Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Bioadhesive Nanoparticles as Potent Drug Delivery Carriers

Author(s): Seda Rençber, Ece Ö. Bülbül, Zeynep A. Senyigit, Neslihan Ü. Okur* and Panoraia I. Siafaka

Volume 30, Issue 23, 2023

Published on: 31 October, 2022

Page: [2604 - 2637] Pages: 34

DOI: 10.2174/0929867329666220613111635

Price: $65

Open Access Journals Promotions 2
Abstract

Background: In recent years, numerous scientists have gained interest in nanotechnology- based systems, especially for biomedical applications. Then, nanocarriers present tunable abilities and can be easily functionalized to target specific epithelial cells, tissues, and organs, while various materials can be chosen and generate nanosized particles. At present, nanoparticles that possess bioadhesion have been studied as potent drug carriers since they can easily penetrate and target organs.

Objective: Aim of this study was to explore the various applications of the bioadhesive nanoparticles found in the literature.

Methods: Authors have studied the literature finding that bioadhesive nanoparticles can be administered via routes such as oral, topical, ocular, dermal, vaginal, etc., according to the clinician’s opinion and treatment choice. Therefore, the knowledge of general characteristics of bioadhesive nanoparticles, the bioadhesion theory, and other properties of nanoparticles should be known for developing innovative bioadhesive drug nanocarriers.

Results: In this review article, the authors state the current knowledge of theories. In addition, the present categories of nanoparticles and their basic characteristics are also discussed. Finally, the biomedical applications of bioadhesive nanocarriers and the several administration routes are extensively reviewed.

Conclusion: The review article aims to cover the most current bioadhesive nanoparticles for drug delivery to assist any scientist who desires to study or develop innovative bioadhesive formulations.

Keywords: Biodhesion, bioadhesive molecules, bioadhesive formulations, bioadhesive nanoparticles, administration routes, applications.

[1]
Siafaka, P.I.; Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[2]
Biswas, A.K.; Islam, M.R.; Choudhury, Z.S.; Mostafa, A.; Kadir, M.F. Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5(4), 043001.
[http://dx.doi.org/10.1088/2043-6262/5/4/043001]
[3]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[4]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[5]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2010, 110(4), 2574-2574.
[http://dx.doi.org/10.1021/cr900197g] [PMID: 18543879]
[6]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[7]
Keck, C.M.; Müller, R.H. Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm., 2013, 84(3), 445-448.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.001] [PMID: 23333302]
[8]
Pontes, J.F.; Grenha, A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials (Basel), 2020, 10(2), E183.
[http://dx.doi.org/10.3390/nano10020183] [PMID: 31973051]
[9]
Karthivashan, G.; Ganesan, P.; Park, S.Y.; Kim, J.S.; Choi, D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv., 2018, 25(1), 307-320.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
[10]
Ye, H.; Shen, Z.; Yu, L.; Wei, M.; Li, Y. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2018, 474(2211), 20170845.
[http://dx.doi.org/10.1098/rspa.2017.0845] [PMID: 29662344]
[11]
Poon, W.; Zhang, X.; Nadeau, J. Nanoparticle drug formulations for cancer diagnosis and treatment. Crit. Rev. Oncog., 2014, 19(3-4), 223-245.
[http://dx.doi.org/10.1615/CritRevOncog.2014011563] [PMID: 25271432]
[12]
Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev., 2012, 41(9), 3679-3698.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[13]
Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation, characterization and application. Int. Res. J. Pharm., 2011, 1(6), 228-234.
[http://dx.doi.org/10.7897/2230-8407.04408]
[14]
Bailly, A-L.; Correard, F.; Popov, A.; Tselikov, G.; Chaspoul, F.; Appay, R.; Al-Kattan, A.; Kabashin, A.V.; Braguer, D.; Esteve, M-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep., 2019, 9(1), 12890.
[http://dx.doi.org/10.1038/s41598-019-48748-3] [PMID: 31501470]
[15]
Haute, D.V.; Berlin, J.M. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: Lessons from gold nanoparticles. Ther. Deliv., 2017, 8(9), 763-774.
[http://dx.doi.org/10.4155/tde-2017-0057] [PMID: 28825391]
[16]
Wei, Y.; Quan, L.; Zhou, C.; Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond.), 2018, 13(12), 1495-1512.
[http://dx.doi.org/10.2217/nnm-2018-0040] [PMID: 29972677]
[17]
Liu, J.; Yu, M.; Zhou, C.; Zheng, J. Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater. Today, 2013, 16(12), 477-486.
[http://dx.doi.org/10.1016/j.mattod.2013.11.003]
[18]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[19]
Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of high-drug-loading nanoparticles. ChemPlusChem, 2020, 85(9), 2143-2157.
[http://dx.doi.org/10.1002/cplu.202000496] [PMID: 32864902]
[20]
Siafaka, P.; Betsiou, M.; Tsolou, A.; Angelou, E.; Agianian, B.; Koffa, M.; Chaitidou, S.; Karavas, E.; Avgoustakis, K.; Bikiaris, D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J. Mater. Sci. Mater. Med., 2015, 26(12), 275.
[http://dx.doi.org/10.1007/s10856-015-5609-x] [PMID: 26543021]
[21]
Mazzotta, E.; De Benedittis, S.; Qualtieri, A.; Muzzalupo, R. Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics, 2019, 12(1), E26.
[http://dx.doi.org/10.3390/pharmaceutics12010026] [PMID: 31888000]
[22]
Karpuz, M.; Silindir-Gunay, M.; Kursunel, M.A.; Esendagli, G.; Dogan, A.; Ozer, A.Y. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J. Drug Deliv. Sci. Technol., 2020, 57, 101707.
[http://dx.doi.org/10.1016/j.jddst.2020.101707]
[23]
Bondì, M.L.; Craparo, E.F.; Giammona, G.; Drago, F. Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution. Nanomedicine (Lond.), 2010, 5(1), 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[24]
Pan, C.; Liu, Y.; Zhou, M.; Wang, W.; Shi, M.; Xing, M.; Liao, W. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int. J. Nanomed., 2018, 13, 1119-1137.
[http://dx.doi.org/10.2147/IJN.S147464] [PMID: 29520140]
[25]
Zeng, X.; Tao, W.; Mei, L.; Huang, L.; Tan, C.; Feng, S-S. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials, 2013, 34(25), 6058-6067.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.052] [PMID: 23694904]
[26]
Guo, F.; Li, G.; Ma, S.; Zhou, H.; Chen, X. Multi-responsive nanocarriers based on β-CD-PNIPAM star polymer coated MSN-SS-Fc composite particles. Polymers (Basel), 2019, 11(10), 1716.
[http://dx.doi.org/10.3390/polym11101716] [PMID: 31635114]
[27]
Zhang, H.; Li, J.; Sun, W.; Hu, Y.; Zhang, G.; Shen, M.; Shi, X. Hyaluronic acid-modified magnetic iron oxide nanoparticles for MR imaging of surgically induced endometriosis model in rats. PLoS One, 2014, 9(4), e94718.
[http://dx.doi.org/10.1371/journal.pone.0094718] [PMID: 24722347]
[28]
Ardahaie, S.S.; Amiri, A.J.; Amouei, A.; Hosseinzadeh, K.; Ganji, D.D. Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial. Informatics Med. Unlocked, 2018, 10, 71-81.
[http://dx.doi.org/10.1016/j.imu.2017.10.007]
[29]
Moghimi, S.M.; Simberg, D. Nanoparticle transport pathways into tumors. J. Nanopart. Res., 2018, 20(6), 169.
[http://dx.doi.org/10.1007/s11051-018-4273-8] [PMID: 29950922]
[30]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[31]
Kamble, S.S.; Gambhire, M.S.; Gujar, K.N. Optimization and development of candesartan cilexetil loaded solid lipid nanoparticle for the treatment of hypertension. J. Pharm. BioSci., 2015, 3, 53-64.
[32]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int. J. Pharm., 2019, 571, 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[33]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108(2), 851-859.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[34]
Yadav, H.K.S.; Anwar, N.; Halabi, A.; Alsalloum, G.A. Nanogels as novel drug delivery systems - A review. J. Pharm. Pharmacogn. Res., 2017, 1(1), 1-5.
[35]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[36]
Behl, G.; Iqbal, J.; O’Reilly, N.J.; McLoughlin, P.; Fitzhenry, L. Synthesis and characterization of poly(2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharm. Res., 2016, 33(7), 1638-1648.
[http://dx.doi.org/10.1007/s11095-016-1903-7] [PMID: 26964548]
[37]
Zaree, S.; Rostamizadeh, K. Preparation and characterization of MPEG-PCL based biodegradable polymeric nanoparticles for anticancer drugs delivery. Pal. J., 2017, 16(3), 53-64.
[38]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[39]
Ma, Y-H.; Yang, J.; Li, B.; Jiang, Y-W.; Lu, X.; Chen, Z. Biodegradable and injectable polymer–liposome hydrogel: A promising cell carrier. Polym. Chem., 2016, 7(11), 2037-2044.
[http://dx.doi.org/10.1039/C5PY01773D]
[40]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 1-17.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[41]
Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel), 2018, 11(7), 1-28.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[42]
Hasan, A.S.; Socha, M.; Lamprecht, A.; Ghazouani, F.E.; Sapin, A.; Hoffman, M.; Maincent, P.; Ubrich, N. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm., 2007, 344(1-2), 53-61.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.066] [PMID: 17643878]
[43]
Rodrigues de Azevedo, C.; von Stosch, M.; Costa, M.S.; Ramos, A.M.; Cardoso, M.M.; Danhier, F.; Préat, V.; Oliveira, R. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int. J. Pharm., 2017, 532(1), 229-240.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.118] [PMID: 28867450]
[44]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[http://dx.doi.org/10.7508/ibj.2016.01.001] [PMID: 26286636]
[45]
Zhu, Y.; Liao, L. Applications of nanoparticles for anticancer drug delivery: A review. J. Nanosci. Nanotechnol., 2015, 15(7), 4753-4773.
[http://dx.doi.org/10.1166/jnn.2015.10298] [PMID: 26373036]
[46]
Siafaka, P.I.; Üstündağ Okur, N.; Karantas, I.D.; Okur, M.E.; Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci., 2020, 16(1), 24-46.
[http://dx.doi.org/10.1016/j.ajps.2020.03.003]
[47]
Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of zero-dimensional nanomaterials in biosensing. Front Chem., 2020, 8, 320.
[http://dx.doi.org/10.3389/fchem.2020.00320] [PMID: 32373593]
[48]
Chen, Z.; Ma, L.; Liu, Y.; Chen, C. Applications of functionalized fullerenes in tumor theranostics. Theranostics, 2012, 2(3), 238-250.
[http://dx.doi.org/10.7150/thno.3509] [PMID: 22509193]
[49]
Kumar, M.; Raza, K. C60-fullerenes as drug delivery carriers for anticancer agents: Promises and hurdles. Pharm. Nanotechnol., 2017, 5(3), 169-179.
[http://dx.doi.org/10.2174/2211738505666170301142232] [PMID: 29361902]
[50]
Yang, F.; Ren, X.; LeCroy, G.E.; Song, J.; Wang, P.; Beckerle, L.; Bunker, C.E.; Xiong, Q.; Sun, Y.P. Zero-dimensional carbon allotropes-carbon nanoparticles versus fullerenes in functionalization by electronic polymers for different optical and redox properties. ACS Omega, 2018, 3(5), 5685-5691.
[http://dx.doi.org/10.1021/acsomega.8b00839] [PMID: 31458768]
[51]
Malodia, K.; Singh, S.K.; Mishra, D.N.; Shrivastava, B. Nanoparticles: An advance technique for drug delivery. Res. J. Pharm. Biol. Chem. Sci., 2012, 3(3), 1186-1208.
[52]
Shi, F.; Zhang, Y.; Na, W.; Zhang, X.; Li, Y.; Su, X. Graphene quantum dots as selective fluorescence sensor for the detection of ascorbic acid and acid phosphatase via Cr(vi)/Cr(iii)-modulated redox reaction. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(19), 3278-3285.
[http://dx.doi.org/10.1039/C6TB00495D] [PMID: 32263263]
[53]
Zhao, M-X.; Zhu, B-J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11(1), 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[54]
Badıllı, U.; Mollarasouli, F.; Bakirhan, N.K.; Ozkan, Y.; Ozkan, S.A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC. Trends Analyt. Chem., 2020, 131, 116013.
[http://dx.doi.org/10.1016/j.trac.2020.116013]
[55]
Carrow, J.K.; Gaharwar, A.K. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys., 2015, 216(3), 248-264.
[http://dx.doi.org/10.1002/macp.201400427]
[56]
Lakkireddy, H.R.; Bazile, D.V. Nano-carriers for drug routeing - towards a new era. J. Drug Target., 2019, 27(5-6), 525-541.
[http://dx.doi.org/10.1080/1061186X.2018.1561891] [PMID: 30570365]
[57]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[58]
Abhilash, M. Potential applications of nanoparticles. Int. J. Pharma Bio Sci., 2010, 1(1), 1-10.
[59]
Jurj, A.; Braicu, C.; Pop, L-A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871-2890.
[http://dx.doi.org/10.2147/DDDT.S142337] [PMID: 29033548]
[60]
Treuel, L.; Jiang, X.; Nienhaus, G.U. New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface, 2013, 10(82), 20120939.
[http://dx.doi.org/10.1098/rsif.2012.0939] [PMID: 23427093]
[61]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[62]
Lee, B.S.; Yip, A.T.; Thach, A.V.; Rodriguez, A.R.; Deming, T.J.; Kamei, D.T. The targeted delivery of doxorubicin with transferrin-conjugated block copolypeptide vesicles. Int. J. Pharm., 2015, 496(2), 903-911.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.028] [PMID: 26456252]
[63]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[64]
Huang, W.F.; Tsui, C.P.; Tang, C.Y.; Yang, M.; Gu, L. Surface charge switchable and PH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos., Part B Eng., 2017, 121, 83-91.
[http://dx.doi.org/10.1016/j.compositesb.2017.03.028]
[65]
Rausch, K.; Reuter, A.; Fischer, K.; Schmidt, M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules, 2010, 11(11), 2836-2839.
[http://dx.doi.org/10.1021/bm100971q] [PMID: 20961117]
[66]
Arafa, M.G.; Girgis, G.N.S.; El-Dahan, M.S. Chitosan- coated PLGA nanoparticles for enhanced ocular anti-inflammatory efficacy of Atorvastatin Calcium. Int. J. Nanomedicine, 2020, 15, 1335-1347.
[http://dx.doi.org/10.2147/IJN.S237314] [PMID: 32184589]
[67]
Murugan, K.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int. J. Nanomedicine, 2015, 10, 2191-2206.
[http://dx.doi.org/10.2147/IJN.S75615] [PMID: 25834433]
[68]
Du, X-J.; Wang, J-L.; Iqbal, S.; Li, H-J.; Cao, Z-T.; Wang, Y-C.; Du, J-Z.; Wang, J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater. Sci., 2018, 6(3), 642-650.
[http://dx.doi.org/10.1039/C7BM01096F] [PMID: 29412203]
[69]
Soler Besumbes, E.; Fornaguera, C.; Monge, M.; García-Celma, M.J.; Carrión, J.; Solans, C.; Dols-Perez, A. PLGA cationic nanoparticles, obtained from nano-emulsion templating, as potential DNA vaccines. Eur. Polym. J., 2019, 120, 109229.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109229]
[70]
Liang, H.; Peng, B.; Dong, C.; Liu, L.; Mao, J.; Wei, S.; Wang, X.; Xu, H.; Shen, J.; Mao, H-Q.; Gao, X.; Leong, K.W.; Chen, Y. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat. Commun., 2018, 9(1), 4291.
[http://dx.doi.org/10.1038/s41467-018-06603-5] [PMID: 30327464]
[71]
Jain, A.K.; Massey, A.; Yusuf, H.; McDonald, D.M.; McCarthy, H.O.; Kett, V.L. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery. Int. J. Nanomedicine, 2015, 10, 7183-7196.
[http://dx.doi.org/10.2147/IJN.S95245] [PMID: 26648722]
[72]
Vedadghavami, A.; Zhang, C.; Bajpayee, A.G. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. Nano Today, 2020, 34, 100898.
[http://dx.doi.org/10.1016/j.nantod.2020.100898] [PMID: 32802145]
[73]
Babos, G.; Biró, E.; Meiczinger, M.; Feczkó, T. Dual drug delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA polymeric nanoparticles. Polymers (Basel), 2018, 10(8), 1-12.
