Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Heme Oxygenase-1 may Mediate Early Inflammatory Response of Intracerebral Hemorrhage through Toll-like Receptor 4 Signaling Pathway

Author(s): Yuejia Song, Ke Li, Zhen Zhang, Qi Liu, Yu Wang and Jiping Qi*

Volume 19, Issue 2, 2022

Published on: 05 July, 2022

Page: [181 - 187] Pages: 7

DOI: 10.2174/1567202619666220614153209

Price: $65

Abstract

Objective: The aim of this study was to investigate whether heme oxygenase-1 (HO-1) promotes an early neuroinflammatory response after intracerebral hemorrhage (ICH) by regulating the toll-like receptor 4 (TLR4) signaling pathway.

Methods: We used a stereotaxic instrument to induce a mouse model of ICH through collagenase. We divided the participants into a control group, an ICH group, and an ICH and zinc protoporphyrin IX (ZnPP) group. The temporal expression pattern and cell localization of HO-1 and TLR4 after the ICH were detected by immunofluorescence and western blot; after the expression of HO-1 was inhibited, the expression levels of the TLR4 protein, the downstream molecule myeloid differentiation factor 88 (MyD88), the Toll and interleukin-1 receptor (TIR) -domain-containing adapter-inducing interferon-β (TRIF) and the inflammatory factors were measured by western blotting.

Results: Immunofluorescence showed that HO-1 and TLR4 had similar temporal expression patterns and cellular localization after ICH, and we found that inhibiting HO-1 reduces the expression of TLR4 protein pathways, including TLR4, MyD88, TRIF, and related inflammatory factors, by studying the inhibitor ZnPP.

Conclusion: These results indicate that HO-1 may promote early neuroinflammation after ICH through the TLR4/MyD88/TRIF signaling pathway.

Keywords: Heme oxygenase-1, toll-like receptor 4, intracerebral hemorrhage, microglia, inflammation, neuroinflammation.

[1]
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13(7): 420-33.
[http://dx.doi.org/10.1038/nrneurol.2017.69] [PMID: 28524175]
[2]
Siddiqui FM, Langefeld CD, Moomaw CJ, et al. Use of statins and outcomes in intracerebral hemorrhage patients. Stroke 2017; 48(8): 2098-104.
[http://dx.doi.org/10.1161/STROKEAHA.117.017358] [PMID: 28663510]
[3]
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 2017; 54(3): 1874-86.
[http://dx.doi.org/10.1007/s12035-016-9785-6] [PMID: 26894396]
[4]
Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: Current approaches to acute management. Lancet 2018; 392(10154): 1257-68.
[http://dx.doi.org/10.1016/S0140-6736(18)31878-6] [PMID: 30319113]
[5]
Zhang Z, Song Y, Zhang Z, et al. Distinct role of heme oxygenase-1 in early- and late-stage intracerebral hemorrhage in 12-month-old mice. J Cereb Blood Flow Metab 2017; 37(1): 25-38.
[http://dx.doi.org/10.1177/0271678X16655814] [PMID: 27317654]
[6]
Lan X, Han X, Li Q, Wang J. (-)-Epicatechin, a natural flavonoid compound, protects astrocytes against hemoglobin toxicity via Nrf2 and AP-1 signaling pathways. Mol Neurobiol 2017; 54(10): 7898-907.
[http://dx.doi.org/10.1007/s12035-016-0271-y] [PMID: 27864733]
[7]
Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007; 130(Pt 6): 1643-52.
[http://dx.doi.org/10.1093/brain/awm095] [PMID: 17525142]
[8]
Lin S, Yin Q, Zhong Q, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflam 2012; 9(1): 46.
[http://dx.doi.org/10.1186/1742-2094-9-46] [PMID: 22394415]
[9]
Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 2011; 70(4): 646-56.
[http://dx.doi.org/10.1002/ana.22528] [PMID: 22028224]
[10]
Li H, Xu H, Wen H, et al. Overexpression of LH3 reduces the incidence of hypertensive intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2019; 39(3): 547-61.
[http://dx.doi.org/10.1177/0271678X18815791] [PMID: 30516406]
[11]
Fang Y, Tian Y, Huang Q, et al. Deficiency of TREK-1 potassium channel exacerbates blood-brain barrier damage and neuroinflammation after intracerebral hemorrhage in mice. J Neuroinflam 2019; 16(1): 96.
[http://dx.doi.org/10.1186/s12974-019-1485-5] [PMID: 31072336]
[12]
Lan X, Han X, Li Q, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun 2017; 61: 326-39.
[http://dx.doi.org/10.1016/j.bbi.2016.12.012] [PMID: 28007523]
[13]
Xiong XY, Liu L, Wang FX, et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage. Circulation 2016; 134(14): 1025-38.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021881] [PMID: 27576776]
[14]
Carpenter AM, Singh IP, Gandhi CD, Prestigiacomo CJ. Genetic risk factors for spontaneous intracerebral haemorrhage. Nat Rev Neurol 2016; 12(1): 40-9.
[http://dx.doi.org/10.1038/nrneurol.2015.226] [PMID: 26670299]
[15]
Urday S, Kimberly WT, Beslow LA, et al. Targeting secondary injury in intracerebral haemorrhage--perihaematomal oedema. Nat Rev Neurol 2015; 11(2): 111-22.
[http://dx.doi.org/10.1038/nrneurol.2014.264] [PMID: 25623787]
[16]
Wilson D, Adams ME, Robertson F, Murphy M, Werring DJ. Investigating intracerebral haemorrhage. BMJ 2015; 350(10): h2484.
[http://dx.doi.org/10.1136/bmj.h2484] [PMID: 25994363]
[17]
Wang Y, Song Y, Pang Y, et al. miR-183-5p alleviates early injury after intracerebral hemorrhage by inhibiting heme oxygenase-1 expression. Aging (Albany NY) 2020; 12(13): 12869-95.
[http://dx.doi.org/10.18632/aging.103343] [PMID: 32602850]
[18]
Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel) 2017; 5(4): 34.
[http://dx.doi.org/10.3390/vaccines5040034] [PMID: 28976923]
[19]
Nath KA, Belcher JD, Nath MC, et al. Role of TLR4 signaling in the nephrotoxicity of heme and heme proteins. Am J Physiol Renal Physiol 2018; 314(5): F906-14.
[http://dx.doi.org/10.1152/ajprenal.00432.2017] [PMID: 28978536]
[20]
Sudan K, Vijayan V, Madyaningrana K, et al. TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic Biol Med 2019; 137: 131-42.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.024] [PMID: 31026585]
[21]
Yuan B, Shen H, Lin L, Su T, Huang Z, Yang Z. Scavenger receptor SRA attenuates TLR4-induced microglia activation in intracerebral hemorrhage. J Neuroimmunol 2015; 289: 87-92.
[http://dx.doi.org/10.1016/j.jneuroim.2015.10.006] [PMID: 26616876]
[22]
Shi J, Yu T, Song K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol 2021; 41: 101954.
[23]
Detsika MG. LIANOS EA, Song K. Regulation of complement activation by heme Oxygenase-1 (HO-1) in kidney injury. Antioxidants 2021; 10: 1.
[24]
Deng S, Lius S, Jin P, et al. Albumin reduces oxidative stress and neuronal apoptosis via the ERK/Nrf2/HO-1 pathway after intracerebral hemorrhage in rats. Oxid Med Cell Longev 2021.
[25]
Guo X, Cao P, Lian X, et al. The neuroprotective effect of phillyrin in intracerebral hemorrhagic mice is produced by activation of the Nrf2 signaling pathway. Eur J Pharmacol 2021; 909: 174439.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy