Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Antimicrobial Peptides: An Overview of their Structure, Function and Mechanism of Action

Author(s): Rui Zhang, Lijun Xu and Chunming Dong*

Volume 29, Issue 8, 2022

Published on: 05 August, 2022

Page: [641 - 650] Pages: 10

DOI: 10.2174/0929866529666220613102145

Abstract

In recent years, the antibiotic resistance of pathogenic bacteria has become an increasing public health threat. Finding alternatives to antibiotics may be an effective solution to the problem of drug resistance. Antimicrobial peptides are small peptides produced by various organisms that are considered to be effective antibiotic substitutes because of their strong, broad-spectrum antibacterial activity, stability, and diversity, and because target strains do not easily develop resistance. Recent research on antimicrobial peptides has shown they have broad potential for applications in medicine, agriculture, food, and animal feed. The source, classification, acquisition methods, and mechanisms of action of antimicrobial peptides are very complex. This review presents an overview of research on the sources, isolation, expression and purification, and classification of antimicrobial peptides; the relationship between their structural conformation and function; their mechanisms of action; and application prospects.

Keywords: Antibacterial peptide, mechanism of action, isolation and purification, application, recombinant expression, structure-function relationship.

Next »
Graphical Abstract
[1]
Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control, 2017, 6(1), 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[2]
Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr., 2019, 7(2), 7-12.
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0057-2018] [PMID: 30900543]
[3]
Rello, J.; Kalwaje, E.V.; Conway-Morris, A.; Lagunes, L.; Alves, J.; Alp, E.; Zhang, Z.; Mer, M. Perceived differences between intensivists and infectious diseases consultants facing antimicrobial resistance: a global cross-sectional survey. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(7), 1235-1240.
[http://dx.doi.org/10.1007/s10096-019-03530-1] [PMID: 30900056]
[4]
Cattoir, V.; Felden, B. Future antibacterial strategies: From basic concepts to clinical challenges. J. Infect. Dis., 2019, 220(3), 350-360.
[http://dx.doi.org/10.1093/infdis/jiz134] [PMID: 30893436]
[5]
Bechinger, B.; Gorr, S.U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[6]
Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Curr. Med. Chem., 2017, 24(38), 4303-4314.
[http://dx.doi.org/10.2174/0929867324666170815102441] [PMID: 28814242]
[7]
Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.M.; Bechinger, B.; Naas, T. Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics, 2021, 10(9), 1095.
[http://dx.doi.org/10.3390/antibiotics10091095] [PMID: 34572678]
[8]
Luo, Y.; Song, Y. Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. Int. J. Mol. Sci., 2021, 22(21), 11401.
[http://dx.doi.org/10.3390/ijms222111401] [PMID: 34768832]
[9]
Rodríguez, A.A.; Otero-González, A.; Ghattas, M.; Ständker, L. Discovery, optimization, and clinical application of natural antimicrobial peptides. Biomedicines, 2021, 9(10), 1381.
[http://dx.doi.org/10.3390/biomedicines9101381] [PMID: 34680498]
[10]
Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Li, Y.J.; Huang, C.C.; Chang, H.T. Self‐assembly of antimicrobial peptides on gold nanodots: Against multidrug‐resistant bacteria and wound‐healing application. Adv. Funct. Mater., 2016, 25(46), 7189-7199.
[http://dx.doi.org/10.1002/adfm.201503248]
[11]
Zhu, X.; Zhang, L.; Wang, J.; Ma, Z.; Xu, W.; Li, J.; Shan, A. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Acta Biomater., 2015, 18, 155-167.
[http://dx.doi.org/10.1016/j.actbio.2015.02.023] [PMID: 25735802]
[12]
Ma, Z.; Yang, J.; Han, J.; Gao, L.; Liu, H.; Lu, Z.; Zhao, H.; Bie, X. Insights into the antimicrobial activity and cytotoxicity of engineered α-helical peptide amphiphiles. J. Med. Chem., 2016, 59(24), 10946-10962.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00922] [PMID: 28002968]
[13]
Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol., 2020, 11, 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[14]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[15]
Grau-Campistany, A.; Strandberg, E.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Ulrich, A.S. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci. Rep., 2015, 5(1), 9388.
[http://dx.doi.org/10.1038/srep09388] [PMID: 25807192]
[16]
Frederiksen, N. Louka, S.; Mudaliar, C.; Domraceva, I.; Kreicberga, A.; Pugovics, O.; Żabicka, D.; Tomczak, M.; Wygoda, W.; Björkling, F.; Franzyk, H. Peptide/β-peptoid hybrids with ultrashort PEG-like moieties: Effects on hydrophobicity, antibacterial activity and hemolytic properties. Int. J. Mol. Sci., 2021, 22(13), 7041.
[http://dx.doi.org/10.3390/ijms22137041] [PMID: 34208826]
[17]
Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci. Data, 2019, 6(1), 148.
[http://dx.doi.org/10.1038/s41597-019-0154-y] [PMID: 31409791]
[18]
Farkas, A.; Maróti, G.; Kereszt, A.; Kondorosi, É. Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Front. Microbiol., 2017, 8, 51.
[http://dx.doi.org/10.3389/fmicb.2017.00051] [PMID: 28167938]
[19]
Juba, M.L.; Porter, D.K.; Williams, E.H.; Rodriguez, C.A.; Barksdale, S.M.; Bishop, B.M. Helical cationic antimicrobial peptide length and its impact on membrane disruption. Biochim. Biophys. Acta, 2015, 1848(5), 1081-1091.
[http://dx.doi.org/10.1016/j.bbamem.2015.01.007] [PMID: 25660753]
[20]
Gagnon, M.C.; Strandberg, E.; Grau-Campistany, A.; Wadhwani, P.; Reichert, J.; Bürck, J.; Rabanal, F.; Auger, M.; Paquin, J.F.; Ulrich, A.S. Influence of the length and charge on the activity of α-helical amphipathic antimicrobial peptides. Biochem., 2017, 56(11), 1680-1695.
[http://dx.doi.org/10.1021/acs.biochem.6b01071] [PMID: 28282123]
[21]
Lyu, Y.; Yang, Y.; Lyu, X.; Dong, N.; Shan, A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and candida. Sci. Rep., 2016, 6(1), 27258.
[http://dx.doi.org/10.1038/srep27258] [PMID: 27251456]
[22]
Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol., 2015, 1268(1268), 43-66.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_3] [PMID: 25555720]
[23]
Arora, A.; Majhi, S.; Mishra, A. Antibacterial properties of human beta defensin-3 derivative: CHRG01. J. Biosci., 2018, 43(4), 707-715.
[http://dx.doi.org/10.1007/s12038-018-9790-1] [PMID: 30207316]
[24]
Hancock, R.E.; Haney, E.F.; Gill, E.E. The immunology of host defence peptides: Beyond antimicrobial activity. Nat. Rev. Immunol., 2016, 16(5), 321-334.
[http://dx.doi.org/10.1038/nri.2016.29] [PMID: 27087664]
[25]
Eleftherianos, I.; Zhang, W.; Heryanto, C.; Mohamed, A.; Contreras, G.; Tettamanti, G.; Wink, M.; Bassal, T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: a review. Int. J. Biol. Macromol., 2021, 191, 277-287.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.082] [PMID: 34543628]
[26]
Shelomi, M.; Jacobs, C.; Vilcinskas, A.; Vogel, H. The unique antimicrobial peptide repertoire of stick insects. Dev. Comp. Immunol., 2020, 103, 103471.
[http://dx.doi.org/10.1016/j.dci.2019.103471] [PMID: 31634521]
[27]
Ocampo-Ibáñez, I.D.; Liscano, Y.; Rivera-Sánchez, S.P.; Oñate-Garzón, J.; Lugo-Guevara, A.D.; Flórez-Elvira, L.J.; Lesmes, M.C. A novel cecropin D-derived short cationic antimicrobial peptide exhibits antibacterial activity against wild-type and multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa. Evol. Bioinform. Online, 2020, 16, 1176934320936266.
[http://dx.doi.org/10.1177/1176934320936266] [PMID: 32636607]
[28]
Choi, J.H.; Jang, A.Y.; Lin, S.; Lim, S.; Kim, D.; Park, K.; Han, S.M.; Yeo, J.H.; Seo, H.S. Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol. Med. Rep., 2015, 12(5), 6483-6490.
[http://dx.doi.org/10.3892/mmr.2015.4275] [PMID: 26330195]
[29]
Meade, K.G. O’Farrelly, C. β-Defensins: Farming the microbiome for homeostasis and health. Front. Immunol., 2019, 9, 3072.
[http://dx.doi.org/10.3389/fimmu.2018.03072] [PMID: 30761155]
[30]
Pillai, A.; Ueno, S.; Zhang, H.; Lee, J.M.; Kato, Y. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem. J., 2005, 390(Pt 1), 207-214.
[http://dx.doi.org/10.1042/BJ20050218] [PMID: 15850460]
[31]
Wu, W.K.; Wang, G.; Coffelt, S.B.; Betancourt, A.M.; Lee, C.W.; Fan, D.; Wu, K.; Yu, J.; Sung, J.J.; Cho, C.H. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications. Int. J. Cancer, 2010, 127(8), 1741-1747.
[http://dx.doi.org/10.1002/ijc.25489] [PMID: 20521250]
[32]
Sun, L.; Wang, W.; Xiao, W.; Yang, H. The roles of cathelicidin LL-37 in inflammatory Bowel Disease. Inflamm. Bowel Dis., 2016, 22(8), 1986-1991.
[http://dx.doi.org/10.1097/MIB.0000000000000804] [PMID: 27135484]
[33]
Patocka, J.; Nepovimova, E.; Klimova, B.; Wu, Q.; Kuca, K. Antimicrobial Peptides: amphibian host defense peptides. Curr. Med. Chem., 2019, 26(32), 5924-5946.
[http://dx.doi.org/10.2174/0929867325666180713125314] [PMID: 30009702]
[34]
McMillan, K.A.M.; Coombs, M.R.P. Review: examining the natural role of amphibian antimicrobial peptide magainin. Mol., 2020, 25(22), 5436.
[http://dx.doi.org/10.3390/molecules25225436] [PMID: 33233580]
[35]
Santana, C.J.C.; Magalhães, A.C.M.; Dos Santos Júnior, A.C.M.; Ricart, C.A.O.; Lima, B.D.; Álvares, A.D.C.M.; Freitas, S.M.; Pires, O.R., Jr; Fontes, W.; Castro, M.S. Figainin 1, a novel amphibian skin peptide with antimicrobial and antiproliferative properties. Antibiotics (Basel), 2020, 9(9), 625.
[http://dx.doi.org/10.3390/antibiotics9090625] [PMID: 32967114]
[36]
Macedo, M.; Da Cunha, N.B.; Carneiro, J.A. Marine organisms as a rich source of biologically active peptides. Front. Mar. Sci., 2021, 8, 8.
[http://dx.doi.org/10.3389/fmars.2021.667764]
[37]
Wu, S.P.; Huang, T.C.; Lin, C.C.; Hui, C.F.; Lin, C.H.; Chen, J.Y. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar. Drugs, 2012, 10(8), 1852-1872.
[http://dx.doi.org/10.3390/md10081852] [PMID: 23015777]
[38]
Semreen, M.H.; El-Gamal, M.I.; Abdin, S.; Alkhazraji, H.; Kamal, L.; Hammad, S.; El-Awady, F.; Waleed, D.; Kourbaj, L. Recent updates of marine antimicrobial peptides. Saudi Pharm. J., 2018, 26(3), 396-409.
[http://dx.doi.org/10.1016/j.jsps.2018.01.001] [PMID: 29556131]
[39]
Shwaiki, L.N.; Arendt, E.K.; Lynch, K.M. Plant compounds for the potential reduction of food waste - a focus on antimicrobial peptides. Crit. Rev. Food Sci. Nutr., 2022, 62(15), 4242-4265.
[40]
Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W. Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol., 2014, 59(3), 181-196.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[41]
Tang, S.S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: isolation, characterisation, and purification. Phytochem, 2018, 154, 94-105.
[http://dx.doi.org/10.1016/j.phytochem.2018.07.002] [PMID: 30031244]
[42]
Gerlach, S.L.; Chandra, P.K.; Roy, U.; Gunasekera, S.; Göransson, U.; Wimley, W.C.; Braun, S.E.; Mondal, D. The membrane-active phytopeptide cycloviolacin O2 simultaneously targets HIV-1-infected cells and infectious viral particles to potentiate the efficacy of antiretroviral drugs. Med., 2019, 6(1), 33.
[http://dx.doi.org/10.3390/medicines6010033] [PMID: 30823453]
[43]
Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a food preservative: Part 1: physicochemical properties, antimicrobial activity, and main uses. Crit. Rev. Food Sci. Nutr., 2016, 56(8), 1262-1274.
[http://dx.doi.org/10.1080/10408398.2013.763765] [PMID: 25675115]
[44]
Scocchi, M.; Mardirossian, M.; Runti, G.; Benincasa, M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr. Top. Med. Chem., 2016, 16(1), 76-88.
[http://dx.doi.org/10.2174/1568026615666150703121009] [PMID: 26139115]
[45]
Phoenix, D.A.; Harris, F.; Dennison, S.R. Antimicrobial peptides with pH-dependent activity and alkaline optima: Their origins, mechanisms of action and potential applications. Curr. Protein Pept. Sci., 2021, 22(11), 775-799.
[http://dx.doi.org/10.2174/1389203722666210728105451] [PMID: 34323184]
[46]
Lee, E.Y.; Zhang, C.; Di Domizio, J.; Jin, F.; Connell, W.; Hung, M.; Malkoff, N.; Veksler, V.; Gilliet, M.; Ren, P.; Wong, G.C.L. Helical antimicrobial peptides assemble into protofibril scaffolds that present ordered dsDNA to TLR9. Nat. Commun., 2019, 10(1), 1012.
[http://dx.doi.org/10.1038/s41467-019-08868-w] [PMID: 30833557]
[47]
Wu, R.; Patocka, J.; Nepovimova, E.; Oleksak, P.; Valis, M.; Wu, W.; Kuca, K. Marine invertebrate peptides: antimicrobial peptides. Front. Microbiol., 2021, 12, 785085.
[http://dx.doi.org/10.3389/fmicb.2021.785085] [PMID: 34975806]
[48]
Hong, J.; Hu, J.; Ke, F. Experimental Induction of bacterial resistance to the antimicrobial peptide tachyplesin I and investigation of the resistance mechanisms. Antimicrob. Agents Chemother., 2016, 60(10), 6067-6075.
[http://dx.doi.org/10.1128/AAC.00640-16] [PMID: 27480861]
[49]
Hong, J.; Guan, W.; Jin, G.; Zhao, H.; Jiang, X.; Dai, J. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol. Res., 2015, 170, 69-77.
[http://dx.doi.org/10.1016/j.micres.2014.08.012] [PMID: 25267486]
[50]
Gagnon, M.G.; Roy, R.N.; Lomakin, I.B.; Florin, T.; Mankin, A.S.; Steitz, T.A. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Res., 2016, 44(5), 2439-2450.
[http://dx.doi.org/10.1093/nar/gkw018] [PMID: 26809677]
[51]
Sharma, H.; Nagaraj, R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS One, 2015, 10(3), e0119525.
[http://dx.doi.org/10.1371/journal.pone.0119525] [PMID: 25785690]
[52]
Jia, B.Y.; Wang, Y.M.; Zhang, Y.; Wang, Z.; Wang, X.; Muhammad, I.; Kong, L.C.; Pei, Z.H.; Ma, H.X.; Jiang, X.Y. High cell selectivity and bactericidal mechanism of symmetric peptides centered on d-Pro-Gly Pairs. Int. J. Mol. Sci., 2020, 21(3), 1140.
[http://dx.doi.org/10.3390/ijms21031140] [PMID: 32046328]
[53]
Manfredini, P.G.; Cavanhi, V.; Costa, J.; Colla, L.M. Bioactive peptides and proteases: characteristics, applications and the simultaneous production in solid-state fermentation. Biocatal. Biotransform., 2021, 39(5), 360-377.
[http://dx.doi.org/10.1080/10242422.2020.1849151]
[54]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[55]
Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol., 2019, 431(18), 3547-3567.
[http://dx.doi.org/10.1016/j.jmb.2018.12.015] [PMID: 30611750]
[56]
Zhang, Y.; Li, Z.; Li, L.; Rao, B.; Ma, L.; Wang, Y. A Method for rapid screening, expression, and purification of antimicrobial peptides. Microorganisms, 2021, 9(9), 1858.
[http://dx.doi.org/10.3390/microorganisms9091858] [PMID: 34576753]
[57]
Deng, T.; Ge, H.; He, H.; Liu, Y.; Zhai, C.; Feng, L.; Yi, L. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr. Purif., 2017, 140, 52-59.
[http://dx.doi.org/10.1016/j.pep.2017.08.003] [PMID: 28807840]
[58]
Zhan, N.; Wang, T.; Zhang, L.; Shan, A. A eukaryotic expression strategy for producing the novel antimicrobial peptide PRW4. Braz. J. Microbiol., 2020, 51(3), 999-1008.
[http://dx.doi.org/10.1007/s42770-020-00291-4] [PMID: 32415637]
[59]
Jiang, R.J.; Zhang, P.F.; Wu, X.L.; Wang, Y.; Rehman, T.; Yao, X.; Luo, Y.; Yang, Z. Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro. Electron. J. Biotechnol., 2021, 50, 16-22.
[http://dx.doi.org/10.1016/j.ejbt.2020.12.006]
[60]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. BBA - Biomembranes, 2008, 1778(2), 357-375.
[61]
Dezfuli, B.S.; Giari, L.; Lui, A.; Lorenzoni, M.; Noga, E.J. Mast cell responses to Ergasilus (Copepoda), a gill ectoparasite of sea bream. Fish Shellfish Immunol., 2011, 30(4-5), 1087-1094.
[http://dx.doi.org/10.1016/j.fsi.2011.02.005] [PMID: 21316458]
[62]
Tseng, T.S.; Tsai, K.C.; Chen, C. Characterizing the structure-function relationship reveals the mode of action of a novel antimicrobial peptide, P1, from jumper ant Myrmecia pilosula. Mol. Biosyst., 2017, 13(6), 1193-1201.
[http://dx.doi.org/10.1039/C6MB00810K] [PMID: 28470277]
[63]
Masuda, R.; Dazai, Y.; Mima, T.; Koide, T. Structure-activity relationships and action mechanisms of collagen-like antimicrobial peptides. Biopolymers, 2017, 108(1), e22931.
[http://dx.doi.org/10.1002/bip.22931] [PMID: 27487034]
[64]
Bazzaz, B.; Seyedi, S.; Goki, N.H. Human antimicrobial peptides: Spectrum, mode of action and resistance mechanisms. Int. J. Pept. Res. Ther., 2021, 27(1), 801-816.
[http://dx.doi.org/10.1007/s10989-020-10127-2]
[65]
Su, Y.; Mani, R.; Doherty, T.; Waring, A.J.; Hong, M. Reversible sheet-turn conformational change of a cell-penetrating peptide in lipid bilayers studied by solid-state NMR. J. Mol. Biol., 2008, 381(5), 1133-1144.
[http://dx.doi.org/10.1016/j.jmb.2008.06.007] [PMID: 18656895]
[66]
Powers, J.P.; Hancock, R.E.W. The relationship between peptide structure and antibacterial activity. Peptides, 2003, 24(11), 1681-1691.
[http://dx.doi.org/10.1016/j.peptides.2003.08.023] [PMID: 15019199]
[67]
Panteleev, P.V.; Bolosov, I.A.; Balandin, S.V.; Ovchinnikova, T.V. Structure and biological functions of β-Hairpin antimicrobial peptides. Acta Nat. (Engl. Ed.), 2015, 7(1), 37-47.
[http://dx.doi.org/10.32607/20758251-2015-7-1-37-47] [PMID: 25927000]
[68]
Claro, B.; Goormaghtigh, E.; Bastos, M. Attenuated total reflection-fourier transform infrared spectroscopy: A tool to characterize antimicrobial cyclic peptide-membrane interactions. Eur. Biophy. J. Biophy. Lett., 2021, 50(3-4), 629-639.
[http://dx.doi.org/10.1007/s00249-020-01495-0] [PMID: 33743025]
[69]
Zohrab, F.; Askarian, S.; Jalili, A.; Kazemi Oskuee, R. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily. Int. J. Pept. Res. Ther., 2019, 25(1), 39-48.
[http://dx.doi.org/10.1007/s10989-018-9723-8] [PMID: 32214928]
[70]
Mansour, S.C.; de la Fuente-Núñez, C.; Hancock, R.E. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J. Pept. Sci., 2015, 21(5), 323-329.
[http://dx.doi.org/10.1002/psc.2708] [PMID: 25358509]
[71]
Welch, N.G.; Li, W.; Hossain, M.A.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. (Re)Defining the proline-rich antimicrobial peptide family and the identification of putative new members. Front Chem., 2020, 8, 607769.
[http://dx.doi.org/10.3389/fchem.2020.607769] [PMID: 33335890]
[72]
D’Este, F.; Benincasa, M.; Cannone, G.; Furlan, M.; Scarsini, M.; Volpatti, D.; Gennaro, R.; Tossi, A.; Skerlavaj, B.; Scocchi, M. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish Shellfish Immunol., 2016, 59, 456-468.
[http://dx.doi.org/10.1016/j.fsi.2016.11.004] [PMID: 27818338]
[73]
Hilchie, A.L.; Wuerth, K.; Hancock, R.E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol., 2013, 9(12), 761-768.
[http://dx.doi.org/10.1038/nchembio.1393] [PMID: 24231617]
[74]
Luong, H.X.; Thanh, T.T.; Tran, T.H. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci., 2020, 260, 118407.
[http://dx.doi.org/10.1016/j.lfs.2020.118407] [PMID: 32931796]
[75]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[76]
Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: delivery and formulation. Adv. Drug Deliv. Rev., 2021, 175, 113818.
[http://dx.doi.org/10.1016/j.addr.2021.05.028] [PMID: 34090965]
[77]
De la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002] [PMID: 28435091]
[78]
Thapa, R.K.; Diep, D.B.; Tønnesen, H.H. Topical antimicrobial peptide formulations for wound healing: current developments and future prospects. Acta Biomater., 2020, 103(21), 52-67.
[http://dx.doi.org/10.1016/j.actbio.2019.12.025] [PMID: 31874224]
[79]
Borro, B.C.; Nordström, R.; Malmsten, M. Microgels and hydrogels as delivery systems for antimicrobial peptides. Colloids Surf. B Biointerfaces, 2020, 187(187), 110835.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110835] [PMID: 32033885]
[80]
Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol., 2021, 12, 616713.
[http://dx.doi.org/10.3389/fimmu.2021.616713] [PMID: 33897683]
[81]
Wu, S.; Wang, J.; Zhu, L.; Ren, H.; Yang, X. A novel apidaecin Api-PR19 synergizes with the gut microbial community to maintain intestinal health and promote growth performance of broilers. J. Anim. Sci. Biotechnol., 2020, 11(1), 61.
[http://dx.doi.org/10.1186/s40104-020-00462-1] [PMID: 32551109]
[82]
Xiong, X.; Yang, H.S.; Li, L.; Wang, Y.F.; Huang, R.L.; Li, F.N.; Wang, S.P.; Qiu, W. Effects of antimicrobial peptides in nursery diets on growth performance of pigs reared on five different farms. Livest. Sci., 2014, 167, 206-210.
[http://dx.doi.org/10.1016/j.livsci.2014.04.024]
[83]
Liu, Y.W.; Sameen, D.E.; Ahmed, S.; Dai, J.; Qin, W. Antimicrobial peptides and their application in food packaging. Trends Food Sci. Technol., 2021, 112, 471-483.
[http://dx.doi.org/10.1016/j.tifs.2021.04.019]
[84]
Bo, T.; Liu, M.; Zhong, C.; Zhang, Q.; Su, Q.Z.; Tan, Z.L.; Han, P.P.; Jia, S.R. Metabolomic analysis of antimicrobial mechanisms of ε-poly-L-lysine on Saccharomyces cerevisiae. J. Agric. Food Chem., 2014, 62(19), 4454-4465.
[http://dx.doi.org/10.1021/jf500505n] [PMID: 24735012]
[85]
Ko, K.Y.; Park, S.R.; Lim, H.; Park, S-J.; Kim, M. Improved pretreatment method for determination of nisins A and Z and monitoring in cheese using liquid chromatrography-tandem mass spectrometry. Food Anal. Methods, 2016, 9(1), 122-130.
[http://dx.doi.org/10.1007/s12161-015-0158-y]
[86]
Landman, D.; Georgescu, C.; Martin, D.A.; Quale, J. Polymyxins revisited. Clin. Microbiol. Rev., 2008, 21(3), 449-465.
[http://dx.doi.org/10.1128/CMR.00006-08] [PMID: 18625681]
[87]
Malheiros, S.; Da, P. Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci. Technol., 2010, 21(6), 284-292.
[http://dx.doi.org/10.1016/j.tifs.2010.03.003]
[88]
Buonocore, F.; Fausto, A.M.; Della Pelle, G.; Roncevic, T.; Gerdol, M.; Picchietti, S. Attacins: A promising class of insect antimicrobial peptides. Antibiot., 2021, 10(2), 212.
[http://dx.doi.org/10.3390/antibiotics10020212] [PMID: 33672685]
[89]
Brady, D.; Grapputo, A.; Romoli, O.; Sandrelli, F. Insect cecropins, antimicrobial peptides with potential therapeutic applications. Int. J. Mol. Sci., 2019, 20(23), 5862.
[http://dx.doi.org/10.3390/ijms20235862] [PMID: 31766730]
[90]
Yi, H.Y.; Deng, X.J.; Yang, W.Y.; Zhou, C.Z.; Cao, Y.; Yu, X.Q. Gloverins of the silkworm Bombyx mori: structural and binding properties and activities. Insect Biochem. Mol. Biol., 2013, 43(7), 612-625.
[http://dx.doi.org/10.1016/j.ibmb.2013.03.013] [PMID: 23567591]
[91]
Sinha, S.; Ng, W.J.; Bhattacharjya, S. NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle: implications in antimicrobial activity. Biochim. Biophys. Acta Biomembr., 2020, 1862(11), 183432.
[http://dx.doi.org/10.1016/j.bbamem.2020.183432] [PMID: 32781154]
[92]
Zylowska, M.; Wyszynska, A.; Jagusztyn-Krynicka, E.K. Antimicrobial peptides - defensins. Postepy Mikrobiol., 2011, 50(3), 223-234.
[93]
Zhou, J.; Chen, L.; Liu, Y.; Shen, T.; Zhang, C.; Liu, Z.; Feng, X.; Wang, C. Antimicrobial peptide PMAP-37 analogs: Increasing the positive charge to enhance the antibacterial activity of PMAP-37. J. Pept. Sci., 2019, 25(12), e3220.
[http://dx.doi.org/10.1002/psc.3220] [PMID: 31858653]
[94]
Lin, Y.; Hu, N.; Lyu, P.; Ma, J.; Wang, L.; Zhou, M.; Guo, S.; Chen, T.; Shaw, C. Hylaranins: prototypes of a new class of amphibian antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Amino Acids, 2014, 46(4), 901-909.
[http://dx.doi.org/10.1007/s00726-013-1655-1] [PMID: 24378871]
[95]
Wang, G.; Wang, Y.; Ma, D.; Liu, H.; Li, J.; Zhang, K.; Yang, X.; Lai, R.; Liu, J. Five novel antimicrobial peptides from the kuhl’s wart frog skin secretions, Limnonectes kuhli. Mol. Biol. Rep., 2013, 40(2), 1097-1102.
[http://dx.doi.org/10.1007/s11033-012-2152-4] [PMID: 23054029]
[96]
Hansen, I.K.Ø.; Lövdahl, T.; Simonovic, D.; Hansen, K.Ø.; Andersen, A.J.C.; Devold, H.; Richard, C.S.M.; Andersen, J.H.; Strøm, M.B.; Haug, T. Antimicrobial activity of small synthetic peptides based on the marine peptide turgencin A: prediction of antimicrobial peptide sequences in a natural peptide and strategy for optimization of potency. Int. J. Mol. Sci., 2020, 21(15), 5460.
[http://dx.doi.org/10.3390/ijms21155460] [PMID: 32751755]
[97]
Peng, H.; Yang, M.; Huang, W.S.; Ding, J.; Qu, H.D.; Cai, J.J.; Zhang, N.; Wang, K.J. Soluble expression and purification of a crab antimicrobial peptide scygonadin in different expression plasmids and analysis of its antimicrobial activity. Protein Expr. Purif., 2010, 70(1), 109-115.
[http://dx.doi.org/10.1016/j.pep.2009.09.008] [PMID: 19766724]
[98]
Rey-Campos, M.; Moreira, R.; Romero, A.; Medina-Gali, R.M.; Novoa, B.; Gasset, M.; Figueras, A. Transcriptomic analysis reveals the wound healing activity of mussel myticin C. Biomolecules, 2020, 10(1), 133.
[http://dx.doi.org/10.3390/biom10010133] [PMID: 31947557]
[99]
Vasilchenko, A.S.; Smirnov, A.N.; Zavriev, S.K.; Grishin, E.V.; Vasilchenko, A.V.; Rogozhin, E.A. Novel thionins from black seed (Nigella sativa L.) demonstrate antimicrobial activity. Int. J. Pept. Res. Ther., 2017, 23(2), 171-180.
[http://dx.doi.org/10.1007/s10989-016-9549-1]
[100]
Flores-Alvarez, L.J.; Guzmán-Rodríguez, J.J.; López-Gómez, R.; Salgado-Garciglia, R.; Ochoa-Zarzosa, A.; López-Meza, J.E. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. Int. J. Biochem. Cell Biol., 2018, 99, 10-18.
[http://dx.doi.org/10.1016/j.biocel.2018.03.013] [PMID: 29559362]
[101]
Hassan, M.F.; Qutb, A.M.; Dong, W. Prediction and activity of a cationic α-Helix antimicrobial peptide ZM-804 from maize. Int. J. Mol. Sci., 2021, 22(5), 2643.
[http://dx.doi.org/10.3390/ijms22052643] [PMID: 33807972]
[102]
Kostov, K.; Christova, P.; Slavov, S.; Batchvarova, R. Constitutive expression of a radish defensin gene rs-afp2 in tomato increases the resisstance to fungal pathogens. Biotechnol. Biotechnol. Equip., 2009, 23(1), 1121-1125.
[http://dx.doi.org/10.1080/13102818.2009.10817625]
[103]
Guinane, C.M.; Lawton, E.M.; O’Connor, P.M.; O’Sullivan, Ó.; Hill, C.; Ross, R.P.; Cotter, P.D. The bacteriocin bactofencin A subtly modulates gut microbial populations. Anaerobe, 2016, 40, 41-49.
[http://dx.doi.org/10.1016/j.anaerobe.2016.05.001] [PMID: 27154638]
[104]
Viel, J.H.; Jaarsma, A.H.; Kuipers, O.P. Heterologous expression of mersacidin in Escherichia coli elucidates the mode of leader processing. ACS Synth. Biol., 2021, 10(3), 600-608.
[http://dx.doi.org/10.1021/acssynbio.0c00601] [PMID: 33689311]

© 2024 Bentham Science Publishers | Privacy Policy