[http://dx.doi.org/10.3390/polym10080895] [PMID: 30960820]
[74]
Lugasi, L.; Grinberg, I.; Rudnick-Glick, S.; Okun, E.; Einat, H.; Margel, S. Designed proteinoid polymers and nanoparticles encapsulating risperidone for enhanced antipsychotic activity. J. Nanobiotechnol., 2020, 18(1), 149.
[http://dx.doi.org/10.1186/s12951-020-00709-z] [PMID: 33087104]
[75]
Dalela, M.; Shrivastav, T.G.; Kharbanda, S.; Singh, H. pH-sensitive biocompatible nanoparticles of Paclitaxel-Conjugated Poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl. Mater. Interfaces, 2015, 7(48), 26530-26548.
[http://dx.doi.org/10.1021/acsami.5b07764] [PMID: 26528585]
[76]
Mangiacotte, N.; Prosperi-Porta, G.; Liu, L.; Dodd, M.; Sheardown, H. Mucoadhesive nanoparticles for drug delivery to the anterior eye. Nanomaterials (Basel), 2020, 10(7), 1400.
[http://dx.doi.org/10.3390/nano10071400] [PMID: 32708500]
[77]
Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Fabrication of PLA-PEG nanoparticles as delivery systems for improved stability and controlled release of Catechin. J. Nanomater., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/6907149]
[78]
Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances, 2020, 10(8), 4218-4231.
[http://dx.doi.org/10.1039/C9RA10857B]
[79]
Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm., 2004, 278(1), 1-23.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.044] [PMID: 15158945]
[80]
Chen, H.; Qi, B.; Moore, T.; Wang, F.; Colvin, D.C.; Sanjeewa, L.D.; Gore, J.C.; Hwu, S.J.; Mefford, O.T.; Alexis, F.; Anker, J.N. Multifunctional yolk-in-shell nanoparticles for pH-triggered drug release and imaging. Small, 2014, 10(16), 3364-3370.
[http://dx.doi.org/10.1002/smll.201303769] [PMID: 24753264]
[81]
Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(5), 544-568.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
[82]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[83]
Li, J.J.; Kawazoe, N.; Chen, G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials, 2015, 54, 226-236.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.001] [PMID: 25858865]
[84]
Nam, G.; Rangasamy, S.; Purushothaman, B.; Song, J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomater. Nanotechnol., 2015, 1, 23.
[http://dx.doi.org/10.5772/60918]
[85]
Rajkumar, S.; Prabaharan, M. Theranostics based on iron oxide and gold nanoparticles for imaging- guided photothermal and photodynamic therapy of cancer. Curr. Top. Med. Chem., 2017, 17(16), 1858-1871.
[http://dx.doi.org/10.2174/1568026617666161122120537] [PMID: 27875977]
[86]
Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G. Polyhedral Iron Oxide core–shell nanoparticles in a biodegradable polymeric matrix: preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Advances, 2013, 3(46), 24367.
[http://dx.doi.org/10.1039/c3ra43747g]
[87]
Predescu, A.M.; Matei, E.; Berbecaru, A.C.; Pantilimon, C.; Drăgan, C.; Vidu, R.; Predescu, C.; Kuncser, V. Synthesis and characterization of dextran-coated iron oxide nanoparticles. R. Soc. Open Sci., 2018, 5(3), 171525.
[http://dx.doi.org/10.1098/rsos.171525] [PMID: 29657763]
[88]
Athar, M.; Das, A.J. Therapeutic nanoparticles: State-of-the-Art of nanomedicine. Adv. Mat. Res., 2014, 1(1), 25-37.
[http://dx.doi.org/10.5185/amr.2014.1003]
[89]
Xu, H.L.; Mao, K.L.; Huang, Y.P.; Yang, J.J.; Xu, J.; Chen, P.P.; Fan, Z.L.; Zou, S.; Gao, Z.Z.; Yin, J.Y.; Xiao, J.; Lu, C.T.; Zhang, B.L.; Zhao, Y.Z. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 2016, 8(29), 14222-14236.
[http://dx.doi.org/10.1039/C6NR02448C] [PMID: 27396404]
[90]
Silva Assis, M.B.; Weneck, I.H.S.R.; Moraes, G.N.; Semaan, F.S.; Pereira, R.P. Citrate-capped iron oxide nanoparticles: Ultrasound-assisted synthesis, structure and thermal properties. Mater. Res. Express, 2019, 6(4), 1-26.
[http://dx.doi.org/10.1088/2053-1591/aaff2a]
[91]
Attama, A.A.; Momoh, M.A.; Builders, P.F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. In: Recent Adv. Novel Drug Carrier Sys; , 2012; 2012, p. 50486.
[http://dx.doi.org/10.5772/50486]
[92]
Okur, N.Ü.; Siafaka, P.I.; Gökçe, E.H. Challenges in oral drug delivery and applications of lipid nanoparticles as potent oral drug carriers for managing cardiovascular risk factors. Curr. Pharm. Biotechnol., 2021, 22(7), 892-905.
[http://dx.doi.org/10.2174/1389201021666200804155535] [PMID: 32753006]
[93]
Zhu, Y.; Liang, X.; Lu, C.; Kong, Y.; Tang, X.; Zhang, Y.; Yin, T.; Gou, J.; Wang, Y.; He, H. Nanostructured lipid carriers as oral delivery systems for improving oral bioavailability of nintedanib by promoting intestinal absorption. Int. J. Pharm., 2020, 586, 119569.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119569] [PMID: 32592899]
[94]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[http://dx.doi.org/10.1080/03639045.2016.1185437] [PMID: 27143048]
[95]
Becker Peres, L.; Becker Peres, L.; de Araújo, P.H.H.; Sayer, C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf. B Biointerfaces, 2016, 140, 317-323.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.033] [PMID: 26764112]
[96]
Bawazeer, S.; El-Telbany, D.F.A.; Al-Sawahli, M.M.; Zayed, G.; Keed, A.A.A.; Abdelaziz, A.E.; Abdel-Naby, D.H. Effect of nanostructured lipid carriers on transdermal delivery of tenoxicam in irradiated rats. Drug Deliv., 2020, 27(1), 1218-1230.
[http://dx.doi.org/10.1080/10717544.2020.1803448] [PMID: 32772730]
[97]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[98]
Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev., 2018, 47(23), 8572-8610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
[99]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[100]
Cho, H-Y.; Lee, C.K.; Lee, Y-B. Preparation and evaluation of PEGylated and Folate-PEGylated liposomes containing paclitaxel for lymphatic delivery. J. Nanomater., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/471283]
[101]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[102]
Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), E195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[103]
Mallick, S.; Choi, J.S. Liposomes: Versatile and biocompatible nanovesicles for efficient biomolecules delivery. J. Nanosci. Nanotechnol., 2014, 14(1), 755-765.
[http://dx.doi.org/10.1166/jnn.2014.9080] [PMID: 24730295]
[104]
Toh, M-R.; Chiu, G.N.C. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J. Pharm. Sci., 2013, 8(2), 88-95.
[http://dx.doi.org/10.1016/j.ajps.2013.07.011]
[105]
Inglut, C.T.; Sorrin, A.J.; Kuruppu, T.; Vig, S.; Cicalo, J.; Ahmad, H.; Huang, H-C. Immunological and toxicological considerations for the design of liposomes. Nanomaterials (Basel), 2020, 10(2), 190.
[http://dx.doi.org/10.3390/nano10020190] [PMID: 31978968]
[106]
Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as Potential Drug Carrier Systems for Drug Delivery. In: Application of Nanotechnology in Drug Delivery; InTech, 2014.
[http://dx.doi.org/10.5772/58459]
[107]
Popescu, B.M.; Ali, N.; Basturea, G.; Comsa, G.I.; Materon, L.A.; Chipara, M. 1-Dimensional nanoparticles – a brief critical review on biological, medical, and toxicological aspects. Appl. Surf. Sci., 2013, 275, 2-6.
[http://dx.doi.org/10.1016/j.apsusc.2013.01.122]
[108]
Siafaka, P.; Okur, M.E.; Ayla, Ş.; Er, S.; Cağlar, E.Ş.; Okur, N.Ü. Design and characterization of nanocarriers loaded with levofloxacin for enhanced antimicrobial activity; physicochemical properties, in vitro release and oral acute toxicity. Braz. J. Pharm. Sci., 2019, 55, 1-13.
[http://dx.doi.org/10.1590/s2175-97902019000118295]
[109]
Simon, J.; Flahaut, E.; Golzio, M. Overview of carbon nanotubes for biomedical applications. Materials (Basel), 2019, 12(4), 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[110]
Jha, R.; Jha, P.K.; Gupta, S.; Bhuvaneshwaran, S.P.; Hossain, M.; Guha, S.K. Probing suitable therapeutic nanoparticles for controlled drug delivery and diagnostic reproductive health biomarker development. Mater. Sci. Eng. C, 2016, 61, 235-245.
[http://dx.doi.org/10.1016/j.msec.2015.12.044] [PMID: 26838846]
[111]
Arrabito, G.; Aleeva, Y.; Ferrara, V.; Prestopino, G.; Chiappara, C.; Pignataro, B. On the interaction between 1D materials and living cells. J. Funct. Biomater., 2020, 11(2), 40.
[http://dx.doi.org/10.3390/jfb11020040] [PMID: 32531950]
[112]
Wang, S.; Pratama, F.R.; Ukhtary, M.S.; Saito, R. Independent degrees of freedom in two-dimensional materials. Phys. Rev. B, 2020, 101(8), 081414.
[http://dx.doi.org/10.1103/PhysRevB.101.081414]
[113]
Wang, S.; Hung, N.T.; Tian, H.; Islam, M.S.; Saito, R. Switching behavior of a heterostructure based on periodically doped graphene nanoribbon. Phys. Rev. Appl., 2021, 16(2), 024030.
[http://dx.doi.org/10.1103/PhysRevApplied.16.024030]
[114]
Niu, X.; Li, Y.; Zhou, Q.; Shu, H.; Wang, J. Arsenene-based heterostructures: Highly efficient bifunctional materials for photovoltaics and photocatalytics. ACS Appl. Mater. Interfaces, 2017, 9(49), 42856-42861.
[http://dx.doi.org/10.1021/acsami.7b14842] [PMID: 29160062]
[115]
Tian, H.; Ren, C.; Wang, S. Valleytronics in two-dimensional materials with line defect. Nanotechnology, 2022, 33(21), 212001.
[http://dx.doi.org/10.1088/1361-6528/ac50f2] [PMID: 35105824]
[116]
Rafiei-Sarmazdeh, Z.; Morteza Zahedi-Dizaji, S.; Kafi Kang, A. Two-Dimensional Nanomaterials. In: Nanostructures; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.85263]
[117]
Mei, L.; Zhu, S.; Yin, W.; Chen, C.; Nie, G.; Gu, Z.; Zhao, Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10(2), 757-781.
[http://dx.doi.org/10.7150/thno.39701] [PMID: 31903149]
[118]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[119]
Patel, P.M. Dendrimer applications : A review. Int. J. Pharma BioSci., 2013, 4(2), 54.
[120]
Munavalli, B.B.; Naik, S.R.; Torvi, A.I.; Kariduraganavar, M.Y. Dendrimers. In: Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer, 2019; pp. 289-345.
[http://dx.doi.org/10.1007/978-3-319-95987-0_9]
[121]
Gorzkiewicz, M.; Janaszewska, A.; Ficker, M.; Svenningsen, S.W.; Christensen, J.B.; Klajnert-Maculewicz, B. Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf. B Biointerfaces, 2019, 181, 959-962.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.056] [PMID: 31382346]
[122]
Gholami, M.; Mohammadi, R.; Arzanlou, M.; Akbari Dourbash, F.; Kouhsari, E.; Majidi, G.; Mohseni, S.M.; Nazari, S. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC Infect. Dis., 2017, 17(1), 395.
[http://dx.doi.org/10.1186/s12879-017-2513-7] [PMID: 28583153]
[123]
Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[124]
Tripathi, P.K.; Tripathi, S. Dendrimers for Anticancer Drug Delivery. In: Pharmaceutical Applications of Dendrimers; Elsevier, 2020; pp. 131-150.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00006-8]
[125]
Roy, S.; Pal, K.; Anis, A.; Pramanik, K.; Prabhakar, B. Polymers in mucoadhesive drug-delivery systems: A brief note. Des. Monomers Polym., 2009, 12(6), 483-495.
[http://dx.doi.org/10.1163/138577209X12478283327236]
[126]
Roy, S.K.; Prabhakar, B. Bioadhesive polymeric platforms for transmucosal drug delivery systems - a review. Trop. J. Pharm. Res., 2010, 9(1), 52043.
[http://dx.doi.org/10.4314/tjpr.v9i1.52043]
[127]
Boddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(4), 381-387.
[http://dx.doi.org/10.4103/0110-5558.76436] [PMID: 22247877]
[128]
Sourav, M.; Anil, K.; Neeraj, B. Buccoadhesive drug delivery system - a review. World J. Pharm. Pharm. Sci., 2017, 5(1), 378-403.
[http://dx.doi.org/10.20959/wjpps20174-8863]
[129]
Kumar, K.; Dhawan, N.; Sharma, H.; Vaidya, S.; Vaidya, B. Bioadhesive polymers: Novel tool for drug delivery. Artif. Cells Nanomed. Biotechnol., 2014, 42(4), 274-283.
[http://dx.doi.org/10.3109/21691401.2013.815194] [PMID: 23859698]
[130]
Carvalho, F.C.; Bruschi, M.L.; Evangelista, R.C.; Gremião, M.P.D. Mucoadhesive drug delivery systems. Brazilian. J. Pharm. Sci., 2010, 46(1), 1-17.
[http://dx.doi.org/10.1590/S1984-82502010000100002] [PMID: 19499570]
[131]
M Ways, T.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers (Basel), 2018, 10(3), E267.
[http://dx.doi.org/10.3390/polym10030267] [PMID: 30966302]
[132]
Collado-González, M.; González Espinosa, Y.G.; Goycoolea, F.M. Interaction between chitosan and mucin: Fundamentals and applications. Biomimetics (Basel), 2019, 4(2), 32.
[http://dx.doi.org/10.3390/biomimetics4020032]
[133]
Vikas; Viswanadh, M.K.; Mehata, A.K.; Sharma, V.; Priya, V.; Varshney, N.; Mahto, S.K.; Muthu, M.S. Bioadhesive Chitosan Nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr. Polym., 2021, 274, 118617.
[http://dx.doi.org/10.1016/j.carbpol.2021.118617]
[134]
McCrorie, P.; Mistry, J.; Taresco, V.; Lovato, T.; Fay, M.; Ward, I.; Ritchie, A.A.; Clarke, P.A.; Smith, S.J.; Marlow, M.; Rahman, R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur. J. Pharm. Biopharm., 2020, 157, 108-120.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.005] [PMID: 33068736]
[135]
Ruiz-Pulido, G.; Medina, D.I. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. Eur. J. Pharm. Biopharm., 2021, 159, 123-136.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.013] [PMID: 33387633]
[136]
Pawde, D.M.; Viswanadh, M.K.; Mehata, A.K.; Sonkar, R.; Narendra; Poddar, S.; Burande, A.S.; Jha, A.; Vajanthri, K.Y.; Mahto, S.K.; Azger Dustakeer, V.N.; Muthu, M.S. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm. J., 2020, 28(12), 1616-1625.
[http://dx.doi.org/10.1016/j.jsps.2020.10.008] [PMID: 33424254]
[137]
Guyot, C.; Cerruti, M.; Lerouge, S. Injectable, strong and bioadhesive catechol-chitosan hydrogels physically crosslinked using sodium bicarbonate. Mater. Sci. Eng. C, 2021, 118, 111529.
[http://dx.doi.org/10.1016/j.msec.2020.111529] [PMID: 33255082]
[138]
Rençber, S.; Karavana, S.Y.; Yılmaz, F.F.; Eraç, B.; Nenni, M.; Özbal, S.; Pekçetin, Ç.; Gurer-Orhan, H.; Hoşgör-Limoncu, M.; Güneri, P.; Ertan, G. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int. J. Nanomedicine, 2016, 11, 2641-2653.
[http://dx.doi.org/10.2147/IJN.S103762] [PMID: 27358561]
[139]
Şenyiğit, Z.A.; Karavana, S.Y.; İlem-Özdemir, D.; Çalışkan, Ç.; Waldner, C.; Şen, S.; Bernkop-Schnürch, A.; Baloğlu, E. Design and evaluation of an intravesical delivery system for superficial bladder cancer: Preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int. J. Nanomedicine, 2015, 10, 6493-6507.
[http://dx.doi.org/10.2147/IJN.S93750] [PMID: 26508855]
[140]
Karakucuk, A.; Tort, S.; Han, S.; Oktay, A.N.; Celebi, N. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation. J. Microencapsul., 2021, 38(4), 218-232.
[http://dx.doi.org/10.1080/02652048.2021.1895344] [PMID: 33752553]
[141]
Rençber, S.; Karavana, S.Y.; Şenyiğit, Z.A.; Eraç, B.; Limoncu, M.H.; Baloğlu, E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: Formulation, preparation, and in vitro/in vivo evaluation. Pharm. Dev. Technol., 2017, 22(4), 551-561.
[http://dx.doi.org/10.3109/10837450.2016.1163385] [PMID: 27055376]
[142]
Rençber, S.; Karavana, S.Y.; Yilmaz, F.F.; Eraç, B.; Nenni, M.; Gurer-Orhan, H.; Limoncu, M.H.; Güneri, P.; Ertan, G. Formulation and evaluation of fluconazole loaded oral strips for local treatment of oral candidiasis. J. Drug Deliv. Sci. Technol., 2019, 49(January), 615-621.
[http://dx.doi.org/10.1016/j.jddst.2018.12.035]
[143]
Nair, A.B.; Sreeharsha, N.; Al-Dhubiab, B.E.; Hiremath, J.G.; Shinu, P.; Attimarad, M.; Venugopala, K.N.; Mutahar, M. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of Sitagliptin: Optimization and in vivo evaluation in rats. Materials (Basel), 2019, 12(24), E4239.
[http://dx.doi.org/10.3390/ma12244239] [PMID: 31861192]
[144]
Ay Şenyiğit, Z.; Coşkunmeriç, N.; Çağlar, E.Ş.; Öztürk, İ.; Atlıhan Gündoğdu, E.; Siafaka, P.I.; Üstündağ Okur, N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: Ex-vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm. Dev. Technol., 2021, 26(8), 852-866.
[http://dx.doi.org/10.1080/10837450.2021.1948570] [PMID: 34193003]
[145]
Karavana, S.Y.; Gökçe, E.H.; Rençber, S.; Özbal, S.; Pekçetin, C.; Güneri, P.; Ertan, G. A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int. J. Nanomedicine, 2012, 7, 5693-5704.
[http://dx.doi.org/10.2147/IJN.S36883] [PMID: 23180964]
[146]
Zou, W.; Cao, G.; Xi, Y.; Zhang, N. New approach for local delivery of rapamycin by bioadhesive PLGA-carbopol nanoparticles. Drug Deliv., 2009, 16(1), 15-23.
[http://dx.doi.org/10.1080/10717540802481307] [PMID: 19555304]
[147]
Sarti, F.; Iqbal, J.; Müller, C.; Shahnaz, G.; Rahmat, D.; Bernkop-Schnürch, A. Poly(acrylic acid)-cysteine for oral vitamin B12 delivery. Anal. Biochem., 2012, 420(1), 13-19.
[http://dx.doi.org/10.1016/j.ab.2011.08.039] [PMID: 21964499]
[148]
Tekade, M.; Maheshwari, N.; Youngren-Ortiz, S.R.; Pandey, V.; Chourasiya, Y.; Soni, V.; Deb, P.K.; Sharma, M.C. Thiolated-Chitosan: A Novel Mucoadhesive Polymer for Better-Targeted Drug Delivery. In: Biomaterials and Bionanotechnology; Elsevier, 2019; pp. 459-493.
[http://dx.doi.org/10.1016/B978-0-12-814427-5.00013-5]
[149]
Kast, C.E.; Bernkop-Schnürch, A. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials, 2001, 22(17), 2345-2352.
[http://dx.doi.org/10.1016/S0142-9612(00)00421-X] [PMID: 11511031]
[150]
Knoll, P.; Le, N.N.; Wibel, R.; Baus, R.A.; Kali, G.; Asim, M.H.; Bernkop-Schnürch, A. Thiolated pectins: In vitro and ex vivo evaluation of three generations of thiomers. Acta Biomater., 2021, 135, 139-149.
[http://dx.doi.org/10.1016/j.actbio.2021.08.016] [PMID: 34418540]
[151]
Jalil, A.; Asim, M.H.; Le, N.N.; Laffleur, F.; Matuszczak, B.; Tribus, M.; Bernkop-Schnürch, A. S-protected gellan gum: Decisive approach towards mucoadhesive antimicrobial vaginal films. Int. J. Biol. Macromol., 2019, 130, 148-157.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.092] [PMID: 30779984]
[152]
Dünnhaupt, S.; Barthelmes, J.; Köllner, S.; Sakloetsakun, D.; Shahnaz, G.; Düregger, A.; Bernkop-Schnürch, A. Thiolated nanocarriers for oral delivery of hydrophilic macromolecular drugs. Carbohydr. Polym., 2015, 117, 577-584.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.078] [PMID: 25498673]
[153]
Nagavarma, B.V.N.; Yadav, H.K.S.; Ayaz, A.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles- a review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
[154]
Behera, A.L.; Patil, S.V.; Sahoo, S.K.; Sahoo, S.K. Nanosizing of drugs: A promising approach for drug delivery. Pharm. Sin., 2010, 1(1), 20-28.
[155]
Kadian, R. Nanoparticles: A promising drug delivery approach. Asian J. Pharm. Clin. Res., 2018, 11(1), 30-35.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.22035]
[156]
Rençber, S.; Özcan Bülbül, E.; Üstündağ Okur, N.; Ay Şenyiğit, Z. Preparation and detailed characterization of fusidic acid loaded in situ gel formulations for ophthalmic application. J. Res. Pharm., 2021, 25(1), 1.
[http://dx.doi.org/10.35333/jrp.2021.291]
[157]
Chen, C.; Yang, W.; Wang, D.T.; Chen, C.L.; Zhuang, Q.Y.; Kong, X.D. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti- tumor activity. Front. Mater. Sci., 2014, 8(4), 332-342.
[http://dx.doi.org/10.1007/s11706-014-0268-2]
[158]
Hornig, S.; Heinze, T.; Becer, C.R.; Schubert, U.S. Synthetic polymeric nanoparticles by nanoprecipitation. J. Mater. Chem., 2009, 19(23), 3838-3840.
[http://dx.doi.org/10.1039/b906556n]
[159]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[160]
Errico, C.; Bartoli, C.; Chiellini, F.; Chiellini, E. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J. Biomed. Biotechnol., 2009, 2009, 571702.
[http://dx.doi.org/10.1155/2009/571702] [PMID: 19789653]
[161]
Hanif, M.; Zaman, M.; Chaurasiya, V. Polymers used in buccal film: A review. Des. Monomers Polym., 2015, 18(2), 105-111.
[http://dx.doi.org/10.1080/15685551.2014.971389]
[162]
Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release, 2020, 320, 125-141.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[163]
Morales, J.O.; Brayden, D.J. Buccal delivery of small molecules and biologics of mucoadhesive polymers, films, and nanoparticles. Curr. Opin. Pharmacol., 2017, 36, 22-28.
[http://dx.doi.org/10.1016/j.coph.2017.07.011] [PMID: 28800417]
[164]
Hazzah, H.A.; Farid, R.M.; Nasra, M.M.A.; El-Massik, M.A.; Abdallah, O.Y. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization. Int. J. Pharm., 2015, 492(1-2), 248-257.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.022] [PMID: 26189427]
[165]
Esposito, D.; Conte, C.; d’Angelo, I.; Miro, A.; Ungaro, F.; Quaglia, F. Mucoadhesive zein/beta-cyclodextrin nanoparticles for the buccal delivery of curcumin. Int. J. Pharm., 2020, 586, 119587.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119587] [PMID: 32619690]
[166]
Tzanova, M.M.; Hagesaether, E.; Tho, I. Solid lipid nanoparticle-loaded mucoadhesive buccal films – critical quality attributes and in vitro safety & efficacy. Int. J. Pharm., 2021, 592, 120100.
[167]
Santos, T.C.D.; Rescignano, N.; Boff, L.; Reginatto, F.H.; Simões, C.M.O.; de Campos, A.M.; Mijangos, C.U.; Campos, D.; Ugarte, C. Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films. Carbohydr. Polym., 2017, 173, 638-644.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.014] [PMID: 28732908]
[168]
Sneha, R.; Hari, B.N.V.; Devi, D.R. Design of antiretroviral drug-polymeric nanoparticles laden buccal films for chronic hiv therapy in paediatrics. Colloid Interface Sci. Commun., 2018, 27, 49-59.
[http://dx.doi.org/10.1016/j.colcom.2018.10.004]
[169]
Castro, P.M.; Baptista, P.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int. J. Pharm., 2018, 547(1-2), 593-601.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051] [PMID: 29800740]
[170]
Kraisit, P.; Limmatvapirat, S.; Luangtana-Anan, M.; Sriamornsak, P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian J. Pharm. Sci., 2018, 13(1), 34-43.
[http://dx.doi.org/10.1016/j.ajps.2017.07.006] [PMID: 32104376]
[171]
Rahbarian, M.; Mortazavian, E.; Dorkoosh, F.A.; Ra, M. Preparation, evaluation and optimization of nanoparticles composed of thiolated triethyl chitosan: A potential approach for buccal delivery of insulin. J. Drug Deliv. Sci. Technol., 2018, 44, 254-263.
[http://dx.doi.org/10.1016/j.jddst.2017.12.016]
[172]
Marques, A.C.; Rocha, A.I.; Leal, P.; Estanqueiro, M.; Lobo, J.M.S. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int. J. Pharm., 2017, 533(2), 455-462.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.025] [PMID: 28412446]
[173]
Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol., 2020, 55, 101389.
[http://dx.doi.org/10.1016/j.jddst.2019.101389]
[174]
Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Abul Kalam, M.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J., 2019, 27(2), 293-302.
[http://dx.doi.org/10.1016/j.jsps.2018.11.011] [PMID: 30766442]
[175]
Huang, D.; Chen, Y.S.; Rupenthal, I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev., 2018, 126, 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[176]
Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic formulations of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, (109), 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.015] [PMID: 27793755]
[177]
Yang, X.; Trinh, H.M.; Agrahari, V.; Sheng, Y.; Pal, D.; Mitra, A.K. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech, 2016, 17(2), 294-306.
[http://dx.doi.org/10.1208/s12249-015-0354-5] [PMID: 26085051]
[178]
Ibrahim, M.M.; Abd-Elgawad, A.H.; Soliman, O.A-E.; Jablonski, M.M. Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl. Vis. Sci. Technol., 2015, 4(3), 12.
[http://dx.doi.org/10.1167/tvst.4.3.12] [PMID: 26175958]
[179]
Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol. Vis., 2015, 21, 1224-1234.
[PMID: 26604662]
[180]
Taghe, S.; Mirzaeei, S.; Alany, R.G.; Nokhodchi, A. Polymeric inserts containing Eudragit® L100 nanoparticle for improved ocular delivery of Azithromycin. Biomedicines, 2020, 8(11), 1-21.
[http://dx.doi.org/10.3390/biomedicines8110466] [PMID: 33142768]
[181]
Bin-Jumah, M.; Gilani, S.J.; Jahangir, M.A.; Zafar, A.; Alshehri, S.; Yasir, M.; Kala, C.; Taleuzzaman, M.; Imam, S.S. Clarithromycin-loaded ocular chitosan nanoparticle: Formulation, optimization, characterization, ocular irritation, and antimicrobial activity. Int. J. Nanomedicine, 2020, 15, 7861-7875.
[http://dx.doi.org/10.2147/IJN.S269004] [PMID: 33116505]
[182]
Mittal, N.; Kaur, G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. Int. J. Biol. Macromol., 2019, 139, 1252-1262.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.107] [PMID: 31419555]
[183]
Shahab, M.S.; Rizwanullah, M.; Alshehri, S.; Imam, S.S. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int. J. Biol. Macromol., 2020, 163, 2392-2404.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.185] [PMID: 32979440]
[184]
Silva, B.; Marto, J.; Braz, B. S.; Delgado, E.; Almeida, A. J. New nanoparticles for topical ocular delivery of erythropoietin. Int. J. Pharm., 2020, 576, 119020.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119020]
[185]
Yee, W.; Selvaduray, G.; Hawkins, B. Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use. J. Mech. Behav. Biomed. Mater., 2015, 55, 67-74.
[http://dx.doi.org/10.1016/j.jmbbm.2015.10.011] [PMID: 26562766]
[186]
Sattar, M.; Sayed, O.M.; Lane, M.E. Oral transmucosal drug delivery-current status and future prospects. Int. J. Pharm., 2014, 471(1-2), 498-506.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.043] [PMID: 24879936]
[187]
Cao, S.J.; Xu, S.; Wang, H.M.; Ling, Y.; Dong, J.; Xia, R.D.; Sun, X.H. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5), 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[188]
Gonçalves, L.M.D.; Maestrelli, F.; Di Cesare Mannelli, L.; Ghelardini, C.; Almeida, A.J.; Mura, P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur. J. Pharm. Biopharm., 2016, 102, 41-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.012] [PMID: 26925503]
[189]
Rahat, I.; Rizwanullah, M.; Gilani, S.J.; Bin-Jummah, M.N.; Imam, S.S.; Kala, C.; Asif, M.; Alshehri, S.; Sharma, S.K. Thymoquinone Loaded Chitosan - Solid Lipid Nanoparticles: Formulation optimization to oral bioavailability study. J. Drug Deliv. Sci. Technol., 2021, 64(102565), 1-11.
[http://dx.doi.org/10.1016/j.jddst.2021.102565]
[190]
Rahat, I.; Imam, S.S.; Rizwanullah, M.; Alshehri, S.; Asif, M.; Kala, C.; Taleuzzaman, M. Thymoquinone-entrapped chitosan-modified nanoparticles: Formulation optimization to preclinical bioavailability assessments. Drug Deliv., 2021, 28(1), 973-984.
[http://dx.doi.org/10.1080/10717544.2021.1927245] [PMID: 34036860]
[191]
Song, Y.; Chen, L. Effect of net surface charge on physical properties of the cellulose nanoparticles and their efficacy for oral protein delivery. Carbohydr. Polym., 2015, 121, 10-17.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.019] [PMID: 25659666]
[192]
Li, L.; Jiang, G.; Yu, W.; Liu, D.; Chen, H.; Liu, Y.; Tong, Z.; Kong, X.; Yao, J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater. Sci. Eng. C, 2017, 70(Pt 1), 278-286.
[http://dx.doi.org/10.1016/j.msec.2016.08.083] [PMID: 27770892]
[193]
Sajeesh, S.; Sharma, C.P. Cyclodextrin – insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm., 2006, 325, 147-154.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.019]
[194]
Erel, G.; Kotmakçı, M.; Akbaba, H.; Sözer Karadağlı, S.; Kantarcı, A.G. Nanoencapsulated Chitosan Nanoparticles in emulsion-based oral delivery system: In vitro and in vivo evaluation of insulin loaded formulation. J. Drug Deliv. Sci. Technol., 2016, 36, 161-167.
[http://dx.doi.org/10.1016/j.jddst.2016.10.010]
[195]
Penalva, R.E.; Gonzalez-Navarro, I. J. G.; Quincoces, G.; Penuelas, I.; Irache, J. M. Zein nanoparticles for oral folic acid delivery-current. J. Drug Deliv. Sci. Technol., 2015, 30, 450-457.
[http://dx.doi.org/10.1016/j.jddst.2015.06.012]
[196]
Plapied, L.; Vandermeulen, G.; Vroman, B.; Préat, V.; des Rieux, A. Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery. Int. J. Pharm., 2010, 398(1-2), 210-218.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.041] [PMID: 20674728]
[197]
Du, X.; Gao, N.; Song, X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Deliv., 2021, 28(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2021.1872742] [PMID: 33501870]
[198]
Alshweiat, A.; Csóka, I.; Tömösi, F.; Janáky, T.; Kovács, A.; Gáspár, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Szabó-Révész, P.; Ambrus, R. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Int. J. Pharm., 2020, 579, 119166.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119166] [PMID: 32084574]
[199]
Marx, D.; Williams, G.; Birkhoff, M. Intranasal Drug Administration — An Attractive Delivery Route for Some Drugs. In: Drug Discovery and Development - From Molecules to Medicine; InTech, 2015.
[http://dx.doi.org/10.5772/59468]
[200]
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm., 2018, 128, 337-362.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[201]
Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics, 2018, 10(3), 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[202]
Sukumar, U.K.; Bose, R.J.C.; Malhotra, M.; Babikir, H.A.; Afjei, R.; Robinson, E.; Zeng, Y.; Chang, E.; Habte, F.; Sinclair, R.; Gambhir, S.S.; Massoud, T.F.; Paulmurugan, R. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials, 2019, 218, 119342.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119342] [PMID: 31326657]
[203]
Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release, 2016, 227, 71-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.032] [PMID: 26902800]
[204]
Kürti, L.; Gáspár, R.; Márki, Á.; Kápolna, E.; Bocsik, A.; Veszelka, S.; Bartos, C.; Ambrus, R.; Vastag, M.; Deli, M.A.; Szabó-Révész, P. In vitro and in vivo characterization of meloxicam nanoparticles designed for nasal administration. Eur. J. Pharm. Sci., 2013, 50(1), 86-92.
[http://dx.doi.org/10.1016/j.ejps.2013.03.012] [PMID: 23542493]
[205]
Bartos, C.; Ambrus, R.; Sipos, P.; Budai-Szűcs, M.; Csányi, E.; Gáspár, R.; Márki, Á.; Seres, A.B.; Sztojkov-Ivanov, A.; Horváth, T.; Szabó-Révész, P. Study of sodium hyaluronate-based intranasal formulations containing micro- or nanosized meloxicam particles. Int. J. Pharm., 2015, 491(1-2), 198-207.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.046] [PMID: 26142244]
[206]
Fonseca, F.N.; Betti, A.H.; Carvalho, F.C.; Gremião, M.P.D.; Dimer, F.A.; Guterres, S.S.; Tebaldi, M.L.; Rates, S.M.K.; Pohlmann, A.R. Mucoadhesive Amphiphilic Methacrylic Copolymer-Functionalized Poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of Olanzapine. J. Biomed. Nanotechnol., 2015, 11(8), 1472-1481.
[http://dx.doi.org/10.1166/jbn.2015.2078] [PMID: 26295147]
[207]
Shim, S.; Yoo, H.S. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar. Drugs, 2020, 18(12), 605.
[http://dx.doi.org/10.3390/md18120605] [PMID: 33260406]
[208]
Li, Y.; Wang, C.; Sun, Z.; Xiao, J.; Yan, X.; Chen, Y.; Yu, J.; Wu, Y. Simultaneous intramuscular and intranasal administration of chitosan nanoparticles-adjuvanted Chlamydia vaccine elicits elevated protective responses in the lung. Int. J. Nanomedicine, 2019, 14, 8179-8193.
[http://dx.doi.org/10.2147/IJN.S218456] [PMID: 31632026]
[209]
Xu, J.; Dai, W.; Wang, Z.; Chen, B.; Li, Z.; Fan, X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin. Vaccine Immunol., 2011, 18(1), 75-81.
[http://dx.doi.org/10.1128/CVI.00263-10] [PMID: 21047997]
[210]
Shim, S.; Soh, S.H.; Im, Y.B.; Park, H.E.; Cho, C.S.; Kim, S.; Yoo, H.S. Elicitation of Th1/Th2 related responses in mice by chitosan nanoparticles loaded with Brucella abortus malate dehydrogenase, outer membrane proteins 10 and 19. Int. J. Med. Microbiol., 2020, 310(1), 151362.
[http://dx.doi.org/10.1016/j.ijmm.2019.151362] [PMID: 31676233]
[211]
Acartürk, F. Mucoadhesive vaginal drug delivery systems. Recent Pat. Drug Deliv. Formul., 2009, 3(3), 193-205.
[http://dx.doi.org/10.2174/187221109789105658] [PMID: 19925443]
[212]
Deshkar, S.S.; Shirolkar, S.V.; Patil, A.T. Vaginal bioadhesive drug delivery systems and their applications. In: Bioadhesives in Drug Delivery; Mittal, K.L.; Bakshi, I.S.; Narang, J.K., Eds.; John Wiley & Sons, Ltd.: USA, 2020; pp. 307-369.
[http://dx.doi.org/10.1002/9781119640240.ch11]
[213]
Cassano, R.; Trombino, S. Solid Lipid Nanoparticles based on L-Cysteine for progesterone intravaginal delivery. Int. J. Polym. Sci., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/8690145]
[214]
El-Hammadi, M.M.; Arias, J.L. Nanotechnology for Vaginal Drug Delivery and Targeting. In: Nanoengineered Biomaterials for Advanced Drug Delivery; Mozafari, M., Ed.; Elsevier, 2020; pp. 647-682.
[http://dx.doi.org/10.1016/B978-0-08-102985-5.00026-7]
[215]
Traore, Y.L.; Fumakia, M.; Gu, J.; Ho, E.A. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J. Biomater. Appl., 2018, 32(8), 1119-1126.
[http://dx.doi.org/10.1177/0885328217739451] [PMID: 29105543]
[216]
Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J.; Michniak-Kohn, B. Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics, 2021, 13(6), 1-49.
[http://dx.doi.org/10.3390/pharmaceutics13060884] [PMID: 34203714]
[217]
Mohideen, M.; Quijano, E.; Song, E.; Deng, Y.; Panse, G.; Zhang, W.; Clark, M.R.; Saltzman, W.M. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials, 2017, 144, 144-154.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.029] [PMID: 28829952]
[218]
Araujo, V.H.S.; de Souza, M.P.C.; Carvalho, G.C.; Duarte, J.L.; Chorilli, M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr. Polym., 2021, 261, 117919.
[http://dx.doi.org/10.1016/j.carbpol.2021.117919] [PMID: 33766328]
[219]
Marciello, M.; Rossi, S.; Caramella, C.; Remuñán-López, C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr. Polym., 2017, 170(170), 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.051] [PMID: 28522002]
[220]
Cover, N.F.; Lai-Yuen, S.; Parsons, A.K.; Kumar, A. Synergetic effects of doxycycline-loaded chitosan nanoparticles for improving drug delivery and efficacy. Int. J. Nanomedicine, 2012, 7, 2411-2419.
[http://dx.doi.org/10.2147/IJN.S27328] [PMID: 22811601]
[221]
Martínez-Pérez, B.; Quintanar-Guerrero, D.; Tapia-Tapia, M.; Cisneros-Tamayo, R.; Zambrano-Zaragoza, M.L.; Alcalá-Alcalá, S.; Mendoza-Muñoz, N.; Piñón-Segundo, E. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. Eur. J. Pharm. Sci., 2018, 115, 185-195.
[http://dx.doi.org/10.1016/j.ejps.2017.11.029] [PMID: 29208486]
[222]
Melo, C.M.; Cardoso, J.F.; Perassoli, F.B.; de Oliveira Neto, A.S.; Pinto, L.M.; de Freitas Marques, M.B.; da Nova Mussel, W.; Magalhães, J.T.; de Lima Moura, S.A.; de Freitas Araújo, M.G.; Da Silva, G.R. Amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid for the treatment of vulvovaginal candidiasis. Carbohydr. Polym., 2020, 230, 115608.
[http://dx.doi.org/10.1016/j.carbpol.2019.115608] [PMID: 31887870]
[223]
Friedl, H.E.; Dünnhaupt, S.; Waldner, C.; Bernkop-Schnürch, A. Preactivated thiomers for vaginal drug delivery vehicles. Biomaterials, 2013, 34(32), 7811-7818.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.021] [PMID: 23886732]
[224]
Pradines, B.; Bories, C.; Vauthier, C.; Ponchel, G.; Loiseau, P. M.; Bouchemal, K. Drug-free chitosan coated poly(isobutylcyanoacrylate) nanoparticles are active against trichomonas vaginalis and non-toxic towards pig vaginal mucosa. Pharm. Res., 2014, 32(4), 1229-1236.
[http://dx.doi.org/10.1007/s11095-014-1528-7]
[225]
Das Neves, J.; Araújo, F.; Andrade, F.; Amiji, M.; Bahia, M. F.; Sarmento, B. Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice. Pharm. Res., 2014, 31(7), 1834-1845.
[http://dx.doi.org/10.1007/s11095-013-1287-x]
[226]
Lalan, M.S.; Patel, V.N.; Misra, A. Polymers in Vaginal Drug Delivery: Recent Advancements. In: Applications of Polymers in Drug Delivery; Misra, A.; Shahiwala, A., Eds.; Elsevier, 2021; pp. 281-303.
[http://dx.doi.org/10.1016/B978-0-12-819659-5.00010-0]
[227]
Takalkar, D.; Desai, N. Nanolipid gel of an antimycotic drug for treating vulvovaginal candidiasis—development and evaluation. AAPS PharmSciTech, 2018, 19(3), 1297-1307.
[http://dx.doi.org/10.1208/s12249-017-0918-7]
[228]
Zhang, Y.; Miyamoto, Y.; Ihara, S.; Yang, J.Z.; Zuill, D.E.; Angsantikul, P.; Zhang, Q.; Gao, W.; Zhang, L.; Eckmann, L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. Adv. Ther. (Weinh.), 2019, 2(12), 1900157.
[http://dx.doi.org/10.1002/adtp.201900157] [PMID: 32377561]
[229]
Machado, A.; Cunha-Reis, C.; Araújo, F.; Nunes, R.; Seabra, V.; Ferreira, D.; das Neves, J.; Sarmento, B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater., 2016, 44, 332-340.
[http://dx.doi.org/10.1016/j.actbio.2016.08.018] [PMID: 27544812]
[230]
Cunha-Reis, C.; Machado, A.; Barreiros, L.; Araújo, F.; Nunes, R.; Seabra, V.; Ferreira, D.; Segundo, M.A.; Sarmento, B.; das Neves, J. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J. Control. Release, 2016, 243, 43-53.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.020] [PMID: 27664327]
[231]
Hua, S. Physiological and pharmaceutical considerations for rectal drug formulations. Front. Pharmacol., 2019, 10, 1196.
[http://dx.doi.org/10.3389/fphar.2019.01196] [PMID: 31680970]
[232]
Jannin, V.; Lemagnen, G.; Gueroult, P.; Larrouture, D.; Tuleu, C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev., 2014, 73, 34-49.
[http://dx.doi.org/10.1016/j.addr.2014.05.012] [PMID: 24871671]
[233]
Purohit, T.J.; Hanning, S.M.; Wu, Z. Advances in rectal drug delivery systems. Pharm. Dev. Technol., 2018, 23(10), 942-952.
[http://dx.doi.org/10.1080/10837450.2018.1484766] [PMID: 29888992]
[234]
Zhang, S.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today, 2017, 16, 82-96.
[http://dx.doi.org/10.1016/j.nantod.2017.08.006] [PMID: 31186671]
[235]
Mesquita, L.; Galante, J.; Nunes, R.; Sarmento, B. das Neves, J. Pharmaceutical vehicles for vaginal and rectal administration of Anti-HIV microbicide nanosystems. Pharmaceutics, 2019, 11(3), 145.
[http://dx.doi.org/10.3390/pharmaceutics11030145] [PMID: 30917532]
[236]
Lamprecht, A. Selective nanoparticle adhesion can enhance colitis therapy. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(6), 311-312.
[http://dx.doi.org/10.1038/nrgastro.2010.66]
[237]
Maisel, K.; Chattopadhyay, S.; Moench, T.; Hendrix, C.; Cone, R.; Ensign, L.M.; Hanes, J. Enema ion compositions for enhancing colorectal drug delivery. J. Control. Release, 2015, 209, 280-287.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.040] [PMID: 25937321]
[238]
Abdelbary, G.; Fahmy, R.H. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech, 2009, 10(1), 211-219.
[http://dx.doi.org/10.1208/s12249-009-9197-2] [PMID: 19277870]
[239]
Mohamed, R.A.; Abass, H.A.; Attia, M.A.; Heikal, O.A. Formulation and evaluation of metoclopramide solid lipid nanoparticles for rectal suppository. J. Pharm. Pharmacol., 2013, 65(11), 1607-1621.
[http://dx.doi.org/10.1111/jphp.12136] [PMID: 24102470]
[240]
Siczek, K.; Fichna, J.; Zatorski, H.; Karolewicz, B.; Klimek, L.; Owczarek, A. Development of the rectal dosage form with silver-coated glass beads for local-action applications in lower sections of the gastrointestinal tract. Pharm. Dev. Technol., 2018, 23(3), 295-300.
[http://dx.doi.org/10.1080/10837450.2017.1359843] [PMID: 28756715]
[241]
Moawad, F.A.; Ali, A.A.; Salem, H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: Preparation, in vitro and in vivo performance. Drug Deliv., 2017, 24(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2016.1245369] [PMID: 28156169]
[242]
Din, F.U.; Choi, J.Y.; Kim, D.W.; Mustapha, O.; Kim, D.S.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; Choi, H.G. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv., 2017, 24(1), 502-510.
[http://dx.doi.org/10.1080/10717544.2016.1272651] [PMID: 28181835]
[243]
Melo, M.; Nunes, R.; Sarmento, B.; das Neves, J. Colorectal distribution and retention of polymeric nanoparticles following incorporation into a thermosensitive enema. Biomater. Sci., 2019, 7(9), 3801-3811.
[http://dx.doi.org/10.1039/C9BM00759H] [PMID: 31237275]
[244]
Amaral, A.C.; Saavedra, P.H.V.; Oliveira Souza, A.C.; de Melo, M.T.; Tedesco, A.C.; Morais, P.C.; Soares Felipe, M.S.; Bocca, A.L. Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf. B Biointerfaces, 2019, 174, 409-415.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.048] [PMID: 30481701]
[245]
Fernandes Costa, A.; Evangelista Araujo, D.; Santos Cabral, M.; Teles Brito, I.; Borges de Menezes Leite, L.; Pereira, M.; Correa Amaral, A. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med. Mycol., 2019, 57(1), 52-62.
[http://dx.doi.org/10.1093/mmy/myx155] [PMID: 29361177]
[246]
Rossi, S.; Vigani, B.; Puccio, A.; Bonferoni, M.C.; Sandri, G.; Ferrari, F. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis. Mar. Drugs, 2017, 15(10), 319-336.
[http://dx.doi.org/10.3390/md15100319] [PMID: 29048359]
[247]
Sekar, V.; Rajendran, K.; Vallinayagam, S.; Deepak, V.; Mahadevan, S. Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling. J. Ind. Eng. Chem., 2018, 62, 239-249.
[http://dx.doi.org/10.1016/j.jiec.2018.01.001]
[248]
Ho, D.K.; Frisch, S.; Biehl, A.; Terriac, E.; De Rossi, C.; Schwarzkopf, K.; Lautenschläger, F.; Loretz, B.; Murgia, X.; Lehr, C.M. Farnesylated Glycol chitosan as a platform for drug delivery: Synthesis, characterization, and investigation of mucus-particle interactions. Biomacromolecules, 2018, 19(8), 3489-3501.
[http://dx.doi.org/10.1021/acs.biomac.8b00795] [PMID: 29989799]
[249]
Manna, S.; Lakshmi, U.S.; Racharla, M.; Sinha, P.; Kanthal, L.K.; Kumar, S.P.N. Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of Tenofovir. J. Appl. Pharm. Sci., 2016, 6(8), 22-29.
[http://dx.doi.org/10.7324/JAPS.2016.60804]
[250]
Hasanifard, M.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Rezayan, A.H.; Esmaeili, M.A. Development of thiolated chitosan nanoparticles based mucoadhesive vaginal drug delivery systems 1. Polym. Sci. Ser. A, 2017, 59(6), 858-865.
[http://dx.doi.org/10.1134/S0965545X17060025]
[251]
Damelin, L.H.; Fernandes, M.A.; Tiemessen, C.T. Alginate microbead-encapsulated silver complexes for selective delivery of broad-spectrum silver-based microbicides. Int. J. Antimicrob. Agents, 2015, 46(4), 394-400.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.05.016] [PMID: 26184337]
[252]
Binesh, N.; Farhadian, N.; Mohammadzadeh, A. Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis. Colloids Surf. B Biointerfaces, 2021, 202, 111691.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111691] [PMID: 33743445]
[253]
Facchinatto, W.M.; Galante, J.; Mesquita, L.; Silva, D.S.; Martins Dos Santos, D.; Moraes, T.B.; Campana-Filho, S.P.; Colnago, L.A.; Sarmento, B.; das Neves, J. Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater., 2021, 125, 312-321.
[http://dx.doi.org/10.1016/j.actbio.2021.02.029] [PMID: 33639312]
[254]
Alqahtani, F.; Aleanizy, F.; El Tahir, E.; Alhabib, H.; Alsaif, R.; Shazly, G.; AlQahtani, H.; Alsarra, I.; Mahdavi, J. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea. Int. J. Nanomedicine, 2020, 15, 7877-7887.
[http://dx.doi.org/10.2147/IJN.S272736] [PMID: 33116506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy