/j.tet.2017.10.005]
[42]
Han, B.; Zheng, Z.; Wu, F.; Wang, A. One-pot synthesis of α-bromoacetals of ketones from secondary alcohols and 1,3-dibromo-5, 5-dimethylhydantoin (DBDMH) in ethylene glycol. Synth. Commun., 2017, 47(24), 2387-2394.
[http://dx.doi.org/10.1080/00397911.2017.1378681]
[43]
Taj, T.; Raikar, S.V.; Kamble, R.R. Synthetic utility of sydnones to couple pharmacologically important heterocycles for antitubercular activity. Arab. J. Chem., 2014, 7(6), 900-905.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.029]
[44]
Brown, D.C.; Turnbull, K. Improved method for the iodination of sydnones. Synth. Commun., 2013, 43(23), 3233-3237.
[http://dx.doi.org/10.1080/00397911.2013.779713]
[45]
Nashashibi, I.F.; Tumey, J.M.; Owens, B.L.; Turnbull, K. Chlorination of 3-arylsydnones with iodine monochloride. Org. Prep. Proced. Int., 2017, 49(1), 59-63.
[http://dx.doi.org/10.1080/00304948.2017.1260398]
[46]
Dumitraşcu, F.; Mitan, C.I.; Drăghici, C.; Barbu, L. Liebigs Ann., 1997, 197, 2613-2616.
[http://dx.doi.org/10.1002/jlac.199719971229]
[47]
Turnbull, K.; Sun, C.; Krein, D.M. The sydnone ring as an ortho-director of lithiation. 2.1 Dilithiation of 3-phenylsydnone and regiospecific o-aryl acylation using N-methoxy-N-methylamides. Tetrahedron Lett., 1998, 39(12), 1509-1512.
[http://dx.doi.org/10.1016/S0040-4039(98)00069-0]
[48]
Turnbull, K.; Krein, D.M. ortho-(Substituted silyl) phenylsydnones via a novel sydnone to phenyl ring, lithiation-induced silicon migration. Synth. Commun., 2003, 33(12), 2061-2067.
[http://dx.doi.org/10.1081/SCC-120021032]
[49]
Turnbull, K.; Nashashibi, I.F. 4‐Substituted ortho‐(silylated phenyl)sydnones via a lithiation‐induced silicon migration and subsequent reaction with electrophiles. Synth. Commun., 2007, 37(6), 915-919.
[http://dx.doi.org/10.1080/00397910601163562]
[50]
Fuchigami, T.; Chen, C-S.; Nonaka, T.; Yeh, M-Y.; Tien, H-J. Synthesis of sydnone compounds substituted by heteroatom groups at the 4-position. Bull. Chem. Soc. Jpn., 1986, 59(2), 483-486.
[http://dx.doi.org/10.1246/bcsj.59.483]
[51]
Tien, H-J.; Fang, G-M.; Lin, S-T.; Tien, L-L. A Facile One-pot synthesis of 4-acyl and 4-(1-hydroxyethyl)sydnones. J. Chin. Chem. Soc. (Taipei), 1992, 39(1), 107-110.
[http://dx.doi.org/10.1002/jccs.199200017]
[52]
Tegginamath, G.; Kamble, R.R.; Taj, T.; Kattimani, P.P.; Meti, G.Y. Synthesis of novel imidazo [2,1-b][1,3,4]thiadiazoles appended to sydnone as anticancer agents. Med. Chem. Res., 2013, 22(9), 4367-4375.
[http://dx.doi.org/10.1007/s00044-012-0441-z]
[53]
Dorababu, A.; Kamble, R.; Kattimani, P.; Kariduraganavar, M.; Kamble, A. Ceric ammonium nitrate catalysed stereoselective synthesis of β-aminoketones using 3-aryl-4-formylsydnones. Lett. Org. Chem., 2014, 11(4), 244-249.
[http://dx.doi.org/10.2174/1570178611999140221163716]
[54]
Gireesh, T.; Kamble, R.R.; Kattimani, P.P.; Dorababu, A.; Manikantha, M.; Hoskeri, J.H. Synthesis of sydnone substituted Biginelli derivatives as hyaluronidase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(9), 645-653.
[http://dx.doi.org/10.1002/ardp.201300118] [PMID: 23908008]
[55]
Kamble, A.A.; Kamble, R.R.; Kumbar, M.N.; Tegginamath, G. Pyridine-catalyzed synthesis of quinoxalines as anticancer and anti-tubercular agents. Med. Chem. Res., 2016, 25(6), 1163-1174.
[http://dx.doi.org/10.1007/s00044-016-1558-2]
[56]
Ghasemnejad-Bosra, H.; Haghdadi, M.; Gholampour-Azizi, I. N-Bromosuccinimide (NBS) as promoter for acylation of sydnones in the presence of acetic anhydride under neutral conditions. Heterocycles, 2008, 75(2), 391-395.
[http://dx.doi.org/10.3987/COM-07-11185]
[57]
Azarifar, D.; Bosra, H.G.; Tajbaksh, M. 1,3‐Dibromo‐5,5‐dimethylhydantoin (DBH) as an efficient promoter for acetylation of 3‐arylsydnones in the presence of acetic anhydride under neutral conditions. J. Heterocycl. Chem., 2007, 44(2), 467-469.
[http://dx.doi.org/10.1002/jhet.5570440231]
[58]
Turnbull, K.; George, J.C. Acylation of sydnones with acetic anhydride in the presence of montmorillonite K-10. Synth. Commun., 1996, 26(14), 2757-2764.
[http://dx.doi.org/10.1080/00397919608004593]
[59]
Rumple, A.C. Routes to acylated sydnones utilizing microwave chemistry, a Thesis. Wright State University: OhioLINK 2010.
[60]
Balaguer, A.M. Routes to Acylated Sydnone Esters, A thesis. Wright State University: OhioLINK 2011.
[61]
Balaguer, A.; Selhorst, R.; Turnbull, K. Metal triflate-catalyzed Friedel-Crafts acetylation of 3-phenylsydnone. Synth. Commun., 2013, 43(12), 1626-1632.
[http://dx.doi.org/10.1080/00397911.2012.657384]
[62]
Srivastava, K.P.; Mishra, P.K.; Kumari, S. Microwave irradiated Friedel-Crafts diacylation of sydnones. Rasayan J. Chem., 2010, 3(1), 140-144.
[63]
Bhosale, S.K.; Deshpande, S.R.; Wagh, R.D. Ultrasound assisted one pot synthesis, spectral, antimicrobial and antioxidant studies of novel 4-[1-oxo-3-(substituted phenyl)-2-propenyl]-3-substituted phenyl sydnones. Asian J. Chem., 2015, 27(8), 3063.
[http://dx.doi.org/10.14233/ajchem.2015.18864]
[64]
Yashunskii, V.G.; Vasil’eva, V.F.; Skender, Y.N. Zhurnal Obshchei Khimii, 1959, 29, 2712.
[65]
a) Asundaria, S.T.; Pannecouque, C.; De Clercq, E.; Patel, K.C. Sydnone sulfonamide derivatives as antibacterial, antifungal, antiproliferative and anti-HIV agents. Pharm. Chem. J., 2014, 48(4), 260-268.
[http://dx.doi.org/10.1007/s11094-014-1090-y];
b) Asundaria, S.T.; Patel, K.C. Synthesis, characterization and antimicrobial activity of thiazole, benzothiazole and pyrimidine derivatives bearing sydnone moieties. Pharm. Chem. J., 2012, 45(12), 725-731.
[http://dx.doi.org/10.1007/s11094-012-0712-5];
c) Patel, Y.M.; Patel, K.C. Synthesis and biological evaluation of new sydnone based derivatives. J. Saudi Chem. Soc., 2015, 19(2), 193-199.
[http://dx.doi.org/10.1016/j.jscs.2012.02.005];
d) Akbari, V.K.; Chothani, N.J.; Patel, Y.M.; Patel, K.C. Synthesis and Biological activity of some Novel Chalcone derivatives containing [1, 3, 4] oxadiazole-2(3H)-thione. Indian J. Chem.-B, 2015, 54B(1), 93-102.;
e) Asundaria, S.T.; Patel, N.S.; Patel, K.C. Crystal structure of ethyl 2-(4-chloro¬anilino)acetate. Org. Commun., 2010, 3(2), 30-38.
[66]
Dubey, R.; Chaudhary, N.; Kumar, R.; Panwar, H. Study of mesoionic compounds: Synthesis and pharmacological evaluation of several 2-[{(4-substituted-1-sulphonyl) sydnon-3-yl}]-1,3,4-thiadiazino(6,5-b)indoles as antimicrobial, insecticidal and antihelmintic agents. Orient. J. Chem., 2014, 30(1), 271-278.
[http://dx.doi.org/10.13005/ojc/300134]
[67]
Savaliya, P.P.; Vikunjana, K.A.; Keshav, C.P. Studies on synthesis of some new sydnone containing compounds and their biological activities. Chem. Sci. Trans., 2013, 2(2), 589-597.
[http://dx.doi.org/10.7598/cst2013.424]
[68]
Eade, R.A.; Earl, J.C. The sydnones; a new class of compound containing two adjacent nitrogen atoms. J. Chem. Soc., 1946, 591-593.
[http://dx.doi.org/10.1039/jr9460000591] [PMID: 20282426]
[69]
Turnbull, K.; Blackburn, T.L.; Miller, J.J. Nitration of sydnones. Reaction with 3-arylsydnones containing electron-donors on the aryl ring. J. Heterocycl. Chem., 1996, 33(2), 485-487.
[http://dx.doi.org/10.1002/jhet.5570330244]
[70]
Tien, H.J.; Lin, S.T.; Sheu, J.T. Nitration of 3-aryl-4-acetylsydnones: Preparation of 3-(3-nitroaryl)sydnones by using acetyl group as a blocking group. Can. J. Chem., 1994, 72(7), 1610-1613.
[http://dx.doi.org/10.1139/v94-201]
[71]
Weintraub, P.M.; Bambury, R.E. Heterocycles. II. Nitration of 3-arylsydnones. Tetrahedron Lett., 1969, 10(7), 579-581.
[http://dx.doi.org/10.1016/S0040-4039(01)87753-4]
[72]
Yang, Y.S.; Li, Q.S.; Sun, S.; Zhang, Y.B.; Wang, X.L.; Zhang, F.; Tang, J.F.; Zhu, H.L. Design, modification and 3D QSAR studies of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives as inhibitors of B-Raf kinase. Bioorg. Med. Chem., 2012, 20(20), 6048-6058.
[http://dx.doi.org/10.1016/j.bmc.2012.08.043] [PMID: 22985962]
[73]
Zuo, Y.; He, X.; Ning, Y.; Tang, Q.; Xie, M.; Hu, W.; Shang, Y. Substituent-oriented C-N bond formation via N-H insertion or Wolff rearrangement of 5-aryl-1H-pyrazoles and diazo compounds. Org. Biomol. Chem., 2019, 17(45), 9766-9771.
[http://dx.doi.org/10.1039/C9OB01868A] [PMID: 31697287]
[74]
Huisgen, R.; Grashey, R.; Gotthardt, H. 1,3‐Dipolare cycloadditionen, XXXVI. Pyrazole aus sydnonen und α. β‐ungesättigten nitrilen oder carbonylverbindungen. Chem. Ber., 1968, 101(3), 829-838.
[http://dx.doi.org/10.1002/cber.19681010312]
[75]
Breugst, M.; Reissig, H.U. The Huisgen Reaction: Milestones of the 1,3‐dipolar cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(30), 12293-12307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[76]
Gimadiev, T.R.; Klimchuk, O.; Nugmanov, R.I.; Madzhidov, T.I.; Varnek, A. Sydnone-alkyne cycloaddition: Which factors are responsible for reaction rate? J. Mol. Struct., 2019, 1198, 126897.
[http://dx.doi.org/10.1016/j.molstruc.2019.126897]
[77]
Dürüst, Y.; Sağırlı, A.; Kariuki, B.M.; Knight, D.W. [1,3]-Dipolar cycloaddition of N-aryl sydnones to benzothiophene 1,1-dioxide, 1-cyclopropylprop-2-yn-1-ol and 1-(prop-2-ynyl)-1H-indole. Tetrahedron, 2014, 70(35), 6012-6019.
[http://dx.doi.org/10.1016/j.tet.2014.04.083]
[78]
Bouton, J.; Van Calenbergh, S.; Hullaert, J. Sydnone ribosides as a platform for the synthesis of pyrazole c-nucleosides: A unified synthesis of formycin b and pyrazofurin. Org. Lett., 2020, 22(23), 9287-9291.
[http://dx.doi.org/10.1021/acs.orglett.0c03523] [PMID: 33210930]
[79]
Brown, A.W.; Harrity, J.P.A. Expanding available pyrazole substitution patterns by sydnone cycloaddition reactions. Tetrahedron, 2017, 73(22), 3160-3172.
[http://dx.doi.org/10.1016/j.tet.2017.04.049]
[80]
Foster, R.S.; Adams, H.; Jakobi, H.; Harrity, J.P. Synthesis of 4-fluoromethylsydnones and their participation in alkyne cycloaddition reactions. J. Org. Chem., 2013, 78(8), 4049-4064.
[http://dx.doi.org/10.1021/jo400381a] [PMID: 23548035]
[81]
Handa, N.V.; Li, S.; Gerbec, J.A.; Sumitani, N.; Hawker, C.J.; Klinger, D. Fully aromatic high performance thermoset via sydnone–alkyne cycloaddition. J. Am. Chem. Soc., 2016, 138(20), 6400-6403.
[http://dx.doi.org/10.1021/jacs.6b03381] [PMID: 27180658]
[82]
Chen, F.; Liu, F.M.; Shi, H.; Chen, S.L. A facile access to 1,3,4-trisubstituted pyrazoles via 1,3-dipolar cycloaddition of 3-arylsydnones with α,β-unsaturated ketones. Monatshefte für Chem.-. Chem. Monthly, 2013, 144(6), 879-884.
[http://dx.doi.org/10.1007/s00706-012-0901-7]
[83]
Yang, Y.; Kuang, C. Facile synthesis of 1-arylpyrazoles. Synthesis, 2015, 47(15), 2281-2284.
[http://dx.doi.org/10.1055/s-0034-1380658]
[84]
Butković, K.; Marinić, Z.; Molčanov, K.; Kojić-Prodić, B.; Šindler-Kulyk, M. Photochemical and thermal intramolecular 1,3-dipolar cycloaddition reactions of new o-stilbene-methylene-3-sydnones and their synthesis. Beilstein J. Org. Chem., 2011, 7(1), 1663-1670.
[http://dx.doi.org/10.3762/bjoc.7.196] [PMID: 22238545]
[85]
Huang, W.; Jin, Z.; Shi, Z.; Intemann, J.J.; Li, M.; Luo, J.; Jen, A.K.Y. Spontaneous thermal cross-linking of a sydnone-containing side-chain polymer with maleimides through a convergent [3+2] dual cycloaddition/cycloreversion process for electro-optics. Polym. Chem., 2013, 4(24), 5760-5767.
[http://dx.doi.org/10.1039/c3py00694h]
[86]
Yang, Y.; Kuang, C.; Jin, H.; Yang, Q.; Zhang, Z. Efficient synthesis of 1,3-diaryl-4-halo-1H-pyrazoles from 3-arylsydnones and 2-aryl-1,1-dihalo-1-alkenes. Beilstein J. Org. Chem., 2011, 7(1), 1656-1662.
[http://dx.doi.org/10.3762/bjoc.7.195] [PMID: 22238544]
[87]
Zeng, Y.; Liu, F. 1,3‐Dipolar cycloaddition in the synthesis of novel isoxazoline/pyrazole derivatives bearing 1,2,3‐triazoles moiety. J. Heterocycl. Chem., 2013, 50(3), 696-702.
[http://dx.doi.org/10.1002/jhet.1527]
[88]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5]
[89]
Decuypere, E.; Specklin, S.; Gabillet, S.; Audisio, D.; Liu, H.; Plougastel, L.; Kolodych, S.; Taran, F. Copper(I)-catalyzed cycloaddition of 4-bromosydnones and alkynes for the regioselective synthesis of 1,4,5-trisubstituted pyrazoles. Org. Lett., 2015, 17(2), 362-365.
[http://dx.doi.org/10.1021/ol503482a] [PMID: 25545588]
[90]
Comas-Barceló, J.; Foster, R.S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J.P. Cu-promoted sydnone cycloadditions of alkynes: Scope and mechanism studies. Chemistry, 2015, 21(8), 3257-3263.
[http://dx.doi.org/10.1002/chem.201406118] [PMID: 25557473]
[91]
Comas-Barceló, J.; Blanco-Ania, D.; Van Den Broek, S.A.; Nieuwland, P.J.; Harrity, J.P.; Rutjes, F.P. Cu-catalysed pyrazole synthesis in continuous flow. Catal. Sci. Technol., 2016, 6(13), 4718-4723.
[http://dx.doi.org/10.1039/C5CY02247A]
[92]
Brown, A.W.; Harrity, J.P. Direct arylation of sydnones with aryl chlorides toward highly substituted pyrazoles. J. Org. Chem., 2015, 80(4), 2467-2472.
[http://dx.doi.org/10.1021/acs.joc.5b00143] [PMID: 25635522]
[93]
Lakeland, C.P.; Watson, D.W.; Harrity, J.P.A. Exploiting synergistic catalysis for an ambient temperature photocycloaddition to pyrazoles. Chemistry, 2020, 26(1), 155-159.
[http://dx.doi.org/10.1002/chem.201904210] [PMID: 31657486]
[94]
Liu, H.; Audisio, D.; Plougastel, L.; Decuypere, E.; Buisson, D.A.; Koniev, O.; Kolodych, S.; Wagner, A.; Elhabiri, M.; Krzyczmonik, A.; Forsback, S.; Solin, O.; Gouverneur, V.; Taran, F. Ultrafast click chemistry with fluorosydnones. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 12073-12077.
[http://dx.doi.org/10.1002/anie.201606495] [PMID: 27560312]
[95]
Murrey, H.E.; Judkins, J.C.; Am Ende, C.W.; Ballard, T.E.; Fang, Y.; Riccardi, K.; Di, L.; Guilmette, E.R.; Schwartz, J.W.; Fox, J.M.; Johnson, D.S. Systematic evaluation of bioorthogonal reactions in live cells with clickable HaloTag ligands: Implications for intracellular imaging. J. Am. Chem. Soc., 2015, 137(35), 11461-11475.
[http://dx.doi.org/10.1021/jacs.5b06847] [PMID: 26270632]
[96]
Ros, E.; Bellido, M.; Verdaguer, X.; Ribas de Pouplana, L.; Riera, A. Synthesis and application of 3-bromo-1,2,4,5-tetrazine for protein labeling to trigger click-to-release biorthogonal reactions. Bioconjug. Chem., 2020, 31(3), 933-938.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00052] [PMID: 32057238]
[97]
a) Fu, Y.; Finney, N.S. Small-molecule fluorescent probes and their design. RSC Advances, 2018, 8(51), 29051-29061.;
b) Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past,present and future. Chem. Soc. Rev., 2017, 46(23), 7105-7123.;
c) Daly, B.; Leng, J.; deSilva, A.P. Current developments in fluorescent PET (photoinduced electron transfer) sensors andswitches. Chem. Soc. Rev., 2015, 44(13), 4203-4211.
[PMID: 25695939]
[98]
Richard, M.; Truillet, C.; Tran, V.L.; Liu, H.; Porte, K.; Audisio, D.; Roche, M.; Jego, B.; Cholet, S.; Fenaille, F.; Kuhnast, B.; Taran, F.; Specklin, S. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone-cycloalkyne click reaction. Chem. Commun. (Camb.), 2019, 55(70), 10400-10403.
[http://dx.doi.org/10.1039/C9CC05486C] [PMID: 31402360]
[99]
Plougastel, L.; Lamaa, D.; Yen-Pon, E.; Audisio, D.; Taran, F. Fluorogenic probes based onpolycyclic sydnone scaffolds. Tetrahedron, 2020, 76(51), 131250.
[http://dx.doi.org/10.1016/j.tet.2020.131250]
[100]
Wallace, S.; Chin, J.W. Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition. Chem. Sci. (Camb.), 2014, 5(5), 1742-1744.
[http://dx.doi.org/10.1039/C3SC53332H]
[101]
Favre, C.; de Cremoux, L.; Badaut, J.; Friscourt, F. Sydnone reporters for highly fluorogenic copper-free click ligations. J. Org. Chem., 2018, 83(4), 2058-2066.
[http://dx.doi.org/10.1021/acs.joc.7b03004] [PMID: 29388773]
[102]
Shum, J.; Zhang, P.Z.; Lee, L.C.C.; Lo, K.K.W. Bioorthogonal phosphorogenic rhenium (i) polypyridine sydnone complexes for specific lysosome labeling. ChemPlusChem, 2020, 85(7), 1374-1378.
[http://dx.doi.org/10.1002/cplu.202000029] [PMID: 32207563]
[103]
Lee, L.C.C.; Cheung, H.M.H.; Liu, H.W.; Lo, K.K.W. Exploitation of environment‐sensitive luminophores in the design of sydnone‐based bioorthogonal imaging reagents. Chemistry, 2018, 24(53), 14064-14068.
[http://dx.doi.org/10.1002/chem.201803452] [PMID: 29989299]
[104]
Plougastel, L.; Koniev, O.; Specklin, S.; Decuypere, E.; Créminon, C.; Buisson, D.A.; Wagner, A.; Kolodych, S.; Taran, F. 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1.0]-nonyne. Chem. Commun. (Camb.), 2014, 50(66), 9376-9378.
[http://dx.doi.org/10.1039/C4CC03816A] [PMID: 25005038]
[105]
Plougastel, L.; Pattanayak, M.R.; Riomet, M.; Bregant, S.; Sallustrau, A.; Nothisen, M.; Wagner, A.; Audisio, D.; Taran, F. Sydnone-based turn-on fluorogenic probes for no-wash protein labeling and in-cell imaging. Chem. Commun. (Camb.), 2019, 55(31), 4582-4585.
[http://dx.doi.org/10.1039/C9CC01458F] [PMID: 30931444]
[106]
Bizetto, E.L.; Noleto, G.R.; Echevarria, A.; Canuto, A.V.; Cadena, S.M.S.C. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages. Mol. Cell. Biochem., 2012, 360(1-2), 15-21.
[http://dx.doi.org/10.1007/s11010-011-1038-4] [PMID: 21877148]
[107]
Asma, K.B.; Manju, N.; Chandra, M.M. Synthesis, antimicrobial, antioxidant and molecular docking study of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles. J. Med. Chem. Drug Des., 2018, 105(1), 1-6.
[108]
Jagadeesh, K.; Revankar, S.P. Analgesic effect of thiozolyl thiourea sydnones in albino rats. Int. J. Sci. Appl. Res., 2015, 2(7), 11-16.
[109]
Abdualkader, A.M.; Taher, M.; Nik Idirs, N.Y. Mesoionic sydnone: A review in their chemical and biological properties. Int. J. Pharm. Pharm. Sci., 2017, 9(8), 1-9.
[http://dx.doi.org/10.22159/ijpps.2017v9i8.18774]
[110]
Brandt, A.P. Pires, Ado.R.; Rocha, M.E.M.; Noleto, G.R.; Acco, A.; de Souza, C.E.A.; Echevarria, A.; Canuto, A.V.; Cadena, S.M. Sydnone SYD-1 affects the metabolic functions of isolated rat hepatocytes. Chem. Biol. Interact., 2014, 218, 107-114.
[http://dx.doi.org/10.1016/j.cbi.2014.05.002] [PMID: 24836382]
[111]
Galuppo, L.F.; Dos Reis Lívero, F.A.; Martins, G.G.; Cardoso, C.C.; Beltrame, O.C.; Klassen, L.M.B.; Canuto, A.V.; Echevarria, A.; Telles, J.E.; Klassen, G.; Acco, A. Sydnone 1: A mesoionic compound with antitumoral and haematological effects in vivo. Basic Clin. Pharmacol. Toxicol., 2016, 119(1), 41-50.
[http://dx.doi.org/10.1111/bcpt.12545] [PMID: 26709053]
[112]
Hegde, J.C.; Girish, K.S.; Adhikari, A.; Kalluraya, B. Novel one-pot synthesis of aziridines carrying sydnone moiety and their biological studies. Synth. Commun., 2013, 43(2), 301-308.
[http://dx.doi.org/10.1080/00397911.2011.599102]
[113]
Kalluraya, B.; Manju, N.; Sharath, C.L. Synthesis and antioxidant activity study of carbothioamide and their corresponding thiazole derivatives. J. Heterocycl. Chem., 2020, 57(8), 3105-3115.
[http://dx.doi.org/10.1002/jhet.4018]
[114]
Gozzi, G.J. Pires, Ado.R.; Martinez, G.R.; Rocha, M.E.M.; Noleto, G.R.; Echevarria, A.; Canuto, A.V.; Cadena, S.M. The antioxidant effect of the mesoionic compound SYD-1 in mitochondria. Chem. Biol. Interact., 2013, 205(3), 181-187.
[http://dx.doi.org/10.1016/j.cbi.2013.07.004] [PMID: 23867904]
[115]
Asundaria, S.T.; Pannecouque, C.; De Clercq, E.; Supuran, C.T.; Patel, K.C. Synthesis of novel biologically active methylene derivatives of sydnones. Med. Chem. Res., 2013, 22(12), 5752-5763.
[http://dx.doi.org/10.1007/s00044-013-0567-7]
[116]
Du, S.; Hu, X.; Shao, X.; Qian, X. Novel trifluoromethyl sydnone derivatives: Design, synthesis and fungicidal activity. Bioorg. Med. Chem. Lett., 2021, 44, 128114.
[http://dx.doi.org/10.1016/j.bmcl.2021.128114] [PMID: 34015501]
[117]
Yelamaggad, C.V.; Mathews, M.; Hiremath, U.S.; Rao, D.S.; Prasad, S.K. Self-assembly of chiral mesoionic heterocycles into smectic phases: A new class of polar liquid crystal. Tetrahedron Lett., 2005, 46(15), 2623-2626.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.084]
[118]
Intemann, J.J.; Huang, W.; Jin, Z.; Shi, Z.; Yang, X.; Yang, J.; Jen, A.K.Y. Cascading retro-diels–alder cycloreversion and sydnone-maleimide based double 1,3-dipolar cycloaddition for quantitative thermal cross-linking of an amorphous polymer solid. ACS Macro Lett., 2013, 2(3), 256-259.
[http://dx.doi.org/10.1021/mz4000267]
[119]
Zhang, J.; Zhang, Q.; Zhou, S.; Liu, Y.; Huang, W. Synthesis and characterization of amphiphilic miktoarm star polymers based on sydnone-maleimide double cycloaddition. Polym. Chem., 2018, 9(2), 203-212.
[http://dx.doi.org/10.1039/C7PY01476G]
[120]
Santhi, N.; Madhumitha, J. Molecular interaction studies in binary liquid mixture through ultrasonic measurements at 303.15 K. Int. J. Adv. Chem., 2014, 2(1), 12-16.
[121]
Cassel, S.; Rico-Lattes, I.; Lattes, A. Zwitterionic and mesoionic liquids: Molecular aggregation in 3-methylsydnone. Sci. China Chem., 2010, 53(9), 2063-2069.
[http://dx.doi.org/10.1007/s11426-010-4062-4]
[122]
Nambu, N.; Yamamoto, J.; Yamaguchi, K.; Sasaki, Y. Physicochemical properties of 3-propyl-4-propylsydnone as solvent for lithium battery electrolytes. Electrochemistry (Tokyo), 2012, 80(10), 780-782.
[http://dx.doi.org/10.5796/electrochemistry.80.780]
[123]
Luecke, A.L.; Wiechmann, S.; Freese, T.; Schmidt, A. Suzuki–miyaura cross-coupling reactions in acetic acid employing sydnone-derived catalyst systems. Synlett, 2017, 28(15), 1990-1993.
[http://dx.doi.org/10.1055/s-0036-1589059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy